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Abstract. Function-Described Graphs (FDGs) have been introduced as a repre-
sentation of an ensemble of Attributed Graphs (AGs) for structural pattern rec-
ognition and a distance measure using restrictions between AGs and FDGs has
been reported. Nevertheless, in real applications, AGs can be distorted by some
external noise, and therefore some constraints have to be relaxed. To gain more
flexibility and robustness, some local costs may be added to the global cost of
the labelling depending on the fulfilment of the graph element constraints of the
FDG instead of applying hard binary constraints.

1 Introduction

Function-Described Graphs (FDGs) were introduced in [2] and redefined in [3] as
a representation of an ensemble of Attributed Graphs (AGs) for structural pattern
recognition different from Random Graphs [5]. Some 2nd order relations (antagonism,
existence and occurrence of a pair of vertices or a pair of arcs) are introduced to the
FDGs to keep, to the most, the structure of the ensemble of the AGs. The synthesis of
FDGs was studied in [1]. Here, a new distance measure, relaxing second order restric-
tions is presented.

 Relations of second order defined on the FDGs are useful to constrain the set of
possible labellings while computing the distance with restrictions between AGs and
FDGs. This is aimed at reaching the best labelling function, taking into account the
second order information obtained from the structure of the cluster of AGs that was
used to synthesise the FDG. Nevertheless, in real applications, AGs can be distorted
by some external noise, and therefore, the constraints associated with the second order
relations have to be relaxed to avoid that a noisy AG be misclassified due to non-
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fulfilment of any of these constraints. A distance relaxing 2nd order restrictions is
presented here. To gain more flexibility and robustness, some local non-negative costs
may be added to the global cost of the labelling depending on the second-order prob-
abilities of the graph elements, instead of applying hard binary constraints.

The organisation of this paper is as follows: AGs and FDGs are reviewed in sec-
tions 2 and 3, respectively. The new distance is proposed in section 4 and applied to
the 3D-object recognition problem in section 5. Finally, some conclusions are
sketched in section 6.

2 Attributed Graphs

Let ( )evH SS= ,  be a directed graph structure of order n where { }nkvkv ,...,1==S

is a set of vertices (or nodes) and { }{ }jinjieije „˛=S ,,...,1,  is a set of edges (or

arcs). We use the term graph element to refer to either a vertex or an edge. Let 
vD  and

eD be the global domains of possible values for non-null attributed vertices and arcs,

respectively. A null value of a graph element is represented by F .
An attributed graph G over ( )ev DD ,  with an underlying graph structure

( )evH SS= ,  is defined to be a pair ( )AV ,  where ( )vvV g,S=  is an attributed vertex

set and ( )eeA g,S=  is an attributed arc set. The mappings wg DfiSvv :  and

eg DfiSee :  assign attribute values to vertices and arcs, respectively, where

{ }F¨D=D ee  and { }F¨D=D vw .

A complete AG is an AG with a complete graph structure H (but possibly including
null elements). An attributed graph ( )AVG ,=  of order n can be extended to form a

complete AG ( )’,’’ AVG =  of order nkk ‡, , by adding vertices and arcs with null

attribute values F . We call G’ the k-extension of G.

3 Function-Described Graphs

A function-described graph F over ( )ev DD ,  with an underlying graph structure

( )ew SS= ,H  is defined to be a tuple ( )RPBW ,,,  such that

1. ( )ww g,S=W  is a random vertex set and wwwg WfiS:  is a mapping that associ-

ates each vertex ww S˛i
 with a random variable ( )ii wga w=  with values in wD .

2. ( )ee g,S=B  is a random arc set and eeeg WfiS:  is a mapping that associates

each arc ee S˛kl  with a random variable ( )klj egb e=  with values in eD .

3. ( )ew PPP ,=  are two sets of marginal (or first-order) probability density func-

tions for random vertices and edges, respectively. This is, { }nipP i ££= 1),(aw  and
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{ }mjqP j ££= 1),(be   (being m the number of edges), where )Pr()( aa =” iip a

for all wD˛a  and )Pr()( 21 F„ÙF„=” jjjjq aab bb  for all eD˛b  such that

21, jj aa  refer to the random variables for the endpoints of the random arc associated

with 
jb . By definition, 1)Pr( 21 =F=ÚF=F= jjj aab .

