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Abstract. We have developed relative feature importance (RFI), a metric for the
classifier-independent ranking of features. Previously, we have shown the metric
to rank accurately features for a wide variety of artificial and natural problems,
for both two-class and multi-class problems. In this paper, we present the design
of the metric, including both theoretical considerations and statistical analysis of
the possible components.
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1 Classifier-Independent Feature Analysis

In all feature analysis problems some initial set of candidate features must be identi-
fied. The candidate features are the result of some external analysis or search process.
Feature analysis techniques analyze the usefulness of the candidate features. They can-
not guarantee that there does not exist an as yet undiscovered feature which may be
more useful. They also cannot guarantee that classification error overall could not be
reduced using features not in the candidate feature set.

Since classifier-independent feature analysis is based on the structure of the data,
features can be analyzed only on the basis of a learning sample. The learning sample is
a set of correctly classified objects that are represented by feature values for the fea-
tures in the candidate feature set. Since classifier-independent feature analysis is driven
by the learning sample, a high degree of confidence in the learning sample is impor-
tant.

The learning sample is taken as baseline truth, therefore the classes represented in a
learning sample are necessarily collectively exhaustive. The problem of missing
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classes (sometimes called new class discovery [1]) is a separate problem from the fea-
ture analysis problem. In new class discovery the features are assumed to represent the
objects accurately, and are used to explore the structure of the logical space. In feature
analysis the classes are assumed to be known accurately, and are used to explore the
structure of the feature space. Thus, the classes can be assumed to be collectively
exhaustive without significant loss of generality. In contrast, a significant loss in gener-
ality does result from assuming that the classes are mutually exclusive. In medical
diagnosis, for example, assuming in the general case that a patient can have at most
one pathology is unrealistic.

The goal of classifier-independent feature analysis for classification is to measure
the usefulness of the features in the candidate feature set. Nonetheless, classification
performance on the learning sample cannot be used in and of itself as a basis for ana-
lyzing the features for several reasons. First, it has been shown that, in the general case,
features that optimize classification performance for one classifier may not perform at
all well in another classifier [2]. More fundamentally, though, classifier-independent
feature analysis tries to measure the potential for discrimination between classes of the
features in the candidate feature set, which potential may not be realizable in practice.

Once classification performance has been eliminated as a measure of usefulness,
what remains is the separability between the classes. Separability is not subject to the
theoretical constraints of classification performance. When expressed as Bayes error,
the separation between class-conditional joint feature distributions places a lower
bound on classification error that is classifier-independent. Unfortunately, Bayesian
error is not calculable for many problems. Nonetheless, separation between class-con-
ditional joint feature distributions gives rise to the potential for classification. Issues of
calculation aside, classifier-independent feature analysis uses separability between
classes as the basis for the usefulness of a feature.

A theoretical constraint placed on feature analysis is that feature rankings are subset
dependent. Even under the assumption of feature independence, feature rankings can
change as a function of adding and removing features [3]. Nonetheless, ranking the
features is a critical component of feature analysis: in medical diagnosis, when test
results are ambiguous, the physician needs guidance as to their relative value for dis-
crimination. Therefore, ranking is given within a subset, with the critical ranking being
that within the optimal subset. The optimal subset of the candidate feature set is
defined as the smallest subset with the maximum potential for separability between
classes.

2 Measuring Separation: Discriminant Analysis

Discriminant analysis can be used to extract features that maximize the ratio of the
separation between classes to the spread within classes, as measured by the between-
class and within-class scatter matrices. Within-class scatter is a measure of the scatter
of a class relative to its own mean. Between-class scatter is a measure of the distance
from each class to the mean(s) of the other classes. Within-class and between-class
scatter can be defined parametrically or non-parametrically. Parametric scatter matri-
ces use the learning sample to estimate the distributions of the features through estima-
tion of parameters for an assumed distributional structure. Non-parametric scatter
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matrices use the learning sample to perform local density estimation around individual
samples, and then measures scatter using the local density estimates.

