
Satin: Efficient Parallel Divide-and-Conquer in

Java

Rob V. van Nieuwpoort, Thilo Kielmann, and Henri E. Bal

Dept. of Mathematics and Computer Science,
Vrije Universiteit, Amsterdam, The Netherlands
rob@cs.vu.nl, kielmann@cs.vu.nl, bal@cs.vu.nl

http://www.cs.vu.nl/albatross/

Abstract. Satin is a system for running divide and conquer programs on
distributed memory systems (and ultimately on wide-area metacomput-
ing systems). Satin extends Java with three simple Cilk-like primitives for
divide and conquer programming. The Satin compiler and runtime sys-
tem cooperate to implement these primitives efficiently on a distributed
system, using work stealing to distribute the jobs. Satin optimizes the
overhead of local jobs using on-demand serialization, which avoids copy-
ing and serialization of parameters for jobs that are not stolen. This
optimization is implemented using explicit invocation records. We have
implemented Satin by extending the Manta compiler. We discuss the
performance of ten applications on a Myrinet-based cluster.

1 Introduction

There is currently much interest in divide and conquer systems for parallel pro-
gramming [2, 6, 10, 11, 15]. Divide and conquer style programs start by dividing
the problem into subproblems. Each subproblem is then recursively solved, again
by dividing it into smaller subproblems. An example of such a system is Cilk [6],
which extends C with divide and conquer primitives. Cilk runs these annotated
C programs in parallel, in an efficient way, but is mainly targeted at shared mem-
ory machines. Atlas [2], an extension of Java, is a divide and conquer system
designed for distributed memory machines. Its primitives have a high overhead,
however, so it runs fine-grained parallel programs inefficiently.

In this paper, we introduce a new system, called Satin, which also is a divide
and conquer system based on Java. Satin (as the name suggests) was inspired
by Cilk. In Satin, single-threaded Java programs are parallelized by annotating
methods that can run in parallel. Our ultimate goal is to use Satin for dis-
tributed supercomputing applications on hierarchical wide-area clusters (e.g.,
the DAS [8]). We think that the divide and conquer model will map efficiently
on such systems, as the model is also hierarchical. In this paper, however, we
focus on the implementation of Satin on a single local cluster computer. In con-
trast to Atlas, Satin is designed as a compiler-based system in order to achieve
high performance. Satin is based on the Manta [12] native compiler, which sup-
ports highly efficient serialization and communication. Parallelism is achieved in

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 690–699, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Satin: Efficient Parallel Divide-and-Conquer in Java 691

Satin by running different spawned method invocations on different machines.
The system load is balanced by work stealing.

One of the contributions we make in the paper is the use of explicit invo-
cation records, to enable the on-demand serialization of parameters to spawned
method invocations. This optimization is possible because of Satin’s parame-
ter semantics. Furthermore, we demonstrate that Satin can run efficiently on
distributed memory machines. Satin also cleanly integrates divide and conquer
programming into Java, and solves some problems that are introduced by this
integration (e.g., by garbage collection).

2 The Programming Model

Satin’s programming model is an extension of the single-threaded Java model.
Satin programmers thus need not use Java’s multithreading and synchronization
constructs or Java’s Remote Method Invocation mechanism, but can use the
much simpler divide and conquer primitives described below.

2.1 Spawn and Sync

We have introduced three new keywords to the Java language, spawn, sync,
and satin. The spawn keyword must be placed in front of a method invocation,
which will then be called a spawned method invocation. When spawn is placed
in front of a method invocation, conceptually a new thread is started which
will run the method. (The implementation of Satin, however, eliminates thread
creation altogether.) The spawned method will run concurrently with the method
that executed the spawn. In Satin, spawned methods always run to completion.
The sync operation waits until all spawned calls in this method invocation are
finished. The return values of spawned method invocations are undefined until
a sync is reached. The satin modifier must be placed in front of a method
declaration, if this method is ever to be spawned.

To illustrate the use of spawn and sync, an example program is shown in
Fig. 1. This code fragment calculates Fibonacci numbers, and is a typical ex-
ample of a divide and conquer program. Note that this is a benchmark, and
not a suitable algorithm for efficiently calculating the Fibonacci numbers. The
program is parallelized just by inserting spawn in front of the recursive calls
to fib. The two subproblems will now be solved concurrently. Before the results
are combined, the method must wait until both subproblems have actually been
solved, and have returned their value. This is done by the sync operation. A
well known optimization in parallel divide and conquer programs is to make use
of a threshold on the number of spawns. When this threshold is reached, work
is executed sequentially. This approach can easily be programmed using Satin.