4. ( )ewewew EEOOAAR ,,,,,=  is a collection of boolean functions defined over

pairs of graph elements (i.e. relations on the sets of vertices and arcs) that allow the
incorporation of qualitative second-order probability information. wA  and eA  are the

vertex antagonism and arc antagonism functions, respectively, where
{ }1,0: fiS·S wwwA  is defined by ( ) ( ) 0Pr1, =F„ÙF„Û= jijiA aawww , and

similarly, { }1,0: fiS·S eeeA  is defined by ( ) Û= 1, pqklA eee

( ) 0Pr =F„ÙF„ ji bb , where ( )kli egb e=  and ( )pqj egb e= . In addition, wO  and

eO  are the vertex occurrence and arc occurrence functions, where

{ }1,0: fiS·S wwwO  is defined by ( ) ( ) 0Pr1, =F=ÙF„Û= jijiO aawww , and

{ }1,0: fiS·S eeeO  is defined by ( ) ( ) 0Pr1, =F=ÙF„Û= jipqklO bbeee . We

say that two graph elements (of the same type) are co-occurrent if and only if the
occurrence relation applies to them in both directions. Finally, wE  and eE  are the

vertex existence and arc existence functions, where { }1,0: fiS·S wwwE  is defined

by ( ) ( ) 0Pr1, =F=ÙF=Û= jijiE aawww , and { }1,0: fiS·S eeeE  is defined by

( ) ( ) 0Pr1, =F=ÙF=Û= jipqklE bbeee .

A random element d  of an FDG is a null random element if its probability of in-
stantiation to the null value is one, 1)Pr( =F=d . A complete FDG is an FDG with a

complete graph structure H. An FDG ( )RPBWF ,,,=  of order n can be extended to

form a complete FDG ( )’,’,’,’’ RPBWF =  of order nkk ‡, , by adding null vertices

and null arcs and extending appropriately both the set of probability density functions
and the boolean functions that relate graph elements. We call F’ the k-extension of F.

4 Distance between AGs and FDGs Using 1st and 2nd Order Costs

We require a fine but robust matching cost that makes powerful use of the meas-
urement information in the data graphs (attribute values) and in the prototypes (ran-
dom variable distributions) as well as an effective way of constraining the possible
matches, if we want the system to have the capability of discerning between proto-
types.  The matching measure must be soft for two reasons: first, because it is assumed
that in real applications the patterns are distorted by noise, and second, because a pro-
totype has to represent not only the objects in the reference set but also the ones that
are “near” them.
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First of all, and for the sake of robustness, the mapping h  is not defined from the
initial AG that represents the pattern to the initial FDG that represents the class, but
from the k-extended AG to the k-extended FDG, to contemplate the possibility of
some missing graph elements or some extraneous graph elements introduced by noisy
effects. A missing element in the AG will be represented by a null element in the
extended AG, and an extraneous element in the AG should be mapped to a null ele-
ment in the extended FDG. Since it is desired to allow a priori all the isomorphisms,
the number of vertices k  in the extended graphs is set to the sum of the number of
vertices in both initial graphs. Hence, the limit situations in which all the graph ele-
ments in the FDG are missing in the AG or all the graph elements in the AG are extra-
neous are covered.

Let ’G  be a k-extension of the AG G  and ’F  be a k-extension of the FDG F .

Then, ’G  and ’F  are structurally isomorphic and complete with the same number of

vertices k , and they also share a common attribute domain ( )ev DD , . Now, the la-

belling function is defined as a mapping ’’: FGh fi . Since graphs do not have any

predetermined orientation and each orientation is given by a morphism h , a global

cost hC  is associated with each h  in a set of valid mappings H , and the measure of

dissimilarity is defined as the minimum of all such costs,

  
{ }h

Hh
Cmind

˛
=

                                           (1)

In addition, an optimal labelling dh  is given by

{ }h
Hh

d Cminh
˛

= arg
                                    (2)

The set of valid mappings H  contains all the bijective functions that are coherent

structurally (i.e. the arc labelling is totally determined by the vertex labelling).

We want the global cost hC  to provide a quantitative idea of the match quality

through the mapping h  based on the joint conditional probability that the AG is gen-

erated from the FDG given labelling h , this is, ( )( )hGPfuncCh =  as presented in

[3]. For instance, ( )( )hGPCh ln-=  would be a possible choice, but it is not the

most adequate because of its high sensitivity to noise. Only that one of the probabili-
ties was zero, then the obtained distance would be ¥ . Note that the joint probability

( )hGP  cannot be estimated directly and has to be approximated by the product of

the first-order probabilities of the elements. In this case, the previous choice is
equivalent to

( ) ( )( )( )å
"

==-=
x

h yxhxyC )(Prln gg                            (3)
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where x and y are graph elements in the AG and the FDG respectively, ( )yg  is the

random variable associated with y, ( )xg  is the attribute value in x, and all the ele-

ments of both graphs have to appear in the productory (possibly by extending the do-
main and range of the mapping with null elements).

However, only that one graph element had a probability of zero, the joint probabil-

ity would be zero and hC  would be infinite. Since this may happen due to the noisy

presence of an unexpected element (insertion) or the absence of a prototype element
(deletion), only that one graph element were not properly mapped due to clutter, the
involved graphs would be wrongly considered to be completely different.

