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Abstract. An algorithm for learning structural patterns given in terms of
Attributed Relational Graphs (ARG’s) is presented. The algorithm, based on
inductive learning methodologies, produces general and coherent prototypes in
terms of Generalized Attributed Relational Graphs (GARG’s), which can be
easily interpreted and manipulated. The learning process is defined in terms of
inference operations especially devised for ARG’s, as graph generalization and
graph specialization, making so possible the reduction of both the
computational cost and the memory requirement of the learning process.
Experimental results are presented and discussed with reference to a structural
method for recognizing characters extracted from ETL database.

1 Introduction

Structured patterns are patterns represented in terms of simple parts, often called
primitives, and relations among them [1]. They are generally represented by means of
Attributed Relational Graphs (ARG’s), e.g. associating the nodes and the edges
respectively to the primitives and to the relations among them. If necessary, their
properties are represented by attributes both of the nodes and of the edges.

Despite their attractiveness in terms of representational power, structural methods
(i.e. methods dealing with structured information) imply complex procedures both in
the recognition and in the learning process. In fact, in real applications the
information is affected by distortions, and consequently the corresponding graphs
result to be very different from the ideal ones. So, in the recognition stage the
comparison among the input sample and a set of prototype graphs cannot be
performed by exact graph matching procedures [2]. Moreover the learning problem,
i.e. the task of building a set of prototypes adequately describing the objects of each
class, is complicated by the fact that the prototypes, implicitly or explicitly, should
include a model of the possible distortions. For these reasons nowadays the problem
is still under investigation: many of the approaches proposed during the last years
consider this task as a symbolic machine learning problem, introducing description
languages often more general and complex than needed [3,4,5,6,7,8,9].

The advantage making this approach really effective relies in the obtained
descriptions: since the learning method is oriented toward the construction of
maximally general prototypes, they are expressed as compact predicates, easily
understandable by human beings. The user can acquire knowledge about the domain
by looking at them and consequently he can validate or even improve the prototypes
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or at least understand what has gone wrong in case of classification errors. On the
other hand these methodologies are so computationally heavy, both in terms of time
and memory requirements, that only simple applications can be actually dealt with.

Our approach is similar to these methods, but has the peculiarity that descriptions
are given in terms of Attributed Relational Graphs. The use of a somewhat less
powerful description language is compensated by the ability to express the operations
of our learning method directly in terms of graph operations, with a significant
improvement in the computational requirements of the system. To this aim, we will
introduce a new kind of ARG, called Generalized Attributed Relational Graph,
devoted to represent in a compact way the features common to a set of ARG’s. Then,
in section 3 we will formulate a learning algorithm operating directly in the graphs’
space: it finds out prototypes that are both general and consistent, like classical
machine learning ones. Section 4 reports an experimental analysis of the method with
reference to a problem of character recognition, using a standard character database.

2 Preliminary Definitions

An ARG can be defined as a 6-tuple ),,,,,( ENEN AAEN aa  where N and NNE ·Ì
are respectively the sets of the nodes and of the edges of the ARG, AN and AE the sets
of node and edge attributes and finally aN and aE the functions which associate to each
node or edge of the graph the corresponding attribute.
We will assume that the attributes of a node or an edge are expressed in the form

),,( 1 tkppt K , where t is a type chosen over a finite alphabet T of possible types and

),,( 1 tkpp K  are a tuple of parameters, also from finite sets t
k

t
t

PP ,,1 K . Both the

number of parameters (kt, the arity associated to type t) and the sets they belong to
depend on the type of the attribute, so that we are able to differentiate the descriptions
of different kinds of nodes (or edges), as explained in fig. 1.

Let us introduce the concept of Generalized Attributed Relational Graph (from
now on GARG). Basically a GARG is an ARG with an extended attribute definition:
the set of types of node and edge attribute is extended with the special type f,
carrying no parameter and matching any attribute type, with no regard to the attribute
parameters. For the other attribute types, if the sample has a parameter whose value is
within the set Pi

t, the corresponding parameter of the prototype belongs to the set
)(* t

i
t

i PP ˆ= , where )(Xˆ  is the power set of X, i.e. the set of all the subsets of X.