The parametric versions of the within-class and between-class scatter matrices esti-
mate the means of the classes based on the entire learning sample. The parametric ver-
sions assume that a distribution can be characterized by its mean and covariance. Let
P; be the a priori probability of class w;, X; be the covariance matrix and M; be the
mean of class w; N be the total number of samples, and L be the number of classes
present in the learning sample. Parametric within-class scatter is defined as the aver-
aged covariance. The a priori probability is estimated from the learning sample as N/
N, where N; is the number of samples from ;. %; is estimated by fli , the sample cova-
riance matrix. Parametric between-class scatter is the scatter of the expected means
around the mixture means.The components of the between-class scatter matrix are
estimated using the learning sample in the same manner as the within-class scatter
matrix.

RFI uses non-parametric versions of the scatter matrices based on versions proposed
by Fukunaga and Mantock [4]. They based their non-parametric scatter estimates on
local density estimates using the k-nearest neighbors (kNN) technique. They defined
the w; local mean for a given class w; and a given sample Scj as

Z xé’lz,N (D)
q =1
where xf;lle is the gth-nearest-neighbor in ;. Because Fukunaga and Mantock
experimented only with two-class problems, they could use the w;-local mean for cal-
culating both within- and between-class scatter.

While use of the local mean introduces the parameter k, its behavior is well studied.
With infinite sample size, the accuracy of the local density estimation improves as k
increases. With finite sample size, k is subject to the problem of oversampling, other-
wise known as Hughes phenomenon [5]. A value of k£ which is too large for the sample
size performs local density estimation on non-local samples! A value of k& which is too
small for the sample size reduces the accuracy of the local density estimation. In prac-
tice, k is generally set to a small fraction of the number of samples [6].

To generalize Fukunaga and Mantock’s approach to more than two classes, the local

out-of-class mixture mean for each sample 5‘5'[) is defined as
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where X( z\;}t\;) is the gth-nearest-neighbor outside of w;. The local mixture mean dif-

fers from the parametric mixture mean in that it excludes data from a sample’s own
class.

Non-parametric within-class scatter is defined as the averaged scatter, where scatter
is around the local means:
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When k = N;, the local mean reduces to the parametric mean, and therefore the non-
parametric within-class scatter matrix reduces to the parametric version. Non-para-
metric between-class scatter is measured as the scatter around the out-of-class mixture
means:
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The between-class non-parametric scatter matrix does not reduce to its parametric
form as does the within-class, because the out-of-class mixture means necessarily
exclude same class samples, but the relationship is close when k = N,.

The use of the k-nearest-neighbor local density estimates introduces the need to
choose a distance metric for determining the distance between a sample and its neigh-
bors. Many distance measures have been proposed for use with kNN error estimation
[7]. Two commonly used metrics are the Euclidean distance and the Mahalanobis dis-
tance [6]. Fukunaga and Mantock used Euclidean distance in their original work.
Mahalanobis distance should also be considered (especially using Fukunaga and Man-
tock's original algorithm), since it incorporates information concerning the relative
variance of the features.

A further refinement introduced by Fukunaga and Mantock was the use of a weight-
ing factor, w;, to de-emphasize samples which lie far away from the classification
boundary. RFI uses the natural multi-class extension of Fukunaga and Mantock’s
weighting factor as given in [8]. Using the weighting factor, the contribution of each
X . to scatter is inversely proportional to its distance from the nearest classification
boundary.

Thus, the final forms for non-parametric within-class and between-class scatter are
(estimating components as necessary using the learning sample):
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3 Theoretical Implications

The optimal extracted features are found by eigensystem decomposition of the ratio of
the between-class to within-class scatter matrices. Specifically, the optimality criterion
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used is the trace:
T =1r(s;1S,) @)

Thus, for both the parametric and the non-parametric forms, the eigenvectors form the
linear transform which maximizes J, the ratio of the between-class to within-class
scatter. The eigenvalues measure the amount of separation induced in the extracted
space. The extracted features are optimal in the sense that they maximize separation
between the class-conditional joint feature distributions in the rotated space.

Using the non-parametric scatter matrices, feature extraction is based on local den-
sity estimation. Thus the results are a compromise between information provided in the
various clusters or regions belonging to a class [8].

