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Abstract. Our research focuses on Chinese online ink matching that tries to
match handwritten annotations with handwritten queries without attempting to
recognize them. Previously, we proposed a semantic matching scheme that uses
elastic matching with a dynamic programming approach based on the radical
model of Chinese characters. By means of semantic matching, a handwritten
annotation may also be retrieved independently of writers via typed text query,
or stored texts can be retrieved by handwritten queries. This work concerns with
the behavior of the previously proposed radical model in several aspects
including character normalization, stroke segmentation, structural information,
dynamic programming costs and schemes. Based on our study, a new radical
model is proposed. As a result, the recall of retrieval by handwritten query
reaches 90% for the first hit (an improvement of 20% over previous results) and
the recall by text query reaches 80% when top 20 matches are returned.

1 Introduction and Motivation

In language computing, both on-line and off-line handwritten Chinese character
recognition (HCCR) have been existing for several decades. Although online
recognition has the advantage over offline because the temporal order of the input
points and strokes is provided, it still has proved to be a more difficult problem than
most people anticipated because of the variations of the way people write and a
complex training process involved [1]. In addition, a large lexicon is to be
incorporated due to the large number of characters (3,000 – 5,000) that are daily used.

Instead of handwriting recognition, some research work has been conducted on
online ink matching that tries to match a handwritten query against raw ink data
without attempting to recognize them [4]. This technique can be used in a document
annotating and browsing system, which enables users to search their personal notes by
a handwritten query. Similar work and various applications also appear elsewhere
[6,7].

Recently, a semantic matching method was proposed by Ma et al. [5]. By
extending Wang’s Learning by Knowledge paradigm [8], this method focuses on the
semantic approach that a human learns and recognizes things and realizes such
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approach in the matching of Chinese handwritten annotations via a radical model. The
semantic matching has several advantages over previous ink matching methods [4].
First, it speeds up the existing ink matching by reducing the size of the problem. For
each query, it returns only top candidates based on the matching of radicals that are
extracted from handwritten annotations. The traditional raw ink matching is therefore
applied only to these top candidates instead of the entire database. Secondly, only a
few radicals are used thus the training process is minimized. Third, it enables the user
independent retrieval without handwriting recognition. After radicals have been
obtained from the raw data strings of one user, another user can type in the query by
keyboard, which can be converted to radical codes immediately.

As reported in [5], the incorporation of a semantic model speeds up the matching
process significantly. This is done by returning top 30 (out of 200) candidates in our
experiments, consequently yielding a reduction of 80% in computation time. The
drawback of semantic matching, however, is that its recall decreased from that of the
original raw ink matching due to the low accuracy in radical extraction. The
performance of radical extraction also affects the overall recall of retrieving
handwritten annotations by typed text queries.

This work is to further study the behavior of semantic model and to improve the
online Chinese ink matching results. The proposed study resulted in a new radical
model for the matching of Chinese handwritten annotations. The organization of this
paper is as follows.  Section 2 describes several aspects of structural information in
the radical model and the incorporation of such new model in radical extraction.
Experiments using our new radical model on the handwritten annotation retrieval are
described in Section 3. Finally, conclusions are given in Section 4.

2 Studies on Radical Model

The radical model for Chinese language is used to identify known radicals from each
handwritten character and utilize these extracted radicals in the retrieval of
handwritten annotations. This is called radical extraction. The drawback of the
previous radical extraction is its performance. Particularly, the traditional dynamic
programming was used without taking into account characteristics of Chinese
language. In this section, some new aspects of Chinese radical model will be
presented in order to improve the radical extraction performance.

