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Abstract.  Efficient and robust information retrieval from large image
databases is an essential functionality for the reuse, manipulation, and editing of
multimedia documents. Structural feature indexing is a potential approach to
efficient shape retrieval from large image databases, but the indexing is
sensitive to noise, scales of observation, and local shape deformations. It has
now been confirmed that efficiency of classification and robustness against
noise and local shape transformations can be improved through the feature
indexing approach incorporating shape feature generation techniques. Based on
this approach, an efficient, robust method is presented for retrieval of model
shapes that have parts similar to the query shape presented to the image
database. Effectiveness is confirmed through experimental trials with a large
database of boundary contours, and is validated by systematically designed
experiments with a large number of synthetic data.

1 Introduction

Information retrieval from large image databases is an essential functionality for the
reuse, manipulation, and editing of multimedia documents. Images have some
components in terms of representation, such as color, texture, and shape. Shape is an
essential component, but shape analysis and representation are still difficult research
subjects in spite of intensive research carried out for decades. In particular, shapes
observed in natural scenes are often occluded, corrupted by noise, and partially
visible. It is an important problem to retrieve efficiently model shapes that have parts
similar to the query shape presented to the image database [1]. Shape retrieval from
image databases has been studied recently for improving efficiency and robustness
[2—4]. In particular, the problem is intractable when the shape is partially visible.
Efficiency and robustness are important, but sometimes incompatible criteria for
performance evaluation. The improvement of robustness implies that the scheme for
classification and retrieval should tolerate certain types of variations and deformations
for images. Obviously, it may lead to inefficiency if some brute-force methods are
employed such as a generate-and-test strategy by generating various images with a
number of difference parameters. A key to achieving both efficiency and robustness is
through a compact and well-structured representation of images that tolerate
variations and deformations. In particular, it has been confirmed that efficiency of
classification and robustness against noise and local shape transformations can be
improved at the same time by the feature indexing approach incorporating shape
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feature generation techniques [5]. However, the application of this approach has been
confined to sets of shapes represented as closed contours.

In this paper, based on the structural feature indexing with feature generation
models, an efficient, robust method is presented for retrieval of model shapes that
have parts similar to the query shape presented to the image database. This paper is
organized as follows: In Section 2, a structural representation of curves by quasi-
convex/concave features along with quantized-directional features [5] is outlined. In
Section 3, based on the shape representation outlined in Section 2, we describe the
shape signature, the model database organization through feature indexing, and the
shape retrieval through voting. In Section 4, the transformation rules of shape
signatures are introduced to generate features that can be extracted from deformed
patterns caused by noise and local shape deformations. The proposed algorithm is
summarized in Section 5. In Section 6, the proposed method is validated by
systematically designed experiments with a large number of synthetic data. Section 7
concludes this paper.

2 Shape Representation

The structural representation of curves [5] is outlined in this section, based on quasi-
convex/concave structures incorporating N2 quantized-directional features ( N  is a
natural number). As shown in Fig. 1a, the curve is first approximated by a series of
line segments. On a 2-D plane, we introduce N -axes together with N2  quantized-
direction codes. For instance, when 4=N , eight quantized-directions are defined
along with the four axes as shown in Fig. 1b. Based on these N -axes together with

N2  quantized-direction codes, the analysis is carried out hierarchically.
A curve is decomposed into sub-segments at extremal points along each of the N -

axes. Fig. 1c illustrates the decomposition of a contour shown in Fig. 1a into sub-
segments when 4=N . For adjacent sub-segments a and b, suppose that we turn
counterclockwise when traversing them from a to b, and the joint of a and b is an
extremal point along the axes toward the directions ( )( )kNjj ,,2mod1, K+ . Then, we

write the concatenation of these two sub-segments as ba kj¾¾fi¾ , . For instance, the
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Fig. 1. (a) A closed contour with a polygonal approximation, (b) quantized-directional codes
when N = 4, (c) sub-segments when N = 4, (d) segments when N = 4.
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joint of sub-segments H and G in Fig. 1c is an extremal point along the three axes
toward the directions 3, 4, and 5. Therefore, the concatenation of H and G is written

as GH ¾fi¾ 5,3 . In this way, we obtain the following concatenations for the sub-
segments illustrated in Fig 1c.