Satin does not provide shared memory, because this is hard to implement
efficiently on distributed memory machines. Moreover, our ultimate goal is to
run Satin on wide-area systems, which clearly do not have shared memory. The
only way of communicating between threads is via the parameters and the return



692 Rob V. van Nieuwpoort, Thilo Kielmann, and Henri E. Bal

class Fibonacci {
SATIN int fib(int n) {

if(n < 2) return n;

int x = SPAWN fib(n - 1);
int y = SPAWN fib(n - 2);
SYNC;

return x + y;
}

public static void main(String[] args) {
Fibonacci f = new Fibonacci();
int result = f.fib(10);
System.out.println("Fib 10 = " + result);

}
}

Fig. 1. A Satin example: Fibonacci.

value. The parameter passing mechanism, as described in Sect. 2.2, assures that
all data that can be accessed via parameters will be sent to the machine that
executes the spawned method invocation.

2.2 The Parameter Passing Mechanism

Because Satin does not provide shared memory, objects passed as parameters
in a spawned call to a remote machine will not be available on that machine.
Therefore, Satin uses call-by-value semantics when the runtime system decides
that the method will be spawned remotely. This is semantically similar to the
standard Java Remote Method Invocation (RMI) mechanism [17]. Call-by-value
is implemented using Java’s serialization mechanism, which provides a deep copy
of the serialized objects [16]. For instance, when the first node of a linked list is
passed as an argument to a spawned method invocation (or a RMI), the entire
list is copied.

It is important to minimize the overhead for work that does not get stolen
and is executed by the machine that spawned the work, as this is the common
case. For example, in almost all applications we have studied so far, at most 1
out of 400 jobs gets stolen. Because copying all parameter objects (i.e., using
call-by-value) in the local case would be prohibitively expensive, parameters are
passed by reference when the method invocation is local. Therefore, the program-
mer cannot assume either call-by-value or call-by-reference semantics for satin
methods (normal methods are unaffected and have the standard Java semantics).
It is therefore erroneous to write Satin methods that depend on the parameter
passing mechanism. (A similar approach is taken in Ada for parameters of a
structured type.)

An important characteristic of Satin is that when the extensions satin,
spawn, and sync are removed, a sequential standard Java program remains.



Satin: Efficient Parallel Divide-and-Conquer in Java 693

This program produces the same result as the parallel Satin program. This al-
ways holds, because Satin does not specify the parameter passing mechanism.
Using call-by-reference in all cases (as normal Java does) is thus correct.

3 The Implementation

The large majority of jobs will not be stolen, but will just run on the machine
the jobs were spawned on. Therefore, it is important to reduce the overhead that
the Satin runtime system generates for such jobs as much as possible. The key
problem here is that the decision whether to copy the parameters must be made
at the moment the work is executed or stolen, not when the work is generated. To
be able to defer this important decision, Satin’s runtime system uses invocation
records, which will be described below. The large overhead for creating threads
or building task descriptors (copying parameters) was also recognized in the lazy
task creation work by Mohr et al. [13].

When a program executes a spawn, Satin redirects the method call to a stub.
This stub creates an invocation record (see Fig. 2), describing the method to
be invoked, the parameters that are passed to the method, and a reference to
where the method’s return value has to be stored. For primitive types, the value
of the parameter is copied. For reference types (objects, arrays, interfaces), only
a reference is stored in the record. In the example of Fig. 2, a satin method is
invoked with an integer, an array, and an object as parameters. The integer is
stored directly in the invocation record, but for the array and the object, refer-
ences are stored, to avoid copying these data structures. The compiler allocates
space for a counter on the stack of all methods executing spawn operations. This
counter is called the spawn counter, and counts the number of pending spawns,
which have to be finished before this method can return. The address of the
spawn counter is also stored in the invocation record.

d

d

d

foo

foo
o

foo

&result

&result

&result

int result = SPAWN foo(i, d, o);

SATIN int foo(int i, double[] d, Object o);

&spawn_counter

&spawn_counter

&spawn_counter

i d o

i d o

i d o

Fig. 2. Invocation records in the job queue.

