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Abstract: In this paper a new distance for attributed relational graphs is
proposed. The main idea of the new algorithm is to decompose the graphs to be
matched into smaller subgraphs. The matching process is then done at the level
of the decomposed subgraphs based on the concept of error-correcting
transformations. The distance between two graphs is found to be the minimum
of a weighted bipartite graph constructed from the decomposed subgraphs. The
average computational complexity of the proposed distance is found to be
O(N4), which is much better than many techniques.

1- Introduction

The search for general structural mathematical models has led workers in the field
of pattern recognition to study graphs, for these can be of direct use in describing
relations between the elements of a set of objects. Further, graph theory methods can
be used in a wide variety of problems and for this reason much study has been given to
the mathematical and algorithmic properties of graphs.

Attributed relational graphs ARGs are one of the most powerful tools in describing
structured objects. In this representation, nodes represent primitives or subpatterns of
structured objects and branches between nodes represent relations between primitives
or subpatterns [1].

One way to recognize the structure of an unknown pattern is to transform it into an
ARG,  then match it with other ARGs representing structures of prototype patterns.
This process of matching is called graph isomorphism. Formally, two graphs G and G’
are said to be isomorphic (to each other) if there is a one-to-one correspondence
between their vertices and between their edges such that incidence relationship is
preserved [2]. If the isomorphism is encountered between a graph and a subgraph of
another larger graph, then the problem is called subgraph isomorphism or graph
monomorphism. Largest common subgraphs problem is to find an isomorphic
mapping between subgraphs of G and subgraphs of G’.

Graph isomorphism was widely used as a powerful tool for matching and
recognizing structured objects using different techniques like : inexact graph matching
[4],  relaxation methods [5], Cartesian graph product [6,17], error-correcting
transformations [7,14], neural networks [8,18], graduate assignment [9] and direct
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classification of node attendance [10]. Trials for matching weighted graphs were
shown in [11-13]. Some of the applications were demonstrated in [19, 27].

The main problem of using graph isomorphism as a tool for graph matching that it
is only permitted when matched graphs have some common structures and that means,
graph isomorphism can not be used when matching graphs with different structures
[21]. In this case, a measure for distance between graphs is needed. Some
contributions were recognized in introducing efficient distances between graphs as in
[1, 22-30] using three general methods based on 1- feature extraction [20], 2- graph
grammar [22-24], and 3- error-correcting transformations [1, 25-30]. The main
problems of these distance measures are the complexity which may grow up
exponentially when increasing the sizes of matched graphs and their deficiency in
handling graph isomorphism problems.

In this paper a distance measure between attributed relational graphs is introduced.
The proposed distance can be efficiently used for determining the isomorphism
between matched graphs. The basic idea of the proposed algorithm is to decompose
the matched graphs into smaller subgraphs and perform the matching between the
graphs at the level of their decomposed subgraphs based on the concept of error-
correcting transformations.

The process of  graph decomposition, and how to match the decomposed
subgraphs are shown in section 2. Section 3 introduces the proposed algorithm for
calculating the distance between matched graphs with analysis of its computational
complexity. Experimental results are presented in section 4, and finally the
conclusions of the proposed algorithm are given in section 5.

2- Graph Decomposition

In this section the process of  graph decomposition into smaller subgraphs is
introduced, followed by proposing the matching algorithm of these decomposed
subgraphs.

2-1- Decomposition of Attributed Relational Graphs.
Simplifying the structure of matched graphs will certainly reduce the overall

complexity of an algorithm that enhances the performance.
The graphs resulting from decomposing an ARG are called Basic Attributed

Relational Graphs (BARGs) and this notion is adopted from [27]. The BARG is in the
form of one level tree which consists of a node and all nodes connected to that node
whether the connected branches are in or out of that node. The structure of these
BARGs gives the matching process more stability, increases the data associated with
decomposition process, facilitates the matching process, and preserves the structure of
the original graph.

2-2- Matching BARGs
Matching BARGs is much easier than matching ARGs and this is because the

structure of BARGs is simpler and easier in processing than ARGs. The same distance
measures for ARGs can also be adopted for BARGs. In this paper, we use the concept
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of error-correcting transformations, where the cost of matching two ARGs is defined
as the cost of  the sequence of  transformations that possesses minimum total cost and
that must be performed on one of the two ARGs in order to produce the other ARG.
The operations permitted to transform one ARG to the other are : node insertion, node
deletion, branch insertion, branch deletion, node label substitution and branch label
substitution. A cost (weight) is associated with each operation and its value is
determined by an optimization procedure or heuristically. The costs corresponding to
each operation are : wni, wnd, wbi, wbd, wns, and wbs respectively. Some research in
this area can be found in [1,7, 14, 25-28].

A new operation structure preservation is added here with cost wsp. The main
function of the new operation is to help preserving the global structure of the original
ARG after performing the operation of graph decomposition and its use will be
declared later in this section.