We say that a GARG ),,,,,( *******
ENEN AAENG aa=  covers a sample G ( GG =* ,

where the symbol =  denotes the relation from now on called covering) iff there is a

mapping NN fi*:m  such that:

1. m is a monomorphism; that is:
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2. the attributes of the nodes and of the edges of *G  are compatible with the
corresponding ones of G; that is:
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where the symbol f denotes a compatibility relation, defined as follows:

),,(, 1 tkpptt Kff"  ; **
111

**
1 ),,(),,(,

tttt kkkk pppppptpptt ˛ÙÙ˛Û" KKfK (3)

a)

rectangle(s,m) rectangle(s,m)

rectangle(m,s)

circle(m)

on_top on_top

on_top

b)

NODE TYPE ALPHABET
 T = { rectangle , circle }
 krectangle = 2
 kcircle = 1
 p1

rectangle = width = {s,m,l}
 p2

rectangle = height = {s,m,l}
 p1

circle = radius = {s,m,l}

EDGE TYPE ALPHABET
 T = { on_top }
 kon_top = 0

c)

Fig. 1. a) An object made of two different kinds of primitives (circles and rectangles) and b)
the corresponding graph. c) The type alphabets. The description scheme defines two types of
nodes, each associated to a different primitive. Each type contains a set of parameters to
suitably describe a component of that type (s, m, l stand for small, medium, large, respectively).
Similarly edges of the graph describe topological relations among the primitives.

Condition (1) requires that each primitive and each relation in the prototype must
be present also in the sample, while the converse condition does not hold; this allows
the prototype to specify only the features which are strictly required for
discriminating among the various classes, neglecting the irrelevant ones. Condition
(2) constrains the monomorphism required by condition (1) to be consistent with the
attributes of the prototype and of the sample: the compatibility relation defined in (3)
simply states that the type of the attribute of the prototype must be either equal to f or
to the type of the corresponding attribute of the sample, in which case all the
parameters of the attribute (that are actually sets of values) must contain the value of
the corresponding parameter of the sample.

Another important relation that will be introduced is specialization (denoted by the
symbol < ): a prototype *

1G  is said to be a specialization of *
2G  iff:

GGGGG =Þ=" *
2

*
1,

(4)

In other words, a prototype *
1G  is a specialization of *

2G  if every sample covered

by *
1G  is necessarily covered by *

2G  too. Hence, a more specialized prototype imposes

stricter requirements on the samples to be covered.
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Notice that the specialization relation introduces a non total ordering in the proto-
type space, whose minimum (if we consider only non-empty graphs) is the GARG
having only one node with attribute f: any non-empty GARG is a specialization of it.

3 The Learning Algorithm

The goal of the learning algorithm can be stated as follows: the algorithm is given a
training set S of labeled patterns, partitioned into C different classes (

CSSS IKI1=
with ˘=ji SS I  for ji „ ), from which it tries to find a sequence of prototype

graphs **
2

*
1 ,,, pGGG K , each labeled with a class identifier, such that:

1. GGiSG i =$˛" *:  (completeness of prototype set) (5)

2. )class()class( **
ii GGGGSG =Þ=˛"  (consistency of the prototype set) (6)

where class(G) and class( *G ) refer to the class associated with samples G and *G
respectively.

Equations (5) and (6) would be simply satisfied by defining a prototype for each
sample in S. However, such a trivial solution requires a number of prototypes which
could be too large for many applications; besides in a complex domain it is difficult to
obtain a training set which covers exhaustively all the possible instances of a class.
Hence, for eq. (5) the prototypes generated should be able to model also samples not
found in S, that is they must be more general than the enumeration of the samples in
the training set. However, they should not be too general otherwise eq. (6) will not be
satisfied. The achievement of the optimal trade-off between completeness and
consistency makes the prototypation a really hard problem.

To this concern, our definition of the covering relation, which allows the sample to
have nodes and edges not present in the prototypes, is aimed at increasing the
generality of the prototypes; in fact, each prototype must specify only the distinctive
features of a class, i.e. the ones which allow the class’ samples to be distinguished
from those of other classes; optional features are left out from the prototype, and their
presence or absence has no effect on the classification.

