
Partitional vs Hierarchical Clustering Using a
Minimum Grammar Complexity Approach

Ana L.N. Fred and José M. N. Leitão

Instituto de Telecomuncações / Instituto Superior Técnico, Lisboa, Portugal
IST-Torre Norte, Av. Rovisco Pais, 1049-001, Lisboa, Portugal

afred@lx.it.pt

Abstract. This paper addresses the problem of structural clustering of
string patterns. Adopting the grammar formalism for representing both
individual sequences and sets of patterns, a partitional clustering algo-
rithm is proposed. The performance of the new algorithm, taking as refe-
rence the corresponding hierarchical version, is analyzed in terms of com-
putational complexity and data partitioning results. The new algorithm
introduces great improvements in terms of computational efficiency, as
demonstrated by theoretical analysis. Unlike the hierarchical approach,
clustering results are dependent on the order of patterns’ presentation,
which may lead to performance degradation. This effect, however, is over-
come by adopting a resampling technique. Empirical evaluation of the
methods is performed through application examples, by matching clu-
sters between pairs of partitions and determining an index of clusters
agreement.

1 Introduction

A diversity of clustering procedures can be found in the literature [11]. From the
methodological point of view, algorithms can be divided in two major classes:
partitional methods and hierarchical methods. Partitional structure organizes
patterns into a small number of clusters. It usually assumes the a priori spe-
cification of the number of clusters to partition the data or the definition of
cluster validity criteria. Hierarchical clustering consists of a sequence of nested
data partitions in a hierarchical structure. A particular partition is obtained by
cutting the hierarchical structure at some level.

Concerning structural patterns represented as sequences of symbols, cluste-
ring algorithms are extensions of these methods by adopting adequate string
similarity measures [7]. Viewing similarity computation as a matching process
[8,1,2,15,13,3,16], references [8,12] present sentence-to-sentence clustering proce-
dures based on the comparison of a candidate string with sentences in previously
formed clusters (clustering based on a nearest-neighbor rule) or with cluster cen-
ter strings (cluster center technique), respectively. String editing operations are
there used in the transformation of strings to perform the matching. Following
the string matching paradigm while modeling clusters’ structure using gram-
mars, error-correcting parsing and grammatical inference are combined in a clu-
stering algorithm described in [8,9]. Basically it implements a nearest-neighbor

F.J. Ferri et al. (Eds.): SSPR&SPR 2000, LNCS 1876, pp. 193–202, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



194 A.L.N. Fred and J.M.N. Leitão

rule, where sentences are compared, not directly with the patterns included in
previously formed clusters, but with the best matching elements in the languages
generated by the grammars inferred from the clusters’ data. Also using gram-
mars for modeling clusters’ structure, a distinct approach, based on the concept
of minimum description, is proposed in [4]. Structural resemblance between pat-
terns is assumed to reflect common rules of composition; a normalized reduction
in grammar complexity obtained by associating patterns gives the measure of
similarity underlying the hierarchical clustering algorithm there proposed. In [5]
the search of common subpatterns by means of Solomonoff’s coding [17,6] forms
the basis of a clustering algorithm that defines similarity between patterns as a
ratio of decrease in code length.

This paper focuses on clustering procedures capturing structural resemblance
in the form of rules of composition between primitives, as opposed to string mat-
ching techniques. The grammar formalism is adopted to describe these rules and
simultaneously provide a model for cluster representation. To this purpose, a new
clustering algorithm, of the partitional type, is proposed and compared with the
hierarchical method described in [4]. Also, within the scope of empirical com-
parison of partitions produced by the different algorithms, a global partitioning
agreement index is proposed.

Section 2 presents the grammar-based similarity measure that forms the core
of the clustering algorithms, emphasizing the distinction between structural re-
semblance and string matching. The new clustering algorithm is described in
section 3; theoretical algorithmic complexity evaluations and comparative per-
formance analysis are addressed in section 4. A measure of partitions agreement
is proposed for empirical assessment of the methods. Application examples are
presented in section 5.

2 Structural Similarity Measure

The concept of resemblance between strings has typically been viewed from
two perspectives [7]: (1)- similarity as matching, based on string editing opera-
tions; (2)- structural resemblance, based on the similarity of their composition
rules and primitives.