Given two BARGs, say U and V as shown in Fig. 1. the cost of matching U and V
is calculated as follows :
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          Fig. 1.  Two BARGs; U and V             Fig. 2. corresponding weighted 
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     Distance (U,V) =   wns*dist(ni,vj)  +  min(wni,wnd)*abs(k-p)  +
                                    min(wbi,wbd)*abs(k-p) + dist(b’s,e’s)                        (1)

where, dist(ni,vj) = distance between node labels of ni and vj and node attributes of
n’i and v’j and is calculated depending on their data types. k and p are the number of
branches connected to the root node of the matched BARGs.

dist(b’s,e’s) is calculated as the minimum of a weighted bipartite graph constructed
from b’s and e’s as their nodes and its structure is as shown in Fig.  2.

the weight of any branch connecting two nodes, say bf  and eh in the bipartite graph
is the distance between bf  and eh and is calculated as follows :

distance(bf , eh) = wbs * dist(bf , eh)  +  wsp * dist(nf , vh)                       (2)

where dist(x,y) is the distance between x and y  and their attributes based on their
data type.

The minimum of the weighted bipartite graph can be calculated by many
algorithms [31-33] and is known in the literature as assignment problem and it has
computational complexity  O(n3) in the worst case and O(n2) in the average case[33].
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3-  The Algorithm

The main idea of the proposed algorithm is to decompose both reference and input
graphs; say Gr and Gi respectively; to be matched into BARGs as previously
mentioned in section 2-1. A distance matrix “D” between reference and input graphs is
then constructed and is equivalent to the distances between the BARGs of  both
reference and input graphs. The labels of the rows in the distance matrix represent the
BARGs of the input graph, while the labels of the columns represent the BARGs of the
reference graph. Di,j represents the distance between the i

th
 BARG in the input graph

and the j
th

 BARG in the reference graph and is calculated as mentioned in section 2-2.
After calculating the distance matrix D, a weighted bipartite graph is constructed

which is equivalent to the distance matrix D where each branch connecting two nodes,
one represents a BARG from the input graph and the other node represents a BARG
from the reference graph, has a weight equivalent to the distance between the two
BARGs connected by this branch as shown in Fig. 3.
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Fig. 3. (a) the distance matrix, (b) corresponding weighted bipartite graph matrix.

Distance (input_graph, reference_graph) =  minimum_weighted_bipartite_graph
(distance matrix) +  unmatched_branches +  unmatched_nodes         (3)

Every pair of BARGs (one BARG from input graph and the other is from reference
graph) in the weighted bipartite graph connected by a branch whose weight is taken in
calculating the minimum of the weighted bipartite graph, is considered to be matched,
i.e., the  node rooted the BARG of input graph matches the node rooted the BARG of
reference graph. Fig 4-(a) shows the structure of minimum weighted bipartite graph
while Fig. 4-(b) shows the position of unmatched branched and nodes.
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Fig. 4. (a) Min. weighted bipartite graph,  (b)Unmatched branches and nodes
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3-1- Analysis of Computational Complexity
Suppose that we are given a reference graph R with M nodes and an input graph I

with N nodes. The first step in the algorithm is to decompose both R and I into
BARGs. It is obvious that this step is done in quadratic time for each graph, i.e., has
time complexity of O(M2+N2).

The second step in the algorithm is to calculate the distance between all the BARGs
of input and reference graphs. The computational complexity of matching two BARGs
mainly depends on the calculation of error-transformations between the two BARGs
and the computational complexity of getting the minimum of a weighted bipartite
graph. The computational complexity of calculating the error-correcting
transformations is O(d2), where d denotes the maximum number of branches
connected to any node in the matched BARGs. The average computational complexity
of getting the minimum of a weighted bipartite graph is O(M*N) [48], assuming that
any node is connected to all other nodes in the graph. so we can consider the
computational complexity of matching two BARGs is O(M*N),. The calculation of the
distance between the BARGs is repeated for all the BARGs of  both input and reference
graphs, and that means, the average computational complexity of second step is
O(M2*N2), where M*N � d

2
. The best and worst cases for this step have

computational complexity of O(M*N*min(M,N)) and  O(M2*N2*min(M,N))
respectively.

The third step is to calculate the cost of matching input and reference graphs which
is defined as the minimum of the weighted bipartite graph constructed in step 2 and
the computational complexity of this step is O(M*N).

The last step is to count number of unmatched branches and unmatched nodes. This
step has complexity of quadratic order.

In summary the average computational complexity of the proposed algorithm in
calculating the cost of matching two ARGs with M and N nodes is O(M2*N2). The
best and worst computational complexity are O(M*N*min(M,N)) and
O(M2*N2*min(M,N))  respectively. The computational complexity of the new
algorithm is much better than other algorithms reported. in the literature [1, 7, 9, 10,
14, 25-30].

4- Experimental Results

4-1- Distance between Graphs :
We start by demonstrating the capability of the new algorithm in calculating the

distance between attributed relational graphs.
The problem is to identify an image graph of the prominent runways of the

Jacksonville airport from the picture shown in Fig. 5.[3]. The image graph has to be
matched with three runway models of the open-V runway configuration. Airports that
have open-V runway are Houston airport, Jacksonville  airport, and finally Mid-
continent airport and are shown in Fig 6- (a), (b), and (c) respectively. A vertex
represents a runway and has an attribute that corresponds to the length of this runway.
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Each edge has two attributes; center to center distance between connected vertices and
cute angle between them [3].