It’s worth pointing out that in our definition of GARG’s there is no possibility of
expressing negation; this fact allows our method to employ a fast graph matching
algorithm [2,10,11] suitable to verify whether a prototype covers a sample, instead of
the usual unification algorithm. On the other hand, such a lack limits the
expressiveness of the prototypes. In order to deal with situations in which the patterns
of some class can be viewed as subpatterns of another class, a sample is compared
sequentially against the prototypes in the same order in which they have been
generated, and it is attributed to the class of the first prototype that covers it. One of
the strength points of the proposed learning method is the automatic handling of these
situations, by adopting a learning strategy which considers simultaneously all the
classes that must be learned in order to determine (without hints from the user) the
proper ordering for the prototypes.
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A sketch of the algorithm is shown by the following code, where )( *GS  denotes

the sets of all the samples of the training set covered by a prototype *G , and )( *GSi

the samples of the class i covered by *G .

A sketch of the learning procedure

FUNCTION Learn(S) // Returns ordered list of prototypes
   L := [ ] // L is list of prototypes, initially empty
   WHILE S„˘
      G* := FindPrototype(S)
      IF NOT Consistent(G*) THEN
         FAIL // Algorithm terminates unsuccessfully
      END IF
      // Assign prototype to the class most represented
      class(G*) := argmaxi |Si(G*)|
      L := Append(L, G*) // Add G* to the end of L
      S := S–S(G*) // Remove the covered samples from S
   END WHILE
   RETURN L
END FUNCTION

It is worth pointing out that the test of consistency in the algorithm actually checks
whether the prototype is almost consistent:

q‡Û
)(

)(
max)(

*

*

*

GS

GS
GConsistent

i

i
(7)

In eq. (7) q is a threshold close to 1, used to adapt the tolerance of the algorithm to
slight inconsistencies in order to have a reasonable behavior also on noisy training
data. For example, with 95.0=q  the algorithm would consider consistent a prototype
if at least the 95% of the covered training samples belong to a same class, avoiding a
further specialization of this prototype that could be detrimental for its generality.

Note that the assignment of a prototype to a class is done after the prototype has
been found, meaning that the prototype is not constructed in relation to an a priori
determined class: the algorithm finds at each step the class which can be better
covered by a prototype and generates a prototype for it. In this way, if the patterns of
a class i can be viewed as subpattern of samples of another class j (e.g. the graphs
describing the character ‘F’ are often subgraphs of those representing character ‘E’),
the algorithm will cover first the class i and then the class j; in this case, we say that
the prototypes of the class i have precedence over those of class j.

The most important part of the algorithm is the FindPrototype procedure, that
performs the construction of a prototype, starting from the trivial GARG (which
covers any non-empty graph) and refining it by successive specializations until either
it becomes consistent or it covers no samples at all. The FindPrototype algorithm is
greedy, in the sense that at each step it chooses the specialization that seems to be the
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best one, looking only at the current state without any form of look-ahead. This search
is guided by the heuristic function H, which will be examined later.

The function FindPrototype

FUNCTION FindPrototype(S) // Finds the best prototype
                          // covering one class in S
   G* := TrivialPrototype // Only one node with attr. f
   WHILE |S(G*)| > 0 AND NOT Consistent(G*)
      Q := Specialize(G*)
      G* := argmaxX˛ Q H(S, X) // H is heuristic function
   END WHILE
   RETURN G*

END FUNCTION

3.1. The Heuristic Function

The heuristic function H is introduced for evaluating how promising a provisional
prototype is. It is based on the estimation of the consistency and completeness of the
prototype (see eq. 5 and 6):
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In other words, to evaluate the consistency degree of a provisional prototype *G ,
we have used the quantity of information (in bits) necessary to express the class a
given element of )( *GS  belongs to, i.e. ))(( *GSI ; the completeness of *G , instead, is

taken into account by simply counting the number of samples covered by *G , so
preferring general prototypes versus more specialized ones.