MABACBDCED

EFGFGHIH

JIKJLKML

¾¾fi¾¾¾fi¾¾fi¾¾¾fi¾¾¾fi¾

¾¾fi¾¾fi¾¾fi¾¾¾fi¾

¾¾fi¾¾fi¾¾¾fi¾¾fi¾

7,74,35,56,60,7

4,41,05,37,7

0,01,12,23,3

,,,,

,,,,

,,,,

By linking local features around joints of adjacent sub-segments, some sequences
of the following form can be constructed:

n
njnjjjjj aaa ¾¾¾¾ fi¾¾¾¾¾ fi¾¾¾¾¾ fi¾ )1,(),0,()1,2(),0,2(

1
)1,1(),0,1(

0 L (1)

A part of the contour corresponding to a sequence of this form is called a segment.
Furthermore, the starting point of the segment is defined as the end point of 0a , and

the ending point is as the end point of na . When a segment is traversed from its

starting point to its ending point, one turns counterclockwise around any joints of sub-
segments. The following segments, as shown in Fig. 1d, are generated from the 13
sub-segments shown in Fig. 1c:
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A segment is characterized by a pair of integers dr, , characteristic numbers,

representing the angular span of the segment and the direction of the first sub-
segment:

( ) ( )( ) ( ) ( )( ) ( )0,1,21,0,10,1,
1

1
2mod

1
2mod jdijijijijr

n

i
N

n

i
N =+-++-= åå

-

==

(2)

The characteristic numbers are given by 7,2 , 3,7 , 4,2 , 0,3 , 3,4 , and

7,6 , respectively, for the six segments shown in Fig. 1d.

Adjacent segments are connected by sharing the first sub-segments or last ones of
the corresponding sequences. These two types of connection are denoted by TS h

and TS t , respectively, for two adjacent segments S and T. For instance, connections

are denoted by 1654321 SSSSSSS ththth  for the six segments shown in Fig. 1d.
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3 Shape Signature, Indexing, and Voting

Based on the shape representation outlined in Section 2, we describe the shape
signature, the model database organization through feature indexing, and the shape
retrieval through voting. For the model database organization, we assume that each
model shape is presented to the system as line drawings or boundary contours of
objects. In the shape retrieval, we assume that line drawings or parts of some model
shape can be given as a query to the system.

3.1 Shape Signatures

In order to retrieve images for a query given as a partially visible shape, the shape
signature is required to tolerate rotation, scaling, and translation. Therefore, features
depending on orientation, size, and location cannot be employed as shape signatures.
Based on the characteristic numbers and connections of segments extracted from
model shapes or query shapes, the shape signature is constructed to satisfy this
requirement. We assume that a series of n segments ),,2,1( niSi K=  have been

extracted with characteristic numbers ii dr ,  and lengths il . The angular span ir

does not depend on orientation, size, or location. Furthermore, the lack of information
due to dropping orientation, size, and location can be compensated by employing a
triplet of the angular spans of two consecutive segments and their length ratio as the
shape signature. From two consecutive segments iS  and 1+iS  connected as

{ }thcSS i
c

i ,,1 ˛+ , the shape signature is constructed as follows:

Feature

 (2,2,t,4)             123, 143, (30, 40),         28, 13, (2, 87)
                     (23, 34), (12, 45)         (29, 92), (254, 29)
     M

 (4,4,h,12)

 (4,4,t,12)             923, 293, (35, 93),
                     (293, 45), (29, 34)
 (4,5,h,12)

     M

 (6,2,h,7)             76, 23, (13, 56),        345, 234, (29, 54),
                    (34, 82), (29, 67)        (29, 29), (45, 92)
     M

Fig. 2. Model database organization by structural indexing. Each table item stores a list
whose element is composed of the model identifier, length, location of the center of gravity,
and locations of the two end points of the curve segment.
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where Q is the number of quantization levels for length-ratio parameters.

