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Abstract. This paper is concerned with the detection of dim targets in cluttered
image sequences. It is an extension of our previous work [7] in which we viewed
target detection as an outlier detection problem. In that work the background
was modelled by a uni-modal Gaussian. In this paper a Gaussian mixture-model
is used to describe the background in which the the number of components is
automatically selected. As an outlier does not automatically imply a target, a final
stage has been added in which all points below a set density function value are
passed to a support vector classifier to be identified as a target or background.
This system is compared favourably to a baseline technique [12].
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1 Introduction

Automatic Target Recognition (ATR) is concerned with the detection, tracking and re-
cognition of small targets using input data obtained from a multitude of sensor types
such as forward looking infrared (FLIR), synthetic aperture radar (SAR) and laser radar
(LADAR). Applications of ATR are numerous and include the assessment of battlefield
situations, monitoring of possible targets over land, sea and air and the re-evaluation of
target position during unmanned missiles weapon firing.

An ideal system will exhibit the properties of a low false positive rate (detection of
a non-target as a target), whilst obtaining a high true positive rate (the detection of a
true target). This performance should be invariant to the following parameters: sensor
noise; time of day; weather types; target size/aspect and background scenery. It should
be flexible such that it has the ability to detect previously unseen targets and be able to
retrain itself if necessary. It is unlikely that one single system will cope well with all these
possible scenarios [2]. The many challenges produced by ATR have been previously well
documented in [3], [9] and [T]].

In this paper an adaptive ATR system is proposed which is suitable for scenes with
strong clutter which is spatially and temporally highly structured, such as sea glint and
atmospheric scintillation. In the bootstrap phase a statistical Gaussian mixture-model of
the background is built by using a set of texture filters. In operation, the same features
are computed for each new pixel arriving at the sensor input. If the probability density
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value of the of this pixel feature vector falls below a set threshold it is considered as a
potential target. A low probability density value does not necessarily imply a target, e.g.
it could be sea glint. For this reason a final stage has been added to the system in which a
support vector machine is used to classify all the outliers as a target or as clutter. This is
consistent with realistic operational scenarios as the target objects required for training
can easily be inserted in images synthetically.

Another novelty of this work is the technique applied to obtain a suitable set of filters
which ensures that the background/target separation is maximised during training. In our
previous work [[7] we demonstrated that the use of a set of adaptive texture filters to model
each background outperformed the more traditional Wavelet-based feature extractor. This
set of filters was designed using Principal Component Analysis on randomly sampled
image patches taken from a training image. This ensured that these filters had a mean
response when presented with a similar looking texture. If an object with different
texture, such as a target, is presented to the filter the resulting response should be non-
mean, making its detection as an outlier easier. In this paper the filter design methodology
is enhanced further to take into account the temporal dimension of the image data, i.e. the
PCA is used to build 3-dimensional texture filters. Combining image data from different
frames prior to detection is commonly known as the track before detect approach, TBD.

This method is compared to another TBD technique [12] in which targets are distin-
guished from the clutter by the analysis of the joint statistics of simple events such as
glint flashes and regions of persistent brightness.

The rest of this paper is organised as follows: in the next section the DERA ATR
system is briefly reviewed before our target detection algorithm is detailed in full. In
section 4 experiments on two image sequences are performed. Finally, some conclusions
are drawn.

2 Multivariate Conditional Probability

In [12] a target recognition approach was proposed in which the multivariate statistics of
space-time structure was used to characterise spatially and temporally highly structured
clutter, such as sea-glint and atmospheric scintillation. Targets were then recognised as
unusual events.

Two three-dimensional filters were manually chosen and consisted of a constant-
intensity blob filter and a filter tuned to sea glint flashes. A third feature was also used
which was simply the vertical image co-ordinate. Dim targets were distinguished from
the clutter by using the joint statistics of these three variables. A low joint-probability
identified a possible target.

3 Adaptive Texture Representation

We also view the target detection as an outlier detection problem. That is, anything that
does not normally occur in the background is viewed as a potential target. Our target
detection algorithm has three basic steps:

Model Generation The background is described using a Gaussian mixture model.
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Model Optimisation The model and model size are optimised using training data (if

available).