The similarity measure described next, which forms the basis of the clustering
algorithms described in section 3, falls into the second category. According to
this approach, patterns’ structure is modeled by syntactic rules, automatically
inferred from the data [10,14]. Grammar complexity gives a measure of the
compactness of this representation:

C(G) =
r∑

i=1

li∑

j=1

C(αij) (1)



Partitional vs Hierarchical Clustering 195

where C(G) is the complexity of grammar G, αij represents the right side of the
jth production for the ith non-terminal symbol of the grammar, and

C(α) = (n + 1)log(n + 1) −
m∑

i=1

kilogki (2)

with ki being the number of times that the symbol ai appears in α, and n is
the length of the grammatical sentence α. Structural resemblance is captured by
shared rules of composition, which lead to a reduction of the global description
(grammar inferred from the patterns ensemble) when compared to the descrip-
tions of the patterns considered individually. Similarity is then defined as the
ratio of decrease in grammar complexity (RDGC) [4], as follows:

RDGC(s1, s2) =
C(Gs1) + C(Gs2) − C(Gs1,s2)

min {C(Gs1), C(Gs2)}
(3)

where s1, s2 are strings and C(Gsi
) denotes grammar complexity. Figure 1

outlines the RDGC similarity computation procedure.

Fig. 1. Computing the similarity between strings under the minimum grammatical
complexity approach. Separate grammars are inferred from the individual strings and
from the strings ensemble; similarity is defined as the normalized reduction in gram-
matical complexity obtained by joining the patterns. The choice of the grammatical
inference algorithm influences the similarity index obtained. For simplicity of illust-
ration, graphs representing regular grammars are depicted next to the grammatical
inference blocks.



196 A.L.N. Fred and J.M.N. Leitão

Fig. 2. Graphical representation of strings of the form (2∗6∗)∗ (patterns 1 to 4) and
(0∗6)∗ (patterns 5 to 8). The graphical interpretations of the symbols are as follows: 0
– maintain the line direction; 2 – turn right; 6 – turn left. The string’s lengths for the
several patterns are: (1)-9; (2)-9; (3)-389; (4)-409 (5)-18; (6)-9; (7)-487; (8)-411.

The emphasis of the RDGC on structural similarity rather than on string
alignment is put in evidence in the example depicted on figure 2, which repre-
sents a graphical description of instances, with various lengths, of strings of the
form (2∗6∗)∗ or (0∗6)∗, with the symbol ∗ indicating an arbitrary repetition of
the element on the left (parenthesis are used for delimiting elements with more
than one character).

1 2 3 4 5 6 7 8
1 1 1 1 0.707 0 0 0 0
2 1 1 1 0.707 0 0 0 0
3 1 1 1 0.757 0 0 0 0
4 0.707 0.707 0.757 1 0 0 0 0
5 0 0 0 0 1 0.913 0.928 0.928
6 0 0 0 0 0.913 1 1 1
7 0 0 0 0 0.928 1 1 1
8 0 0 0 0 0.928 1 1 1

Table 1. Similarity matrix for the string patterns in figure 1.

Table 2 shows the similarity matrix between the string patterns, compu-
ted using Crespi-Reghizzi’s algorithm [10] for grammatical inference, without
imposing a priori information other then left-to-right precedence of the charac-
ters. As shown, the similarity measure provides complete separation of the two
structures (zero valued blocks on the matrix). Furthermore, the similarity index
is independent of the strings length, yielding maximum similarity to most of
the patterns exhibiting the same structure. The non-unit values regarding the
similarity between string 4 and the first three strings (or between string 5 and



Partitional vs Hierarchical Clustering 197

strings 6 to 8) reflect the sensitivity and asymmetry of the inference algorithm
to initial and terminal string values with the a priori information used.