3.2. The Specialization Operators

An important step of the FindPrototype procedure is the construction of a set Q of
specializations of the tentative prototype *G . At each step, the algorithm tries to
refine the current prototype definition, in order to make it more consistent, by
replacing the tentative prototype with one of its specializations. To accomplish this
task we have defined the following set of specialization operators which, given a
prototype graph *G , produce a new prototype *G  such that ** GG < :

1. NODE ADDITION: *G  is augmented with a new node n whose attribute is f. This
operator is always applicable.
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2. EDGE ADDITION: a new edge ),( *
2

*
1 nn  is added to the edges of *G , where *

1n

and *
2n  are nodes of *G  and *G  does not contain already an edge between them.

The edge attribute is f. This operator is applicable if *G  is not a complete graph.
3. ATTRIBUTE SPECIALIZATION: the attribute of a node or an edge is specialized

according to the following rule:
• If the attribute is f, then a type t is chosen and the attribute is replaced with

),,( 1
t

k
t

t
PPt K

. This means that only the type is fixed, while the type parameters
can match any value of the corresponding type.

• Else, the attribute takes the form 
),,( **

1 tkppt K
, where each 

*
ip  is a (non

necessarily proper) subset of 
t

iP . One of the 
*
ip  such that 

1* >ip
 is replaced

with }{*
ii pp - , where 

*
ii pp ˛ . In other words, one of the possible values of a

parameters is excluded from the prototype.

Note that, except for the node addition, the specialization operators can be usually
applied in several ways to a prototype graph; for example, the edge addition can be
applied to different pairs of nodes. In these cases, it is intended that the function
Specialize exploits all the possibilities.

The function Specialize

FUNCTION Specialize(G*) // Returns the set of the
direct
                        // specializations of G*

   Q := ˘
   FOREACH s IN SpecializationOperators
      IF Applicable(s, G*) THEN
         Q := Q U Apply(s, G*)
      END IF
   END FOREACH
   RETURN Q
END FUNCTION

4. Application and Discussion

The method has been experimented on a character recognition problem, obtained
by selecting from the ETL-1 Character Database [12] about 9000 random digits. We
have partitioned the whole data set into a training set of 230 samples per class, and a
separate test set of 680 samples per class. Each character of the database is
represented by a 63· 64 bitmap that we have described in terms of circular arcs by
means of a preprocessing phase depicted in [13]. Fig. 2 illustrates the adopted
description scheme; basically, we have defined two node types for representing our
primitives (the circular arcs, here called strokes) and their junctions; the edges
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represent the adjacency of a stroke to a junction. Node attributes encode the size of
the strokes (normalized with respect to the size of the whole character), their shape
(ranging from straight line segment to full circle) and their orientation; edge attributes
represent the relative position of a junction with respect to the strokes it connects.

Our learning algorithm has generated in about 27 hours a list of 136 prototypes,
consistent and  complete  with  respect  to  the  training  set.  While  the required  time
seems to be quite high, it has to be considered that other first-order symbolic learning
algorithms are generally unable at all to produce results on training sets of the
considered size: for instance, Quinlan’s FOIL [9] was not able to run on our training
set due to memory limitations. Moreover the samples are highly noisy and no effort
has been taken to polish the training set, as is usually done when working with
symbolic machine learning methods.

EDGE TYPE ALPHABET
 T = { connection }
 kconnection = 2
 p1

connection = x-projection = {l,v,r}
 p2

connection = y-projection = {b,h,a}

d)

a)

NODE TYPE ALPHABET
T = { stroke , junction }
kstroke = 3
kjunction = 0
p1

stroke = size = {vs,s,m,l,vl}
p2

stroke = shape = {s,lb,b,hb,c}
p3

stroke = orientation = {n,nw,w,sw,s,se,e,ne}

c)

b)

stroke(m,lb,nw)

stroke(vl,s,w)

junction

connection(r,a)

connection(v,a)

Fig. 2. An example of a sample of the database. a) Its representation in terms of strokes and
junctions: notice that the junction has been highlighted for the sake of clarity. b) The
corresponding graph (topologically arranged to make clear the matching between the nodes and
the strokes/junctions), according to c)-d) the formal description of node and edge types. Nodes
of the ARG are used for describing both the strokes (type stroke) and the connections among
them (type junction). Nodes associated to strokes have three parameters: the size can be very
short, short, medium, long or very long; the shape straight, slightly bent, bent, highly bent or
circular; the orientation can be one of the 8 directions of the compass card. Junctions have no
parameters. The edges of the graphs are used for describing the position of a junction with
respect to a stroke, by means of the projections of the junction and of the stroke on x and y
axes: the junction can be on the left or on the right of the stroke or else the stroke is
approximately horizontal; similarly, the junction can be below or above the stroke, else the
latter is vertical.
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Fig. 3. The coverage of the 136 prototypes found on the training set. The sequence of
prototypes within each class matches the order they are sequentially generated. Notice the
capability of generalization of our system: starting from an average of 234.2 samples per class
in the training set, it has found out only 13.6 prototypes in the average, with a compression
ratio greater than 17:1.