3.2 Indexing

From each model shape, shape signatures are extracted from all pairs of consecutive
segments. A large table, as illustrated in Fig. 2, is constructed for a model set by
assigning a table address to a shape signature and storing there a list whose item is
composed of the following elements: the model identifier that has the corresponding
shape signature, and shape parameters of the curve segment corresponding to the
shape signature, namely length, location of the center of gravity, and locations of the
two endpoints, computed on the model shape.

3.3 Voting

Classification of the query shape is carried out by voting for the transformation space
associated with each model. For each model, voting boxes are prepared for the
quantized transformation space ( )TT yx ,,,qs , where s  is the scaling factor, q  is the

rotation angle, and ( )TT yx ,  is the translation vector. Shape signatures are extracted

from the curve segment given as a query to the shape database. For each extracted
shape signature, model identifiers and shape parameters are retrieved from the table
by computing the table address. By comparing the shape parameters of the extracted
shape signature with the registered parameters, the transformation parameters
( )TT yx ,,,qs  can be computed for each model and the voting box corresponding to

the transformation parameters associated with the model is incremented by one. In the
implementation, transformation parameters s  and q  are computed from the line
segment connecting the two endpoints, and ( )TT yx ,  is computed from the location of

the center of gravity.

4 Feature Generation Models

Shape signatures extracted from the curve are sensitive to noise and local shape
deformations, and therefore, the correct model does not necessarily receive many
votes as expected for the ideal case. Furthermore, when only one sample pattern is
available for each class, techniques of statistical or inductive learning from training
data cannot be employed for obtaining a priori knowledge and feature distributions of
deformed patterns. To cope with these problems, we analyze the feature
transformations caused by some particular types of shape deformations, constructing
feature transformation rules. Based on the rules, we generate segment features that
can be extracted from deformed patterns caused by noise and local shape
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deformations. In both processes of model database organization and classification, the
generated features by the transformation rules are used for structural indexing and
voting, as well as the features actually extracted from curves.

The following two types of feature transformations are considered in this work:
- Change of convex/concave structures caused by perturbations along normal

directions on the curve and scales of observation, along with transformations of
characteristic numbers (the angular span of the segment and the direction of the
first sub-segment).

- Transformations of characteristic numbers caused by small rotations.
We describe these two types of transformation in the rest of this section.

4.1 Transformations of Convex/Concave Structures
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Fig. 3. (a) Part of curves similar to one another in terms of global scales, (b) editing
structural features by merging segment blocks, (c) transformations of characteristic numbers of
segments by small rotations.

The convex/concave structures along the curve are changed by noise and local
deformations, and also depend on scales of observations. For instance, two parts of
curves shown in Fig. 3a are similar to one another in terms of global scales, but their
structural features are different. When 4=N , the curve shown on left is composed of

three segments connected as 321 SSS ht  with characteristic numbers 6,6 , 6,2 ,

and 2,3 , whereas the one shown on right is composed of five segments connected

as 54321 SSSSS htht ¢¢¢¢¢  with characteristic numbers 6,6 , 6,2 , 2,2 , 6,2 , and

2,3 . To cope with such deformations, structural features on the two curves are

edited so that their features can become similar to one another. For instance, the
structural features illustrated in Fig. 3a can be edited by merging the two segment
blocks { }321 ,, SSS  and { }54321 ,,,, SSSSS ¢¢¢¢¢  to two segments S and S’ as shown Fig.

3b. In the structural indexing and voting processes, for an integer M  specifying the
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maximum number of segments to be merged, shape signatures are generated by
applying RULE 1 described below to segment blocks.