3 Minimum Grammar Complexity Clustering

The underlying idea for the clustering algorithms described next, is that, if
sequences exhibit a similar structure, then their joint description will be more
compact than the combination of the descriptions of the individually considered
elements. Using the grammar formalism to model the string patterns, similarity
of structures and primitives leads to shared sets of grammar productions, and
hence to a reduction in the global grammar complexity. Taking the grammar
complexity, as defined in expressions 1 and 2, as a measure of description
compactness, and the associated similarity between string patterns, defined by
expression 3, the later is extended to sets of sequences, providing a similarity
measure between clusters:

RDGC(C1, C2) =
C(GC1) + C(GC2) − C(GC1,C2)

min {C(GC1), C(GC2)}
(4)

with GCi representing the grammar inferred from the data in cluster Ci.
Section 3.1 presents a hierarchical clustering algorithm based on this si-

milarity concept, proposed in [4]. The new algorithm, a sentence to sentence
clustering procedure, is presented in section 3.2. These algorithms, besides the
data partitioning, provide a model for cluster representation.

3.1 Hierarchical Clustering

Input: A set of strings S = {s1, s2, . . . , sn} and a threshold th.
Output: A partition of S into m clusters C1, C2, . . . , Cm and their gramma-

tical representations GC1 , GC2 , . . . , GCm

Steps:
1. Assign si to Ci, i = 1, . . . , n and infer a grammar, GCi

, for each cluster. Let
m = n.

2. Among the m2 possible associations of two clusters, compute

sim = max {RDGC(Ci, Cj)} , i, j = 1 . . . m, i 6= j

If sim > th, then associate these clusters, set their grammatical description
as the grammar inferred from the joint set of data GCi,Cj and decrease m
by one; otherwise stop, returning the clusters found.

3.2 Sentence to Sentence Clustering Procedure

Input: A set of strings S = {s1, s2, . . . , sn} and a threshold th.
Output: A partition of S into m clusters C1, C2, . . . , Cm and their gramma-

tical representations GC1 , GC2 , . . . , GCm
.



198 A.L.N. Fred and J.M.N. Leitão

Steps:
1. Assign s1, the first string in S, to C1, and infer the grammar GC1 . Let m = 1.
2. For each remaining element si ∈ S do:

– Infer a grammar for si and compute the similarity RDGC(si, Ck), k =
1, . . . m. Let sim be the highest value found and Cj the matching cluster.

– If sim > th, include si in Cj and update the cluster’s grammatical
description; otherwise, form a new cluster with si and set m = m + 1.

3. Return the clusters found and their grammatical descriptions.

4 Comparison of the Algorithms

The hierarchical and partitional algorithms described previously are based on
a common similarity measure and cluster representation paradigm: syntactic
model. They therefore provide compact models for cluster description that, while
capturing data structure, also provide a mechanism for the recognition of new
data by means of parsing algorithms, and generative capability.

The demarcation of the two approaches deals with computational efficiency,
optimality of the solutions and structure evidencing aspects.

4.1 Computational Complexity

Let n be the total number of samples. The computational analysis takes
grammatical inference as elementary operation, as this is the most expensive
processing performed. It should be emphasized that the adopted grammatical
inference method (Crespi-Reghizzi’s method) has linear time complexity on the
length of the patterns, O(l). By adequate memorization of grammar structure
information (profiles), merging of clusters involves simple calculations on these
structures, without requiring recalculations with the samples.

Step 1 of the hierarchical algorithm (see section 3.1) involves n distinct
grammar inferences, one per sample. The first iteration of step 2 performs (n−1)2

2
inferences, filing a n × n similarity matrix (this matrix is upper triangular with
unitary diagonal). The remaining iterations of step 2 undertake comparisons on
this decreasing order matrix (each association of patterns, or clusters merging,
dictate a reduction by one in the matrix dimension and its corresponding ac-
tualization, involving the computation of the similarity of the merged cluster
with all the others – m − 1 computations, m being the current dimension of the
similarity matrix). In the overall, the hierarchical algorithm has O(n2) time and
space complexities.

The analysis of the steps of the partitional algorithm (section 3.2) shows that
n inferences are needed (one per sample) and the computation of the similarity
with existing clusters and actualization of clusters’ grammars involves at the
most m grammar merging operations. As a result, the algorithm has O(mn) time
complexity and O(m) space complexity. This represents a significant reduction
in computational complexity in comparison with the hierarchical version as m,
the total number of clusters is usually small in relation to the number of samples.