Hence, it is better to decompose the global cost hC  into the sum of bounded indi-

vidual costs associated with the element matches. Although it has the major flaw that
the joint probability is not considered as a whole, it has the advantage that clutter af-
fects only locally the global cost. An individual cost ),( yxC  represents the dissimi-

larity between two mapped elements x and y, and it could be based still on the first-

order probabilities of the elements, ( ) ( )( )( )yxhxyfuncyxC === )(Pr),( gg ,

as far as is bounded by some fixed constant, Max),( £yxC , for instance

1),( £yxC .

The global cost is therefore computed as the sum of the individual costs of all the
matches between graph elements,

))(,( xhxCC
x

h å
"

=                                      (4)

The main concepts underlying the definition of the distance measures between AGs
and FDGs have been introduced above. To define now the different specific measures,
it is only needed to define the set of valid mappings H and the individual costs

),( yxC .

Individual Costs of Matching Elements

We now turn our attention into the individual cost of matching a pair of elements,
one from an AG and one from an FDG. It is defined as a normalised function de-
pending on the dissimilarity between the two mapped elements, as given by the nega-
tive logarithm of the probability of instantiating the random element of the FDG to the
corresponding attribute value in the AG, this is

( )

( )( )
( ) ( )

ï
ï
î

ïï
í

ì
‡==

-
==-

=
otherwise1

)()()(Prif
ln

)()()(Prln

,
Pr

Pr

Kyxhxy
K

yxhxy

yxC
gg

gg
(5)
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where the cost ( )yxC ,  is bounded by [ ]1,0 , and the positive constant

[ ]1,0Pr ˛K  is a threshold on low probabilities that is introduced to avoid the case

( )0ln , which gives negative infinity. Hence, ( ) 1, =yxC  will be the cost of match-

ing a null element of the FDG to a non-null element of the AG or matching an FDG
element to an AG element whose attribute value has a very low probability of instan-

tiation, that is ( ) Pr)()()(Pr Kyxhxy £== gg .

In the case of the vertices, the individual cost is defined using the probabilities
stored in the FDG as

( )
( )( )

( ) ( )

ï
ï
î

ïï
í

ì
‡

-

-

=
otherwise1

if
ln

ln

,
Pr

Pr

Kp
K

p

vC
iq

iq

qifv

a
a

w

                           (6)

And in the case of the arcs, the individual cost is defined using the arc conditional

probabilities as follows. Let ( ) mije e b=g  in the AG arc and let ( ) nab beg e =  in the

matched FDG arc. Then, in general,

( )
( )( )

( ) ( )

ï
ï
î

ïï
í

ì ‡
-

-

=
otherwise1

if
ln

ln

,
Pr

Pr

Kq
K

q

eC
mn

mn

abijfe

b
b

e

                                (7)

However, if either iv  or jv is a null extended vertex in the AG, then the condi-

tional probability ( )mnq b  is not applicable, since depends on the existence of the two

extreme vertices, and must be replaced by the conditional probability

( )F=ÚF== bamn aab bPr , which is 1 if F=mb  and 0 otherwise.

Second Order Costs of Matching Elements

The second order costs could be defined for the vertices as shown in equations (8)

to (10), where it is assumed that ( ) pivh w=  and ( ) qjvh w= . These equations cover

respectively the three following qualitative cases: presence of two vertices in the AG,
presence of only one of them, and absence of both vertices. Note that, the second-
order costs induced artificially by FDG null vertices are not taken into account.

( ) ( ) ( ) ( )
ï
î

ï
í

ì
÷
÷
ł

ö
ç
ç
Ł

æ

„FÙ„F

ÙF„ÙF„
F„ÙF„-=

otherwise0
11

Pr1
,,,

qp

ji

qp
qpjiA pp

if
vvC

aa
aaww

w

    (8)
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( ) ( ) ( )
ï
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11

Pr1
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qp

ji

qp
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 (10)

The definition of the costs on the arcs, ( )cdabktijA eeC ee
e

,,, ,

( )cdabktijO eeC ee
e

,,,  and ( )cdabktijE eeC ee
e

,,,  are similar than the costs on the

vertices (See [3] for more details).
Since the second-order probabilities are not actually stored in the FDGs, they are

replaced by the second-order relations, thus obtaining costs that are coarser. This is,
some second-order non-negative costs are added to the global cost of the labelling
when second-order constraints (antagonism, occurrence, existence) are broken. Equa-
tions (11) to (13) show the final second-order costs, which can be only 1 or 0, associ-
ated with the three relations of antagonism, occurrence and existence between pairs of
vertices.