2.1   Character Normalization and Segmentation

In this work, we employed some normalization and segmentation techniques, and
experiments show they are adequate. 1) Character size normalization maybe possible
once characters are successfully segmented. For simplicity, a linear normalization is
used. 2) The incoming points, which are usually grouped into strokes based on the
online “pen-down” and “pen-up” information, can further be segmented at local
minima and maxima of the y values and local minima of the x values.  We call these
breaking points “internal breaking point”. 3) Internal breaking points are further
determined whether they are “obscure” or “obvious” depending on the degree of
stroke change near it. If the change of strokes is relatively smooth around the internal
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breaking point, this breaking point will be considered “obscure” thus eliminated. 4) In
cursive handwriting, sometimes two separate strokes are connected by an extra stroke,
i.e. a connection stroke. These extra connections are not random, they are limited only
to several types. In reality, the connection stroke  “È” may not appear in a
handwritten character consistently. The extra connection stroke is more likely to be
affected by the speed and direction of the stylus when the character was formed.
Therefore, removing this extra connection stroke may reduce the effect on matching
between two characters, one with connection strokes and the other without [3].

2.2   Shape Measurement

Consider a dynamic programming at stroke level. Let C = c1c2…cm and R = r1r2…rm be
stroke sequences for a character and a radical, respectively. The problem of radical
extraction is to take a series of operations on sequence R, from left to right, and
transforms it to a subsequence of C. This can be realized by a dynamic programming
procedure, in which three basic operations on strokes are defined: (a) insert a stroke,
(b) delete a stroke, and (c) substitute a stroke for another. Each operation is associated
with a cost. The details of dynamic programming are described elsewhere [4].
    In previous implementation, stroke insertion cost and stroke deletion cost are
simply in direct proportion to the length of the strokes. As for stroke substitution cost,
corresponding points between two strokes are located using a separate dynamic
programming procedure on point level, and Euclidean distance between each pair of
two points is measured and summed. This method has two disadvantages. First, the
dynamic programming on point level is time consuming. Secondly, the Euclidean
distances between points can be cumulative.
    Ideally, the stroke substitution measures the difference of two strokes, more
precisely, the difference of their shapes. However, discrepancies exist in the current
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2.3   Structural Information

To form a Chinese character, strokes within a character are arranged with some
structural relationships (i.e. spatial relationship among strokes). Given a stroke
sequence of a character alone without spatial relationships between the strokes, the
character can not be determined. In this section, the stroke structural relationships
embedded in Chinese language will be studied.

Center Relationships
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matched to the last few strokes of a character, all operation cost from the last
substitution occurs till last stroke of the character will be added as penalty.

2.5   Location Similarity

By extending from the concept of radical categorization, Ma et al. defined radical
profile and location similarity to mathematically represent the location of a radical
within a character. In radical extraction scheme, location similarity gives a non-
precise information, or, it can only coarsely confines the location of the radicals [5].
The dynamic programming, however, provides more accurate information of how
well radical strokes are matched. We propose to use coarse information (location
similarity) to sift out radicals and then use the accurate information (dynamic
programming cost) to select and extract the radicals. Once radical candidates with
negative location similarity are removed, the remaining radicals are ranked, according
to the costs of dynamic programming, and the top two radicals with least costs are
chosen as the extracted radicals.
    In the previous algorithm, the total dynamic programming cost for matching a
reference radical to a part of a character is the sum of all operational costs (insertion,
deletion and substitution). Therefore, for each character, when all reference radicals
are attempted to match to it, the radicals with fewer strokes tend to yield smaller
dynamic programming costs. To solve this, we normalize the total dynamic
programming cost by the length of reference radical.

2.6   Radical Code Evaluation

After radicals are extracted for each character, a character can be represented by a
sequence of radical codes, i.e. radical IDs. When two characters are compared, the
matching is performed using dynamic programming on a level of radical codes. Three
basic operations are defined: radical insertion, radical deletion and radical
substitution, each associated with an operation cost. When evaluating extracted
radicals, we propose utilizing the radical extraction cost, which reflects the level of
trust for extracted radicals. In implementation, extracted radicals with higher
confidence (lower cost) will yield lower radical substitution cost.