While it is not possible to define the class of problems for which the non-parametric
scatter matrices accurately capture the discriminatory power of the features, it is never-
theless possible to characterize those problems which are pathological. A problem
under consideration can then be compared to the pathological problems in an attempt
to determine the suitability of RFI for the problem.

One class of problems which are pathological for RFI, regardless of the use of para-
metric or non-parametric scatter, are problems which violate the assumption that prox-
imity in feature space can be used to determine class membership. These problems are
problems which k-nearest neighbor classifiers cannot solve. Figure 1 (a) illustrates one

y
X2 \ X2 //2
AN
+ 0 + o]+ o + o N
o+ 0 +|o + o + AN
+ 0 + o|l+ 0+ 0 \\
o+ 0 +|o + o + N
+ 0 + 0of+ 0o + 0 X /\ X
0o+ 0 +|o ? o + s
+ 0 + o|+ o + o Y
/
o+ 0 +|o + o +
/ B |
E+)) Ciass; B class 1 yi
0) class
a
(?) unknown @) [ class 2 (b)

Figure 1: Two pathological problems for RFI.

such classical problem, the checkerboard. Any problem which is a pathological prob-
lem for k-nearest neighbor density estimation is a pathological problem for RFI.

A second class of pathological problems derives from the combining of information
from multiple clusters or regions in the non-parametric scatter matrices. By construct-
ing a problem wherein the transformations necessary to optimize the ratio of between-
class to within-class scatter conflict, the non-parametric scatter matrices’ ability to



Design Choices and Theoretical Issues for Relative Feature Importance 701

combine local information can be exploited as a weakness. Figure 1 (b) illustrates such
a problem. Note, however, that the parametric scatter matrices would do no better with
the problems in Figure 1.

Because non-parametric discriminatory power measures the potential of the features
for inducing separability between classes, it is desirable that measures of non-paramet-
ric discriminatory power be invariant with regard to rotation, scaling, and shift of fea-
tures. Rotational and shift invariance eliminate the impact of irrelevant details of the
measurement method for the features. Scale invariance eliminates the need for normal-
ization of the features while preserving the critical information of the ratio of between-
class to within-class scatter.

RFI is a function of the eigenvalues and eigenvectors of the parametric and non-
parametric scatter matrices. While the non-parametric scatter matrices are not as well
understood as the parametric scatter matrices, the non-parametric forms are still sym-
metric, as can be seen by observation of equations 5 and 6. Therefore, functions of
eigenvectors and eigenvalues retain the same properties for both parametric and non-
parametric scatter matrices.

Rotational invariance results from the extraction technique; since the optimal fea-
tures are extracted from the original features, rotation in the original feature space has
no impact. Scale invariance results from the use of the ratio of between-class to within-
class scatter; since both within-class and between-class scatter are equally affected by
scaling a feature, the ratio removes the effects of scaling. Shift invariance results from
the use of scatter around the means, therefore the technique is self-centering.

All three forms of invariance reduce to the issue of preserving class separability,
which is invariant under any nonsingular transformation (including rotation, scaling,
and shift) [9]. Those transformations affect separability in the individual features (i.e.,
in the marginal feature distributions), but not between the classes themselves. Thus, so
long as none of the extracted features is discarded, RFI is invariant.

4 Finding the Optimal Subset

The optimal subset of features is the smallest subset with the maximum potential for
separability between classes. RFI extracts a set of optimal features from a set of origi-
nal features, without the use of classifier-specific assumptions. The optimal subset of
the original features can be found by maximizing the separation induced between the
class-conditional joint feature distributions across all possible subsets of the original
features, as measured using the optimal extracted features. The optimal subset of fea-
tures is thus the smallest subset of original features which produces the maximum sep-
aration, measured in the rotated space.

Given the presence of redundant features, more than one subset of the same size may
produce the same amount of separation. When two or more smallest subsets produce
the same amount of separation, and that separation is the maximum separation found,
then more than one optimal subset exists. The presence of more than one optimal sub-
set is not a problem; in both assisted and automatic classification, it offers more
options in the design of the classification system.