Partitional vs Hierarchical Clustering 199

4.2 Optimality of the Solutions Found

Since the hierarchical data structuring, produced by the hierarchical algo-
rithm, is based on the pre-computation of a similarity matrix between all sample
pairs, solutions found are only dependent of the value of th, a design parameter
meaning the minimum similarity of patterns within a cluster. The partitional
algorithm, however, may produce solutions dependent of the order of presenta-
tion of patterns, in which case over-fragmentation of the data may occur. This
situation is more likely to arise when clusters are not well separated, and highly
dissimilar patterns, belonging to the same cluster, are on the top of the presenta-
tion list, the similarity of which being smaller than the value of the threshold th.
This dependency on the order of patterns’ presentation may be overcome by a
combined resampling and consistent clusters gathering algorithm, not described
here due to space restrictions.

Empirical evaluation of the algorithms undertakes the comparison of the par-
titions produced, which, in general, will include differing numbers of clusters and
unlike clusters organization and ordering. In order to evaluate the consistency of
two data partitions or to compare the results of two clustering algorithms taking
as reference an ideal partitioning, it is necessary to determine the correspondence
between clusters in both partitioning. In other words, one needs to determine
the best matching associations of clusters and an index of clusters agreement.

In the following, we define pc idx, the partitions consistency index, as the
fraction of shared samples in matching clusters in two data partitions, over the
total number of samples:

pc idx =
1
n

min{nc1,nc2}∑

i=1

n sharedi

where nc1, nc2 are the number of clusters in the first and second partitions, re-
spectively, and n sharedi is the number of samples shared by the ith matching
clusters. An algorithm for the computation of matching clusters and correspon-
ding consistency index is described elsewhere.

5 Application Examples

The first example consists of the patterns presented in section 2. Figure 3
illustrates the failure of string matching techniques in identifying the structure of
these patterns (dendrogram on the left); by applying the hierarchical algorithm
of section 3.1 (dendrogram on the right) perfect separation is obtained for
threshold values, th, smaller than 0.7. With the same range of values for th, the
partitional algorithm, described in section 3.2, consistently produces the same
two classes, not being dependent on the order of pattern presentation.

The other example, depicted in figure 4, concerns the clustering of 84 contour
images of two types of hardware tools, using string descriptions. The dendro-
gram, produced by the hierarchical algorithm, shows the variability of similarity



200 A.L.N. Fred and J.M.N. Leitão

Fig. 3. Dendrograms produced by hierarchical clustering of patterns in figure 2, using:
(a) - dissimilarity based on string editing operations; (b) the RDGC similarity .

Fig. 4. Clustering of contour images represented by an 8-directional differential chain
code. (a)- Dendrogram produced by the hierarchical algorithm; samples 1-42 and 43-84
are of the type represented aside. (b)- Consistent clusters found after 10 resampling
experiments, with the partitional-type algorithm. (c)- Histogram of the consistency
index (in percentage – see section 4.2) between the ideal partitioning and the parti-
tions found with the proposed algorithm, over 40 resampling experiments of the data
(random ordering). (d)- Corresponding histogram of the number of clusters found.

values within the cluster of the first tool; class separation is obtained by choosing
th in a narrow interval: ].21; .3[. By applying the sentence-to-sentence algorithm
to this data, with th = .22, clustering results are dependent on the order of
pattern presentation, as shown by the histograms in figure 4 (c) and (d). In
these results, wheel-type contours were usually grouped in a single cluster, while
the other object class was often fragmented into several, variable composition
clusters (most of the experiments led to the partitioning of the data into 3 or
4 clusters – see plot (d)). Consistency index values lower than 1 are also the
result of overfragmentation of the data, rather than incorrect pattern associati-



Partitional vs Hierarchical Clustering 201

ons. However, this overfragmentation, dependent on the order of presentation of
patterns, can be overcome by applying a technique of data resampling followed
by clustering and determination of consistent clusters, not described here due
to space limitations. The results obtained using this technique are depicted in
figure 4 (b), showing that only two patterns (number 50 and 55, in the initial
data ordering) did not join their natural group, forming an additional cluster.

6 Conclusions

This paper presented a new clustering algorithm for string patterns, of the par-
titional type, based on a minimum grammar complexity criterion. The ability
of the underlying similarity measure to capture structural resemblance, as op-
posed to string matching, was emphasized, total independence on the string’s
lengths being achieved. A theoretical analysis of the new algorithm revealed lo-
wer computational complexity (O(ncn) and O(nc) time and space complexities,
respectively, with n being the number of patterns and nc the number of clusters
found) when compared with the hierarchical version of the algorithm presented
in [4] (O(n2) time and space complexities). As a drawback, the partitioning pro-
duced by the new algorithm is dependent of the order of pattern presentation,
the relevance of this effect being problem dependent and subject to empirical
evaluation. To this purpose, an index of clusters agreement in data partitions
was proposed to assess the performance of clustering algorithms on practical
grounds.

