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Abstract. An efficient recursive algorithm for realistic colour texture
synthesis is proposed. The algorithm starts with spectral factorization of
an input colour texture image using the Karhunen-Loeve decorrelation.
Single orthogonal monospectral components are further decomposed into
a multi-resolution grid and each resolution data are independently mod-
eled by their dedicated simultaneous causal autoregressive random field
model (CAR). We estimate an optimal contextual neighbourhood and
parameters for each CAR submodel. Finally single synthesized monos-
pectral texture pyramids are collapsed into the fine resolution images and
using the inverse Karhunen-Loeve transformation we obtain the required
colour texture. The benefit of the multigrid approach is the replacement
of a large neighbourhood CAR model with a set of several simpler CAR
models which are easy to synthesize and wider application area of these
multigrid models capable of reproducing realistic textures for enhancing
realism in texture application areas.

1 Introduction

Virtual reality systems require object surfaces covered with realistic nature-like
colour textures to enhance realism in virtual scenes. These textures can be either
digitised natural textures or textures synthesized from an appropriate mathe-
matical model. Digitised solid 3D textures are far less convenient, since they
involve the 2D digitisation of a large number of cross-sectioned slices through
some material. Synthetic textures are more flexible than digitized textures, in
that synthetic textures can be designed to have certain desirable properties or
meet certain constraints; for example, it can be made smoothly periodic, so that
it can be used to fill an infinite texture space without visible discontinuities.
While a digitized texture must be stored in a tabular form and evaluated by
table lookup, a synthetic texture may be evaluated directly in procedural form.
Other texture models applications cover image and video compression, image
restoration, image classification and many others.

There are several texture modelling approaches published [6],[5] and some
survey articles are also available [4]. Our previous paper [5] introduced a fast mul-
tiresolution Markov random field based method. Although this method avoids
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the time consuming Markov chain Monte Carlo simulation so typical for applica-
tions of Markov models it requires several approximations. Simultaneous causal
autoregressive random fields are appropriate models for texture synthesis not
only because they do not suffer with some problems of alternative options (see
[B],[4] for details) but they are also easy to analyze as well as to synthesize and
last but not least they are still flexible enough to imitate a large set of natural
and artificial textures.

Multiple resolution decomposition (MRD) such as Gaussian/Laplacian py-
ramids, wavelet pyramids or subband pyramids [7], [5] present efficient method
for the spatial information compressing. The hierarchy of resolutions provides a
transition between pixel-level features and region or global features and hence
to model a large variety of possible textures. Unfortunately autoregressive ran-
dom fields, similarly as the majority of other Markovian types of random field
models [2], are not invariant to multiple resolution decomposition (MRD) even
for simple MRD like subsampling and the lower-resolution images generally lose
their autoregressive property and become ARMA random fields instead. To avoid
computationally demanding approximations of an ARMA multigrid random field
by an infinite order (i.e., high order in practice) autoregressive random fields we
analyze each resolution component independently.

2 Texture Model

Modelling general colour texture images requires three dimensional models. If a
3D data space can be factorized then these data can be modelled using a set of
less-dimensional 2D random field models, otherwise it is necessary to use some
3D random field model. Although full 3D models allows unrestricted spatial-
spectral correlation modelling its main drawback is large amount of parameters
to be estimated and in the case of Markov models (MRF) also the necessity
to estimate all these parameters simultaneously. The factorization alternative is
attractive because it allows using simpler 2D data models with less parameters
(one third in the three-spectral case of colour textures). Unfortunately real data
space can be decorrelated only approximately, hence the independent spectral
component modelling approach suffers with some loss of image information.

Spectral factorization using the Karhunen-Loeve expansion transforms the ori-
ginal centered data space Y defined on the rectangular M x N finite lattice 1

into a new data space with K-L coordinate axes Y. This new basis vectors are
the eigenvectors of the second-order statistical moments matrix ([I)

¢ = B{Y,Y,"} (1)

where the multiindex r has two components r = [ry, 2], the first component is
row and and the second one column index, respectively. The projection of random
vector Y, onto the K-L coordinate system uses the transformation matrix

T= [u{augvug]T (2)
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which has single rows u; that are eigenvectors of the matrix .

Y, =TY, 3)
Components of the transformed vector Y, (@) are mutually uncorrelated.

Texture modelling does not require computationally demanding MRD approxi-
mations (e.g. [2]) because it does not need to propagate information between
different data resolution levels. It is sufficient to analyze and subsequently ge-
nerate single spatial frequency bands without assuming a knowledge of some
global multi-grid random field model. We assume colour texture factorized into
orthogonal mono-spectral components [5]. These components are further decom-
posed into a multi-resolution grid and each resolution data are independently
modeled by their dedicated CAR. Each one generates a single spatial frequency
band of the texture. An analysed texture is decomposed into multiple resolu-
tions factors using Laplacian pyramid and the intermediary Gaussian pyramid.
The Gaussian pyramid Y is a sequence of images in which each one is a low-
pass down-sampled version of its predecessor where the weighting function (FIR
generating kernel) is chosen subject to following constrains:

Wy = We, Wy

The solution of above constrains for the reduction factor 3 (21 4+ 1) is wy =
0.5,w; = 0.25 and the FIR equation is now

(k—1)
lel JY2T+ (i,5) ° (4)
1,j=—

The Gaussian pyramid for a reduction factor n is

}"/T(k) =|" ()"/(k—l) Qw) k=1,2,... , (5)

where
yO_y

1™ denotes down-sampling with reduction factor n and ® is the convolution
operation.

The Laplacian pyramid K(k) contains band-pass components and provides a good

approximation to the Laplacian of the Gaussian kernel. It can be constructed by
differencing single Gaussian pyramid layers:

VO S FE g (FO) k=0 ©)
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where 1" is the up-sampling with an expanding factor n.