Target Detection Outliers are found by deciding, per pixel, whether it is consistent with
the model.
The background is represented by computing a feature vector, f = [yo, y1,- - - , Yn],

for every pixel in the training image. Each y;, represents a measurement obtained by the
k" filter. The distribution of these feature vectors is modelled by a mixture of Gaussians.
Such a mixture model is defined by equation[Il

M

p(x) = p(x[5)P(j) (1)

j=1

The coefficients P(j) are called the mixing parameters and are chosen such that
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Also note that the component functions satisfy the axiomatic properties of probability
density functions
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In this work we used the normal distribution with a diagonal covariance matrix for
the individual component density functions
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where p; is the mean of component j and o is its standard deviation. The optimal
values of the parameters P(j), 11; and o; are estimated using the Expectation Maximi-
sation algorithm, [4].

The EM algorithm requires, as an input, the number of components to be used for the
data distribution modelling. This is achieved automatically using the model validation
method proposed in [10]. This iterative algorithm systematically increases the model
complexity until a model validation test is passed. This model selection strategy prevents
both overfitting and underfitting.

To detect possible targets in test frames the same set of n features is generated for
every pixel in the image. Each feature vector, ., is tested in turn to see whether it
belongs to the same distribution as the background or is an outlier (i.e. possible target).
This is done by computing the density function value for that pixel, based on the mixture
model. If this value falls below a threshold, the pixel is considered an outlier and treated



Adaptive Automatic Target Recognition with SVM Boosting for Outlier Detection 107

as a possible target. This threshold can be automatically determined from the training
data.

There is also a problem of knowing which features to use to ensure the targets and
background vectors are well separated in the feature space. For this reason a feature
selection stage was added which selects features using the sequential forward selection
algorithm [§]].

3.1 Filter Design

The background regions of an image are described adaptively using Principal Compo-
nent Analysis (PCA, also known as the Karhunen-Loeve transform). The representation
adopted is an extension of an earlier method identified as the most promising in [7]
in which we compared a PCA method against a standard Wavelet-based method and
a method based on Independent Component Analysis. In our previous paper the filter
design was two-dimensional. In this paper we incorporate the temporal dimension into
the filter design.

Principal Component Analysis [5] finds a linear base to describe the dataset. It finds
axes which retain the maximum amount of variance in the data. To construct a PCA base,
firstly N random rectangles of size r X c are taken from a set of training images. These
rectangles are then packed into an r x c-dimensional vector x;, usually in a row-by-row
fashion. This results in a data set X containing N samples. Assuming that the global
mean of the vectors in X is zero, the principal components are the eigenvectors of the
covariance matrix XXT. These are the columns of the matrix E, satisfying

EDE ! = XX7 (5)

where D is a diagonal matrix containing the eigenvalues corresponding to the eigenvec-
tors in E. The set of 2D filters is then generated by unpacking each row of ET into a
filter of size r x c.

The design of 3D filters, used in all the following experiments, follows the same
process as for the 2D design, however instead of extracting image rectangles from a
single image, the rectangles are taken from d consecutive images. This data is then
unpacked to form a vector of (r x ¢ x d) dimensions. Typically, d is set to 3.

4 Experiments

The proposed target detection technique has been applied to several sequences made
available by DERA Farnborough and compared to the results obtained on the same
sequence using the multivariate conditional probability (MCP) methods described in
[12]. Typical results are shown in this section on a simulated sequence, SEASIM, and
on a real sequence, AM.
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4.1 On SEASIM

This sequence contains about twenty frames which have been artificially generated using
a standard ray-tracing package. It represents the scenario of a sensor attached to a ship
looking out over the ocean. Figure [[(a) shows the first frame of this sequence. Five
targets have been inserted into this sequence; whose locations are given by the ground
truth image of figure[T((b). These targets are very small (typically one pixel) and represent
missiles moving towards the observer. The intensity of these targets are lower than the
maximum intensity of the image and as the targets are moving slowly its pixel intensity
will vary in time due to aliasing effects. A human observer will find it extremely difficult
to identify all targets in this sequence. The two methods of target detection were then
applied to this sequence.

Method |[Target Position
Reference|| [1,2,5,7]
Proposed || [1,2,3,4,5]

Table 1. Probability ranking of real target

(a) First image (b) Enhanced ground truth (the original
size of each of the objects is 1 pixel).

Fig. 1. Sequence SEASIM.

The top ten most likely targets using multivariate conditional probability are shown
in figure[2(a). The results obtained using the 3D-PCA and mixture modelling are shown
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in figure 2Ib). The positions of the targets, for both methods, are shown in table [[l As
one can see only four of the five targets have been recognised and two false positives
have been identified in the top five for MCP. Using the proposed adaptive method of all
five targets have been selected as the five most likely.