( ) ( ) ( ) ( )
ï
î
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í

ì
÷
÷
ł

ö
ç
ç
Ł

æ

„FÙ„F

ÙF„ÙF„
=

otherwise0
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( ) ( ) ( )
î
í
ì „FÙF=ÙF„

=
otherwise0

1,
,,, pjiqp

qpjiO

pifO
vvC

aaww
ww w

w

(12)

( ) ( ) ( ) ( )
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=

otherwise0
11

,
,,,

qp

ji

qp
qpjiE pp

ifE
vvC

aa
wwww w

w

  (13)

Global Cost

The global cost on the labelling function hC  is defined with two terms that depend

on the first-order probability information, and six more terms that depend on the sec-
ond-order constraints:
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The eight terms are weighted by non-negative constants 1K  to 8K , to compensate

for the different number of elements in the additions as well as to balance the influ-
ence of second-order costs with respect to first-order costs in the overall value. Note

that if 8..3: =¥= iKi  there are strict constraints associated with the second order

relations and so the distance with 2nd order restrictions is obtained.

5 Results

The contribution of FDGs to structural pattern recognition is illustrated by the
three-dimensional object recognition problem. The original data is composed by 101
AGs, which represent the semantic and structural information of the views taken from
five objects. Figure 1 shows a selected view of each object.

Figure 1.

Vertices in the AGs represent the faces, with one attribute, which is the area of the
face. Arcs represent the edges between faces, with one attribute, which is the length of
the edge. Five FDGs were built from the AGs that represent their views using a super-
vised synthesis method. An antagonism relation between two graph elements appears
when these elements have never seen together in the same view. On the other hand, an
occurrence relation appears when a graph element is visible in all the views in which
another one is visible too. There is not any existence relation because there is no pair
of faces such that at least one of the two faces is visible in all views. See [3] for more
details. The object of the tests presented here is to assess the effects of the application
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of the antagonism and occurrence relations between vertices in the computation of our
distance. To that aim, some tests have been carried out with different weights on these

relations ( 3K , 5K ). The other weights have been set as follows: 11 =K  (vertices),

2/12 =K  (arcs), 07 =K  (existence on the vertices), 0864 === KKK  (second

order relations on the arcs). The distance (optimal cost) presented in Section 4 was
computed by means of a branch-and-bound algorithm [3].

The test set was composed by random AGs, which were the previous AGs modified
by some structural or semantic noise. Results shown are the average of the correctness
of the classification tests performed 20 times. The semantic noise, which is added to
the attribute values of the vertices and arcs, is obtained by a random number genera-
tion with a median of 0.0 and a standard deviation: 0.0, 4.0, 8.0 and 12.0. The struc-
tural noise, also obtained by a random number generator, deletes or includes 0, 1 or 2
vertices, which represent the 0%, 20% and 40% of the average structure, respectively.
The experimental results are summarised in Table 1.

# noise vertices 0 0 0 0 0 1 2 1

Standard Deviation 0.0 2.0 4.0 8.0 12.0 0.0 0.0 8.0

03 =K , 05 =K 100 90.1 89.7 88.6 86.3 70.8 67.7 68.7

¥=3K , 05 =K 100 92.5 89.3 87.0 84.9 61.6 54.4 57.4

03 =K , ¥=5K 100 91.9 89.9 88.2 85.2 62.5 59.5 59.5

¥=3K , ¥=5K 100 95.1 90.2 86.6 80.8 60.7 53.2 56.2

13 =K , 05 =K 100 92.3 91.5 91.3 87.2 80.5 75.3 75.5

03 =K , 15 =K 100 95.6 92.4 91.5 86.4 81.2 77.2 76.4

13 =K , 15 =K 100 98.7 97.1 95.0 92.5 89.2 85.2 83.6

Nearest neighbour 100 98.9 82.6 62.6 52.4 90.0 58.6 58.6

Table 1. Recognition ratio (%) obtained by the FDGs and by the nearest-neighbour classifier
(using Sanfeliu’s distance between AGs [4]) resulted from applying different levels of noise.

The classification correctness is higher applying strict relations ( ¥=3K  and

¥=5K ) than without applying these two relations ( 03 =K  and 05 =K )  when the

semantic or structural noise is low, but, when the noise increases, best results appear
when no relations are applied. On the contrary, the distance with both second-order

costs ( 13 =K  and 15 =K ) always obtains higher results than if one of the relations is

not taken into account. The FDG classifier only obtains worse results than the nearest-
neighbour classifier when the structural or semantic noise is very low.
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6 Conclusions

A new distance between AGs and FDGs has been reported. The aim of this distance is
to gain more flexibility and robustness throughout relaxing the second order con-
straints. Some local costs have been added to the global cost depending on the second
order probabilities instead of applying hard binary constraints. Results show that the
distance with 2nd order costs obtains better results than the distance with strict 2nd order
restrictions or without considering them.

The main problem of computing a distance between graphs associated with an op-
timal match is the exponential cost. While a branch-and-bound algorithm [3] was used
in the reported experiments, a more efficient but sub-optimal method has been pre-
sented recently [6].
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