The dependency on the order of presentation of the patterns of the new
algorithm can be overcome by a combined resampling/consistent clusters finding
technique, as illustrated by an application example, with not significant increase
in the computational burden. Therefore, the proposed algorithm constitutes a
feasible clustering strategy, able to handle much larger data sets than hierarchical
techniques.

References

1. H. Bunke. String matching for structural pattern recognition. In H. Bunke and
A. Sanfeliu, editors, Syntactic and Structural Pattern Recognition, Theory and Ap-
plications, pages 119–144. World Scientific, 1990.

2. H. Bunke. Recent advances in string matching. In H. Bunke, editor, Advances
in Structural and Syntactic Pattern Recognition, pages 107–116. World Scientific,
1992.

3. G. Cortelazzo, D. Deretta, G. A. Mian, and P. Zamperoni. Normalized weighted
levensthein distance and triangle inequality in the context of similarity discrimi-
nation of bilevel images. Pattern Recognition Letters, 17:431–436, 1996.

4. A. L. Fred. Clustering of sequences using a minimum grammar complexity crite-
rion. In Grammatical Inference: Learning Syntax from Sentence, pages 107–116.
Springer-Verlag, 1996.

5. A. L. Fred and J. Leitão. A minimum code length technique for clustering of
syntactic patterns. In Proc. Of the 13th IAPR Int’l Conference on Pattern Reco-
gnition, Vienna, August 1996.



202 A.L.N. Fred and J.M.N. Leitão

6. A. L. Fred and J. Leitão. Solomonoff coding as a means of introducing prior
information in syntactic pattern recognition. In Proc. Of the 12th IAPR Int’l
Conference on Pattern Recognition, pages 14–18, 1994.

7. A. L. Fred and J. Leitão. A comparative study of string dissimilarity measures in
structural clustering. In S. Singh, editor, International Conference on Advances in
Pattern Recognition, pages 385–384. Springer, 1998.

8. K. S. Fu. Syntactic pattern recognition. In Handbook of Pattern Recognition and
Image Processing, pages 85–117. Academic Press, 1986.

9. K. S. Fu and S. Y. Lu. A clustering procedure for syntactic patterns. IEEE Trans.
Systems Man Cybernetics, 7(7):537–541, 1977.

10. K. S. Fu and S. Y. Lu. Grammatical inference: Introduction and survey -part i
and ii. IEEE Trans. Pattern Anal. and Machine Intelligence, 8(5):343–359, 1986.

11. A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988.
12. S. Y. Lu and K. S. Fu. A sentence-to-sentence clustering procedure for pattern

analysis. IEEE Trans. Systems Man Cybernetics, 8(5):381–389, 1978.
13. A. Marzal and E. Vidal. Computation of normalized edit distance and applications.

IEEE Trans. Pattern Anal. and Machine Intelligence, 2(15):926–932, 1993.
14. L. Miclet. Grammatical inference. In H. Bunke and A. Sanfeliu, editors, Syntac-

tic and Structural Pattern Recognition - Theory and Applications, pages 237–290.
Scientific Publishing, 1990.

15. B. J. Oomen and R. S. K. Loke. Pattern recognition of strings containing tradi-
tional and generalized transposition errors. In Int. Conf. on Systems, Men and
Cybernetics, pages 1154–1159, 1995.

16. E. S. Ristad and P. N. Yianilos. Learning string-edit distance. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 20(5):522–531, May 1998.

17. R. J. Solomonoff. A formal theory of inductive inference (part i and ii). Information
and Control, 7:1–22,224–254, 1964.


	Introduction
	Structural Similarity Measure
	Minimum Grammar Complexity Clustering
	Hierarchical Clustering
	Sentence to Sentence Clustering Procedure

	Comparison of the Algorithms
	Computational Complexity
	Optimality of the Solutions Found

	Application Examples
	Conclusions