(a) Multivariate conditional probability (b) 3D-PCA and mixture modelling

Fig. 2. SEASIM: Top 10 detections using both methods

4.2 The AM sequence

A real infra-red sequence of just 8 frames was acquired. An artificial target was then
placed in the sea area. The first frame of this sequence along with the ground truth image
is shown in figure Bl Again manual identification of this target is extremely difficult.

The top ten most likely targets detected using the multivariate conditional probability
method are shown in figure B(a). The results obtained using the 3D-PCA and mixture
modelling are shown in figure [b). For this sequence the MCP method has outperformed
the proposed adaptive method. The single target was not found in the top 10 most likely
candidates but is the most likely target identified by the MCP method. Our approach
labels the real target as the 27th most likely.

5 Support Vector Machines

A target is identified if its density value is below a user set threshold. The system is very
sensitive to this choice of threshold. If the threshold is set too low, targets are missed,
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(a) First image (b) Enhanced ground truth

Fig. 3. Sequence AM.

(a) MCP (b) Proposed

Fig. 4. Top 10 detections on sequence AM



Adaptive Automatic Target Recognition with SVM Boosting for Outlier Detection 111

if it is set too high, many false positives are found. Also the targets may only occupy a
corner of low density feature space, yet all points in the low density feature space are
being identified as targets. This would explain the poor results for the AM sequence. The
real target has been identified as an outlier but there are many other outliers also. To
alleviate this problem a final stage has been added to the target recognition system which
involves passing all the points below the threshold to a support vector classifier [[L1].
Most of these points will be false positives but still lie on the edge of the distribution.
Using a classifier should eliminate some of these points.

Support vector machines have the major advantage that no density values are esti-
mated. The classifier is designed on the principal of finding a boundary that optimally
divides the two classes. The SVM boundary leaves the largest margin between the vectors
of the classes. This makes SVM’s highly insensitive to the curse of dimensionality and
therefore do not require the large amounts of training data usually required to achieve a
good general classification. Figure [3] demonstrates a typical decision surface generated
for 2-dimensional training data.

(a) The best two selected features

Fig. 5. Example of decision surface formed by SVM classifier.

Labelled data is required to train the SVM. Typically the training target data set
only contains a few vectors so all these must be used. However there are typically tens
of thousands of known background vectors. It is not possible to use them all to train
the SVM as the memory space required by the algorithm is quadratic in the number of
training points. A representative set of points needs to be found. What we have found is
that selecting random points on the edge of the background distribution (i.e. those with
low density values) seems to give the best results. This corresponds to classifier boosting
as advocated by Freund and Shapire [6].

A trained SVM was applied to the outliers obtained in the AM sequence. In this case
the SVM only accepted five points as belonging to the target class, all the other outliers
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were classified as belonging to the background class. These five points were then ranked
as a function of their distance from the decision boundary formed by the SVM. The
points along with their corresponding ranks are shown in figure |6l As one can see the
real target has been labelled as the most probable target in the scene.

(a) SVM

Fig. 6. Only 5 detections after using support vector classifier

6 Conclusion

In this paper we have demonstrated a system for detecting dim targets in a cluttered
background, i.e. sea glint. This ATR system has been favourably compared to another
leading edge technique used as a baseline in our study. Several improvements to our
system have also been made to our original system presented in [7], namely:

Clutter Model A Gaussian mixture is used to model the feature distribution of the
background. This allows for a more flexible representation of the clutter.

Temporal Data The temporal nature of the data is being incorporated into the design
of the filters, making more robust filters.

SVM The application of support vector machines to aid the classification of the most
outlying data points has significantly improved performance. (It can also be argued
that a similar performance level increase would of been observed if the outliers
found by the MCP method were passed through an equivalent SVM).

An advantage of our approach is that the system is flexible which complies with
realistic operational scenarios. We assume a model is available of what the sensor is
looking for, i.e. the target. As a model of the current sensor input has been computed
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our system can be optimally tuned to distinguish between this target and the current
background. If the background happens to change or the target model is modified the
system can be adapted to this new environment.

In fact, both our method and the MCP method can be seen as complimentary. Both
are looking for the same targets but each uses a different technique to obtain the posterior
target probabilities. In theory, it should be possible to achieve a more robust ATR system
by the combination of these probabilities.
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