Rule 1: Let ii dr ,  be the characteristic number of the segment is , and

( )11 -++l kjjj sss L  be length of the curve composed of k consecutive segments

11 -++ kjjj sss L . From a segment block

( )
þ
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where m and n are odd such that Mnm ££ ,1 , a shape signature
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for ( ) 21,,1 -= mk K , and 221222 ‡+- ++-++-++ kmjkmjkmj rrr  for

( ) 21,,1 -= nk K .

For instance, when 4=N  and 3=M , from the six segments illustrated in Fig. 1d

with characteristic numbers 7,2 , 3,7 , 4,2 , 0,3 , 3,4 , and 7,6 , the

following shape signatures (length-ratio omitted) are generated by Rule 1: (2, 7, h), (2,
8, h), (7, 2, t), (7, 3, t), (8, 4, t), (2, 3, h), (2, 5, h), (3, 6, h), (3, 11, h), (3, 4, t), (5, 2, t),

(4, 6, h), (4, 11, h), (6, 2, t), (11, 2, t), (11, 3, t). In total, at most Ø ø22Mn ×  shape
signatures are generated from n segments.

4.2 Transformations of Characteristic Numbers by Small Rotations

The characteristic number dr,  ( 2‡r ) can be transformed by rotating the shape.

Rules can be introduced for generating characteristic numbers by rotating the shape
slightly (see Fig. 4c).

Rule 2: When the curve composed of the two consecutive segments 1S  and 2S

with characteristic numbers 11 , dr  and 22 , dr  is rotated by angle

y ( )NN p£y£p- , the angular spans 1r  and 2r  can be transformed into one of

the 9 cases: (1) ( )21, rr , (2) ( )1, 21 -rr , (3) ( )1, 21 +rr , (4) ( )21 ,1 rr - , (5)

( )1,1 21 -- rr , (6) ( )1,1 21 +- rr , (7) ( )21 ,1 rr + , (8) ( )1,1 21 -+ rr , (9) ( )1,1 21 ++ rr .

Note that the cases (4—6) are applicable only if 31 ‡r , and that the cases (2), (5), and

(8) are applicable only if 32 ‡r .

For instance, when 4=N  and 3=M , the 16 shape signatures have been
generated by Rule 1 from the six segments illustrated in Fig. 1d. Then, by applying
Rule 2 to these generated ones, 120 shape signatures, in total, are further generated.
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5 Algorithm

In the model database organization step by structural indexing, shape signatures are
generated from each model shape by Rules 1 and 2, and the model identifier with the
shape parameters is appended to the list stored at the table address corresponding to
each generated shape signature. For each model i  ( ni ,,2,1 K= ), let ic  be the

number of shape signatures generated by Rules 1 and 2. For instance, 120=ic  for the

contour shown in Fig. 1a when 4=N  and 3=M . In the classification and retrieval
by voting for models and the transformation space, from shape signatures extracted
from the query shape, shape signatures are generated by Rules 1 and 2. Model
identifier lists are retrieved from the tables by using the addresses computed from the
generated shape signatures, and the transformation parameters are computed for each
model on the lists. The voting box is incremented by one for the model and the
computed transformation parameters. Let iv  ( ni ,,2,1 K= ) be the maximum votes

among the voting boxes associated with the model i . The query shape is classified by
selecting out some models according to the descendant order of ii cv / . Examples of

shape retrieval are given in Fig. 4, where query shapes are presented at top along with
retrieved model shapes.

6 Experiments

In this section, the proposed algorithm is evaluated quantitatively in terms of the
robustness against noise and shape deformations, based on the systematically
designed, controlled experiments with a large number of synthetic data [5]. We
examined the probability that the correct model is included in top t% choices for
various values of the deformation parameter b  [5] when curves composed of r%

portions of a model shape are given as queries. For given values of r and b , a sub-
contour of r% of length is randomly extracted from the model shape, and then, it is
deformed by the deformation process as described in Nishida [5].