3 Experiments

Our experimental data consist of three sets: 800 handwritten annotations as reference
database (Set I) from four subjects, each writing 200 entries, 800 same handwritten
annotations as query database (Set II) from same four subjects (written the second
time), and 800 typed text as query database (Set III) corresponding to each of the 800
handwritten annotations. The experiments are conducted in three areas: the radical
extraction, which is the core of semantic matching, the overall recall of searching
handwritten annotations via handwritten queries and the overall recall of searching by
typed text. Three methods are tested and compared with the traditional raw ink elastic
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matching algorithm [4]. A0 represents the original semantic matching algorithm [5].
A7 incorporates the new radical model in our study. A7’ is almost the same as A7,
except that the selection of top candidates returns top 15 matches, instead of top 30
matches.
    Table 1 shows the total number of radicals correctly extracted from the query
strings and database strings for algorithm A0 and A7 based on the same reference
radical set. As can be seen, as a result of enhanced algorithm A7, the number of
correctly extracted radicals has increased significantly in compare to the original
algorithm. And the performance gain is approximately 2 to 3 times.

Table 1. Comparison of radical extraction rate for algorithm A0 and A7.

A
0

A
7

User1 data 67 142
User1 query 58 137
User2 data 68 131
User2 query 51 121
User3 data 78 148
User3 query 61 144
User4 data 39 109
User4 query 44 122

    Table 2 lists the recall of the first hits for searching handwriting (Set I) with
handwritten queries (Set II). As can be seen, the recall of our new algorithm A7 has
improved by 20% for first three users, and 8% for the 4th user. Moreover, the
performance achieved by the new algorithm is very close to that of the traditional
elastic matching. To compare A7 with traditional elastic matching, because A7 returns
only top 30 candidates for final matching, it can achieve almost the same performance
of original elastic matching while saves computation time by 80%.  In algorithm A7’,
we further reduce the computation time in half by returning only 15 top candidates.
As a result, the computation time is reduced by more than 90% of the original elastic
matching while achieving comparable results. In fact, it is very interesting to see that
for User2, the matching rate of A7 is even higher than that of the traditional elastic
matching algorithm. The reason is that some interfering candidates for the traditional
elastic matching algorithm has been removed from the top candidate selection
process.

Table 2. Comparison of recall for first hits (searching handwriting with handwritten queries).

A
0

A
7

A
7
’ Traditional

Elastic matching

User1 0.725 0.885 0.845 0.895

User2 0.755 0.92 0.91 0.88

User3 0.77 0.96 0.94 0.98

User4 0.805 0.865 0.855 0.88

Figure 5 shows the recall of searching by typed text queries. In this experiment,
each handwritten annotation (consisting of a sequence of characters) is converted to a
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sequence of radical codes using radical extraction. When a text query is entered, it is
immediately converted to a radical code sequence, then compared with the
handwritten annotation database based on radical codes. In Fig. 5, bottom curves in
each plot indicate the previous semantic matching results while the top curves stand
for A7 results. As can be seen, the matching rate for the first hit is increased by above
100%. Overall, the retrieval rate can reach 60% with 10 top matches returned and
80% with 20 top matches returned.

4 Conclusions

Radical extraction plays an important role in semantic matching, in which semantics
in Chinese language are incorporated early into the segmentation of handwritten
annotations, and later being used to the matching of handwriting or retrieval of
handwriting by typed text queries.  In this work, we carefully studied and modified
the radical model, based on which the radical extraction rate has increased by 100% -
200%. Several other schemes in the semantic matching network are enhanced. As a
result, the recall of searching handwriting by handwritten queries has increased by
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Fig. 5. The recall of searching by typed text queries. The bottom curves in each plot
represent the result of Ao and the top curves represent the result of A7.
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20% and reached 90% for first hits, while the computation time can be reduced by
50%. Moreover, the recall of searching by typed text queries has increased by 100%
for the first hit and reached about 80% for top 20 matches returned.
    The results of this work have shown great potential of semantics in the matching of
Chinese handwritten annotations without full bloom handwritten recognition, in
which large scale training is usually desired. To conclude, Table 3 illustrates the
comparisons between various methods in the searching of Chinese annotations. It is
noted that the radical model study in this work may well be extended to other
languages or symbols and it is our future work.

Table 3. Comparison of handwriting matching methods.

Speed Performance
Handwriting
Searchable

Text
Searchable
(user independent)

Traditional
Elastic
Matching

Very slow Good Yes No

Previous
Semantic
Matching

Fast Fair Yes Promising

New Semantic
Matching

Very fast Nearly good Yes Yes
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