                         
1 32
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                                 (a)                                                            (b)
Fig. 5. (a) Jacksonville airport [3],  (b) Image graph of  Jacksonville airport.
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Fig. 6. (a) Runway model A., (b) Runway model B., (c) Runway model C

Table I shows the output of the proposed algorithm, which indicates that the image
graph of the Jacksonville runways and runway model B incur the lowest cost of
matching. The results of matching are consistent and identical with the results
published in [3].

Base

Graph

Matching

Cost

Vertex Mapping

Model A 5660 (1,6),(2,5),(3,1),(4,2),(5,4),(6,3
)

Model B 3847 (1,1),(2,2),(3,4),(4,5),(5,6),(6,7
)

Model C 4430 (1,5),(2,4),(3,1),(4,2),(5,3),(6,8
)

Table I. Results of  subgraph optimal isomorphism.

4-2- Graph Isomorphism Problem :
In this experiment, the performance of the proposed algorithm is tested in matching

sparsely attributed relational graphs in different noise levels. Attributed relational
graphs of 50 nodes are generated with degree of connectivity g, where g ³ {10%, 15%,
20%, 25%}. Two nodes are connected by an edge with probability g. Different noise
levels are added to edge and node attributes. Noise levels are in the range of {0.00,
0.04, 0.08, 0.12, 0.16, 0.20}. After adding the noise, the graph is shuffled and matched
with the original one. One hundred trial is produced for each connectivity and noise
level. Fig. 7 shows the results obtained from applying the proposed algorithm.
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Fig. 7. Results of experiment 2 for sparsely attributed relational graphs.

4-3- Subgraph Isomorphism Problem :
In this section the performance of the proposed algorithm is tested in handling the

problem of subgraph isomorphism.
In this experiment we use simulation method to test the performance of the new

algorithm in handling sparsely connected graphs. Attributed relational graphs of size
100 are generated with 10% degree of connectivity. The weights of edges are real
numbers and are produced randomly in the rang of 0 - 1. Nodes have five random
binary valued attributes. After the generation of the graphs, 60% or 80% nodes are
deleted and uniform noise is added to the edges. The noise levels are in the rang of
{0.00, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20}. One hundred trials are
run at each noise level. The results of the proposed algorithm in comparison with the
results obtained from the algorithm of graduated assignment [9] are shown in figures
8-9 where (a) is the proposed algorithm and (b) is the graduated assignment algorithm.
From figures 8-9, it can be concluded that the proposed algorithm has lower
percentage of incorrect matches than the recent technique of graduated assignment [9].
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4-4- Largest Common Subgraphs Problem:
Finally, the new algorithm is tested in handling the problem of largest common

subgraphs. A modification is done in the proposed algorithm that some of the entries
in the results of the minimum weighted bipartite graph are excluded because their
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values (which are equivalent to dissimilarity distance between some BARGs) are
higher than some pre-defined threshold value "tiso". The threshold value is application
dependent and is determined by an optimization procedure or heuristically. The main
purpose of tiso is to ensure that only isomorphic nodes are included. Fig. 10 shows the
distribution of BARGs construction the minimum weighted bipartite graph.
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Fig. 10. Distribution of BARGs and expected position of tiso.

Fig. 11 and Fig. 12 show different scans for an autonomous robot [17]. The data
contained in each scan is represented by attributed relational graph where vertices are
boundaries and classified to four categories : wall, pseudo-boundary, partial-wall, and
reference-boundary. The length of each boundary is added as a vertex attribute. The
edges in the graph represent the angles between the boundaries. Table II. shows the
results obtained from the proposed algorithm on this data. The results are completely
consistent and identical with those in [17] . The algorithm of [17] was reported to be
exponential.
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Vertex Mapping Edge  Mapping
Scan 1 Scan 2 Scan 1 Scan 2

1 1 (1-17) (1-16)
10 6 (17-1) (16-1)
17 16 - -

 Table II. Results of  Exp. 1.
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5- Conclusions

In this paper, a new algorithm for evaluating the distance between attributed
relational graphs is proposed. From experimental results and complexity analysis, the
following points can be concluded:
1- the new algorithm can be used efficiently for sparsely and fully connected attributed

relational graphs, and also for other types of graphs like attributed graphs and
weighted graphs

2- the new algorithm has the capability of handling  different isomorphism problems
like graph isomorphism, subgraph isomorphism and largest common subgraphs
with distinguished performance,

3- the computational complexity of this algorithm is much lower than other techniques
found in the literature. The average computational complexity of the proposed
algorithm is found to be O(M2*N2),

4- the best and worst case for the computational complexity of the new algorithm is
O(M*N*min(M,N)) and  O(M2*N2*min(M,N))  respectively, which is better than
many techniques,

5- the proposed algorithm is based on the concept of error-correcting transformations
which is more powerful and has more meaning in calculating the distance than
other techniques.

6- the proposed algorithm is parallel in nature and can take advantage of hardware
parallel architecture.
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