The criteria commonly used in parametric discriminant analysis to find the optimal
subset of features are not appropriate for the non-parametric case. Criteria such as the
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trace of the ratio of the between-class to within-class scatter matrices are based on the
same simplifying assumptions as the parametric scatter matrices. The trace, when cal-
culated on parametric scatter matrices, is monotonic as a function of subset size,
reflecting the theoretical assumption that Bayes error also decreases monotonically as
a function of subset size.

Under conditions of limited sample size, the monotonicity assumption does not hold
even for well-behaved data sets with unimodal Gaussian distributions, if the true distri-
butions are not known and must be estimated. As the number of features increases for a
fixed sample size, so does the error in the estimation. A second concern is the cost of
including each feature, in computer time, in complexity, and sometimes in human suf-
fering, as can be the case in medical diagnosis. In practice, whether for automatic clas-
sification or assisted classification, more features is not always better.

A non-parametric approach is to select the optimal subset based on the k-nearest-
neighbor error in the extracted space. Because kNN error is based solely on proximity
in feature space, it does not introduce any new classifier-specific assumptions. More-
over, because kNN error is asymptotically at most twice the Bayes error, calculating
kNN error in the extracted space estimates the theoretical lower limit on the potential
classification error [10]. Using kNN introduces a new parameter (k, the number of
nearest neighbors used to calculate e NN ). Fortunately, as discussed in Section 2, the
behavior of & is well understood.

Finding the optimal subset requires exhaustive search, since any non-exhaustive
technique can do arbitrarily poorly in the general case [11]. The assumption of mono-
tonicity, necessary for branch-and-bound algorithms to guarantee performance, is
extremely restrictive, and rarely justified in real problems [12]. Whenever possible,
exhaustive search should be done. For the purposes of evaluating different configura-
tions of RFI, or for comparing estimators for non-parametric discriminatory power,
exhaustive search is required. When applying RFI directly to real problems which are
too large to execute exhaustive search, sub-optimal techniques must be used.

Since the criterion, J, used by RFI to estimate the inherent Bayes error in each fea-
ture subset is a random variable, it is necessary to determine statistically whether the
difference between separation in the subsets is due to the variance in the learning sam-
ple or the effects of the subsets. An analysis-of-variance (ANOVA) is performed on the
results from multiple data sets. Each subset is considered a different treatment for the
purpose of the ANOVA.

Calculating J for all possible subsets for each data set reduces the noise in the exper-
iment. Each data set is a block in a block ANOVA. Calculation of J for each subset on
a particular data set constitutes the experimental units within that block. The use of
blocking reduces the noise in the data by reducing the number of data sets for the same
number of experimental units. Since RFI does not carry over any information from one
treatment to the next, the concept of order in applying the treatments is meaningless,
and can be considered to be random. Thus, the model used by RFI is randomized block
ANOVA.

A sensitivity analysis was performed to measure the impact of the algorithmic varia-
tions of Sections 2 and 3 on the ability of RFI to find the optimal subset. The problem
chosen, (see Table 1) has multiple clusters, mixed distributions, a noise feature, and
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Table 1. Sensitivity Analysis Problem

Feature | Bayes Class 1 Class 2 Rank
flr;"gl)' Cluster A Cluster B Cluster C Cluster D
1 37.5% | U[-3.0,-2.0] | U[-1.0,0.0] | U[-0.75,0.25] | U[4.0,5.0] 1
2 10% | U[-3.0,-2.0] | U[-0.5,0.5] U[0.3, 1.3] U[4.0, 5.0] 3
3 25% | U[-3.0,-2.0] | U[-1.5,-0.5] U[-1.0, 0.0] U[4.0, 5.0] 2
4 noise N (0,1) N(0,1) N (0,1) N(0,1) 0

three different ranks of non-noise features. Despite its complexity, the sensitivity anal-

ysis problem can still be solved using 600 samples per cluster, or 2400 samples in all.
A full factorial design was used, with two levels per factor. The coding chart for the

experiments is given in Table 2. Four design points found the correct subset: non-para-

Table 2. Coding chart for Sensitivity Analysis Part 1

Factor - +
Within-class scatter Parametric Non-parametric
Between-class scatter Parametric Non-parametric
Distance measure Mahalanobis Euclidean
k value 1 5

metric within-class scatter with euclidean distance, using either parametric or non-
parametric between-class scatter and either setting for k.