The main contribution of this work is to incorporate the shape feature generation
into the structural indexing for coping with shape deformations and feature
transformations. Therefore, the performance was compared with Stein-Medioni
method [2] extracting features from several versions of piecewise linear
approximations of the curve with a variety of error tolerances for approximations.

We carried out several experimental trials by changing the number of models from
200 to 500, examining the classification accuracy in terms of the deformed portions of
model shapes given as queries to image databases. In the implementation of Stein-
Medioni method, by changing the error tolerance with Ramer’s method from 1% to
20%, with a step of 1%, of the widest side of the bounding box of the curve, twenty
versions of approximations were created for each model shape and the query shape.
Furthermore, the recommended values specified in [2] were used for some
engineering parameters.

Table 1 presents the average classification rates for top 1%, 2%, 3%, 5%, and 10%
choices when [ ]5.0,0.0˛b , [ ]0.1,5.0˛b , and [ ]5.1,0.1˛b . For instance, when a
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curve segment composed of 80% portions of a model shape subject to the deformation
process with [ ]0.1,5.0˛b  is given as a query to shape databases of 500 models, the

correct models are included in top 15 choices (3%) with probability 98.2% for
proposed algorithm and with probability 83.9% for Stein-Medioni method. Clearly,
significant improvements of robustness against noise and local shape deformations
can be observed for the proposed algorithm in terms of classification accuracy
without a significant degradation of efficiency. Through the experiments, the
effectiveness has been verified through the experiments for the shape signature and
the shape feature generation models.

7 Conclusion

Structural feature indexing is a potential approach to efficient shape retrieval from
large image databases, but the indexing is sensitive to noise, scales of observation,
and local shape deformations. It has now been confirmed that efficiency of
classification and robustness against noise and local shape transformations can be
improved at the same time by the feature indexing approach incorporating shape
feature generation techniques [5]. In this paper, based on this approach, an efficient,
robust method has been presented for retrieval of model shapes that have parts similar
to the query shape presented to the image database. The effectiveness has been
confirmed by experimental trials with a large database of boundary contours and has
been validated by systematically designed experiments with a large number of
synthetic data.

      

Fig. 4. Examples of shape retrieval.
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Table 1.  Average classification rates (%) of deformed patterns by the proposed
algorithm in terms of the portion of model shapes (r%) presented as queries, in
comparison with Stein-Medioni method.

Classification rates (%) for top t% choicesb Portion

(r)

Method

t  = 1 t = 2 t = 3 t = 5 t = 10

Nishida 100.0 100.0 100.0 100.0 100.0100%

Stein  92.8  96.8  98.3  98.8  99.7

Nishida  99.6  99.7  99.7  99.8  99.980%

Stein  86.3  92.3  94.8  97.3  98.9

Nishida  92.4  95.0  95.9  96.7  98.0

0.0—

0.5

 60%

Stein  61.6  73.1  79.0  84.7  91.6

Nishida  99.8  99.8  99.8  99.9  99.9100%

Stein  80.6  87.4  89.9  92.8  96.5

Nishida  96.0  97.8  98.2  99.1  99.5 80%

Stein  69.5  79.8  83.9  88.1  93.1

Nishida  75.1  82.7  85.7  89.0  93.4

0.5—

1.0

 60%

Stein  39.5  51.2  58.3  66.8  78.1

Nishida  91.1  94.3  96.2  97.3  98.2100%

Stein  55.1  65.8  71.0  76.2  84.2

Nishida  68.4  75.9  79.8  84.9  90.1 80%

Stein  40.7  52.0  57.7  66.0  76.5

Nishida  36.6  46.0  51.7  59.0  68.5

1.0—

1.5

 60%

Stein  17.5  27.3  33.3  41.3  55.5
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