Single orthogonal monospectral components are thus decomposed into a multi-
resolution grid and each resolution data are independently modeled by their
dedicated independent Gaussian noise driven autoregressive random field model
(CAR) as follows.

The causal autoregressive random field (CAR) is a family of random variables
with a joint probability density on the set of all possible realisations Y of the
M x N lattice I, subject to following condition:

(MN—1) 9 (MJ\2J—1)

p(Y [7,072) = 2m) " o2
exp {;tr{gz (75 )TVMN_1 ( 7 )}} NG

where the following notation is used

[/ T
‘;;71 — ( Yy(r—l) ‘écy(r—l)) , (8)
wa(r 1) Va:(r—l)

(r 1) ZYkYk ) (9)

zy(r 1) ZXkYk 3 (10)

m(r 1) ZXka . (11)

The 2D CAR model can be expressed as a stationary causal uncorrelated noise
driven 2D autoregressive process:

Yf,n = 'VXT + €r 9 (]‘2)

where < is the parameter vector

vy=la,...,ay , (13)
n = card(I?) , (14)

I¢ is a causal neighbourhood, e, is a white Gaussian noise with zero mean and
a constant but unknown variance o2 and X, is a corresponding vector of
Y, _s (design vector).
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3 Parameter Estimation

The selection of an appropriate CAR model support is important to obtain good
results in modelling of a given random field. If the contextual neighbourhood
is too small it can not capture all details of the random field. Inclusion of the
unnecessary neighbours on the other hand add to the computational burden and
can potentially degrade the performance of the model as an additional source of
noise.

The optimal Bayesian decision rule for minimizing the average probability of
decision error chooses the maximum posterior probability model, i.e., a model
M; corresponding to

max{p(M;|Y"~V)}
J

where Y ("= denotes the known process history

YU = {Y, 4, Yo g, V1, X, Xy, Xa ) (15)

If we assume uniform prior for all tested support sets (models) the solution can
be found analytically. The most probable model given past data is the model

M; (Iy;) for which
i = argmax{D;_1)}
j
Dj—1y=InT" (W) —InI" (M);M)
1 r)—mn+2
— g nVae-nl = ﬂ()+ In [A¢—1)] (16)
where
B(r)=p0)+r—1, (17)
B(0)>1 (18)
and
Ay = Vo) = Vaye) Vagm Veu(r) - (19)

Parameter estimation of a CAR model using the maximum likelihood, the least
square or Bayesian methods can be found analytically. The Bayesian parameter
estimations of the causal AR model with the normal-gamma parameter prior
which maximize the posterior density are:

Are1 = Vo) Vay(r-1) (20)
and
A
52, = 2u-D (21)
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Fig.1. o 721% Z%l Wood texture of the ninth order (or) and its single (1) and multiple
(2,3,4) scales resynthesis using the CAR (a) and MRF (m) models.

where V1) = ‘7z(r—1) + V.(0) and matrices V() are from parameter prior.
The estimates (I6), [20),(2I) can be also evaluated recursively if necessary.

4 Model Synthesis

The CAR model synthesis is very simple and a causal CAR random field can be
directly generated from the model equation (I2Z).

Single CAR models synthesize spatial frequency bands of the texture. Each mo-
nospectral fine-resolution component is obtained from the pyramid collapse pro-
cedure (inversion process to (H),(@)). Finally the resulting synthesized colour
texture is obtained from the set of synthetized monospectral images using the
inverse K-L transformation:

Y, =T, (22)
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or a

Fig.2. a2 a%%& Natural cloud texture (or) and its single (1) and multiple (2,3,4)

m2 m,

scales resynthesis using the CAR (a) and MRF (m) models.

5 Results

Two presented natural colour examples (Fig2FigB) violates the model statio-
narity assumption. Nevertheless they are able to demonstrate an advantage of
the multiscale approach in texture modelling over single scale models in such
unfavourable conditions. Figs[ll @ also compare CAR, synthesis results with re-
sults from the multiscale Markov model [B] synthesis. Fig.1 shows a wood texture
synthesized using a ninth order (24 different parameters) MRF model. We tried
to resynthesize this texture with inadequate low order CAR and MRF models.
The CAR model had only five contextual neighbours and the MRF model was
of the second order (4 different parameters). Figs. [[{al,m1), 2l(al,m1), B show
unsatisfactory results using the single-scale texture models while these figures
simultaneously demonstrate an improvement if we use our presented multi-scale
model with two, three or four scale levels, respectively. The second example
FigPlor) is a natural cloud texture. The texture is non stationary and thus vio-
lates the CAR model assumption. Fig[Z(a2-a4) show synthesis results for the
CAR model while Fig2lm2-m4) show the second order MRF results for two,
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three or four-scale models, respectively. Both examples Figl2 Fig[3] are colour
textures and they were converted to the grey scale representation only to be
printable in the proceedings. The multi-scale models demonstrate their clear su-
periority over their single-scale counterparts. The colour quality is comparable
between single-scale and multi-scale models and it is very good in general.

Fig.3. Natural green marble texture and its single, four-scale resynthesis using the
CAR model.

6 Conclusions

Our testing results of the algorithm are encouraging. Some synthetic textures
reproduce given digitized texture images so that both natural and synthetic
texture are visually indiscernible. The multi-scale approach is more robust and
allows better results than the single-scale one if the synthesis model is inadequate
(lower order model, non stationary texture, etc.). The MRF multiscale model
seems to be superior to the causal CAR model for some textures, however the
CAR model synthesis is much faster than the MRF model synthesis. The CAR
model is better suited for real time or web distributed texture modelling appli-
cations. The proposed method allows large compression ratio for transmission or
storing texture information while it has very moderate computation complexity.
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