5 Ranking the Features

RFI ranks features based on the contribution of the original features to the separation
in the rotated space. The contribution of the original features to the separation in the
extracted space can be estimated using the eigenvectors and eigenvalues of the optimal
transformation. The magnitudes of the eigenvalues measure the amount that each orig-
inal feature contributes to each extracted feature. The normalized eigenvalues estimate
the amount of separability contributed by each extracted feature to separation in the
extracted space. Thus the normalized eigenvalues can be used to estimate separability
in the rotated space, and the eigenvectors can be used to estimate the amount which
each original features contributes to that separability.

The contribution of the original features to the separation in the extracted space can
be estimated without tuning parameters by using the Weighted Absolute Weight Size
(WAWS) of [14]. WAWS uses the normalized eigenvalues to measure the contributions
of the original features to the extracted features by the proportion of separation the
extracted features contribute to separation in the extracted space.

Features with statistically distinct WAWS values are given different ranks. To deter-
mine whether WAWS values are distinct, a second randomized block ANOVA is per-
formed, and intervals constructed around the differences between treatment means
using the multiple comparisons formula. Each feature is thus a treatment, and each
data set (optimal subset only), a block.

Features with intervals around the differences from all other features are given dis-
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tinct ranks. Groups of features in which some features have distinct WAWS values, but
others do not, are given a single rank. Features not in the optimal subset have rank
zero. Features (or groups of features) with distinct ranks are ranked based on their
treatment means, with the largest distinct treatment mean being assigned the highest
rank. Higher ranks indicate greater discriminatory power.

The sensitivity analysis was performed a second time to measure the impact of the
design alternatives on the ability of RFI to correctly rank the features, given the opti-
mal subset. Three design points ranked the features correctly (see Table 3 ). Non-para-

Table 3. Design points which correctly rank the features, given the optimal subset.

Within-class Between-class Distance k value Ranking
scatter scatter measure Method

- + - + +

+ + + - +

+ + + + +

metric between-class scatter is clearly shown to be necessary. The setting for £ is,
again, shown to not be critical, as would be expected. Using parametric within-class
scatter with Mahalanobis distance also ranks the features correctly, given the optimal
subset. Thus, the use of Mahalanobis distance compensates to some degree for the
information lost by the parametric scatter matrix

6 Complete Algorithm

In practice, RFI first finds the optimal subset, and then ranks the features within that
subset. A final sensitivity analysis was performed, using the complete algorithm. Two
configurations of RFI correctly solved the problem. The only factor that was not criti-
cal was the number of nearest neighbors. Within-class scatter had to be calculated non-
parametrically using euclidean distance to find the correct subset. Between-class scat-
ter had to be calculated non-parametrically to rank the features correctly. To correctly
rank the features overall (assigning zero to features outside the optimal subset), both
within-class and between-class scatter had to be calculated non-parametrically and,
euclidean distances had to be used. Note that the insensitivity to k may have been due
to the use of uniformly distributed signal values. Earlier research with Gaussian signal
features has demonstrated greater sensitivity to k [15].

7 Conclusions and Future Research

A number of choices were considered and resolved in the design of RFI. RFI must use
non-parametric scatter matrices for both within-class and between-class scatter, based
on the results of the sensitivity analysis. RFI selects the optimal subset of the candidate
features based on their potential for inducing class separability, thus, RFI uses kNN
error in the rotated space to find the optimal subset. The choice of kNN error was made
because it asymptotically approaches twice the Bayes error with increasing sample
size. In addition, kNN error introduces no new assumptions, being based on the
assumption that proximity in feature space can be used to determine class membership.
RFT uses randomized block ANOVA to determine whether one subset (or set of sub-
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sets) has statistically better class separability than the other subsets.

The design of RFI presented here has been shown to correctly rank features for a
variety of two-class and multi-class artificial and natural data problems [8,14,16].
Planned enhancements of RFI include incorporation of cost information and categori-
cal features in the kNN density estimation. In addition, the computational cost of the
algorithm might be reduced through the application of such techniques as adaptive or
edited kNN.
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