The number of prototypes per class generated by our algorithm can be read in
fig. 3, which shows also the coverage of each prototype: most of the classes are
covered at 80% by using only a few number of prototypes per class. These prototypes
have a high coverage and capture the major invariants of the character shapes inside a
class. The remaining prototypes account for a few characters which, because of noise,
are quite dissimilar from the average samples of their class.

Table 1. The misclassification matrices evaluated on the test set (null values are not printed):
white columns report the results when no form of reject is introduced, while gray ones refer to
the discard of all prototypes covering less than 1% of the training samples. The recognition rate
of the classes are reported as (bold) values of main diagonal, while the value at row i and
column j (j„i) denotes the percentage of samples of class i erroneously attributed to class j. Last
column reports the percentage of samples our system cannot assign to any class. Without
rejecting, the overall recognition rate is 81.1%. When accepting some reject, misclassification
decreases: e.g., though the recognition rate in the case of the class ’2’ is significantly lower, the
number of samples erroneously classified as ’2’ has drastically decreased (see the column ’2’).

0 1 2 3 4 5 6 7 8 9 R
0 93 93 .14 .14 2.3 1.1 1.1 .14 .14 2.7 .57 4.9
1 .98 92 92 3.6 .14 .14 .14 .56 2.5 .56 .14 7.3
2 .58 .44 2.3 2.3 76 61 3.1 2.9 .73 .15 2.3 2.3 .73 11 8.3 .44 .44 2.8 2.2 20
3 .14 .14 .14 .14 7.2 1.4 89 88 1.3 1.3 .28 .28 .56 .42 .42 .42 1.4 1.4 6.3
4 .14 .14 14 1.7 2.2 2.2 74 74 3.3 3.3 1.7 .58 1.0 1.0 3.2 3.2 14
5 .28 .28 0 0 19 1.4 11 10 .57 .57 65 65 2.4 2.4 .71 .57 .43 .43 .71 .71 18
6 .70 .70 .42 .42 11 .14 3.8 3.4 .28 .28 1.5 1.5 79 79 .98 .28 .84 .84 .84 .84 12
7 1.4 2.8 2.8 2.6 .28 .14 .14 1.6 91 78 .28 .28 19
8 .15 .15 9.6 1.5 4.7 4.7 .88 .88 2.0 2.0 .88 .88 .29 .15 77 77 4.7 4.7 8.3
9 .29 .29 .29 .29 16 .86 4.9 3.9 1.1 1.1 .29 .29 1.6 .57 1.3 1.3 74 74 .29 17
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Table 1 reports the classification results on the test set; gray columns show the
classification performance obtained after removing from the prototype set the
prototypes which covered less than 1% of the training samples. These prototypes are
more likely influenced by noise in the training set than by actual invariants of the
class they represent. This removal causes the rejection of some samples but, as it can
be noted, most of the rejected samples were previously misclassified; hence the effect
of this pruning is an overall improvement of the classification reliability.

5. Concluding Remarks

In this paper we have presented a novel method for learning structural descriptions
from examples, based on a formulation of the learning problem in terms of ARG’s.
Our method, like learning methods based on first-order logic, produces general
prototypes easy to understand and to manipulate, but it is based on simpler operations
(graph editing and graph matching) leading to a smaller overall computational cost.

At the moment, we are working on the optimization of the heuristic function in
order to increase the prototype generality. We are also studying more sophisticated
operators for attribute specialization, able to reduce further the learning time. Finally,
a preliminary work is being done on a post-processing phase for removing from the
prototypes unnecessary constraints introduced due to greedy nature of the algorithm.
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