The stub that builds an invocation record for a spawned method invocation is
generated by the Manta compiler, and is therefore very efficient, as no runtime
type inspection is required. From an invocation record, the original call can



694 Rob V. van Nieuwpoort, Thilo Kielmann, and Henri E. Bal

be executed by pushing the value of the parameters (which were stored in the
record) onto the stack, and by calling the Java method.

The invocation record for a spawn operation is stored in a queue. The spawn
counter (located on the stack of the invoking method) is incremented by one,
indicating that the invoking method now has a pending spawned method in-
vocation. The invoking method may then continue running. After the spawned
method invocation has eventually been executed, its return value will be stored
at the return address specified in the invocation record. Next, the spawn counter
(the address of which is also stored in the invocation record) will be decremented
by one, indicating that there now is one less pending spawn. The sync opera-
tion executes work stored in the job queue, and waits for the spawn counter to
become zero. When this happens, there are no more pending spawned method
invocations, so the method may continue.

Serialization is Java’s mechanism to convert objects into a stream of bytes.
This mechanism always makes a deep copy of the serialized objects: all refer-
ences in the serialized object are traversed, and the objects they point to are
also serialized. The serialization mechanism is used in Satin for marshaling the
parameters to a spawned method invocation. Satin implements serialization on
demand: the parameters are serialized only when the work is actually stolen.
In the local case, no serialization is used, which is of critical importance for the
overall performance. In the Manta system, the compiler generates highly-efficient
serialization code. For each class in the system a so-called serializer is generated,
which writes the data fields of an object of this class to a stream. When an object
has reference fields, the serializers for the referenced objects will also be called.
Furthermore, Manta uses an optimized protocol to represent the serialized ob-
jects in the byte stream. Manta’s implementation of the serialization mechanism
is described in more detail in [12].

The invocation records describing the spawned method invocations are stored
in a double ended job queue. A Dijkstra-like protocol [6] is used to avoid locking
in the local case. Satin registers the invocation records at the garbage collector,
keeping parameter objects alive when they are referenced only via the invocation
record, and not via a Java reference. (Otherwise, the garbage collector might
free objects that are needed to execute the spawn operations, but are no longer
referenced via the Java program). Satin’s work stealing is implemented on top of
the Panda communication library [1], primarily using Panda’s message passing
primitives. On the Myrinet network (which we use for our measurements), Panda
is implemented on top of the LFC [3] network interface protocol. Satin uses the
efficient, user level locks that Panda provides for protecting the work queue.

4 Performance Evaluation

We evaluated Satin’s performance using ten application kernels. All measure-
ments were performed on a cluster of the Distributed ASCI Supercomputer
(DAS), each containing 200 MHz Pentium Pros that are locally connected by
Myrinet. The machines run the Linux (RedHat 6.2) operating system.



Satin: Efficient Parallel Divide-and-Conquer in Java 695

4.1 Basic Spawn Overhead (Fibonacci)

An important indication of the performance of a divide and conquer system
is the overhead of the parallel application on one machine, compared to the
sequential version of the same application. The sequential version is obtained by
filtering the keywords satin, spawn, and sync out of the parallel program. The
difference in run times between the sequential and parallel programs is caused
by the creation, the en-queuing and de-queuing of the invocation record, and
the construction of the stack frame to call the Java method. Fibonacci gives an
indication of the worst-case overhead, because it is very fine grained. Cilk is very
efficient, the parallel Fibonacci program on one machine has an overhead of only
a factor of 3.6 (measured on a Sun Enterprise 5000, with 167 MHz UltraSPARC
processors) [6]. Atlas is implemented completely in Java and does not use on-
demand serialization. Therefore its overhead is much worse, a factor of 61.5
(hardware unknown) [2]. The overhead of Satin is a factor 7.25, substantially
lower than that of Atlas.

These overhead factors can be reduced at the application level by introduc-
ing threshold values that spawn only large jobs. For Fibonacci, for example, we
tried a threshold value of 20 for a problem of size 45, so all calls to fib(n) with
n<20 are executed sequentially, without using spawn. This simple change to
the application reduced the overhead to almost zero. Still, 22.8 · 106 jobs were
spawned, leaving enough parallelism for running the program on large numbers
of machines. For Fibonacci, the threshold can easily be determined by the pro-
grammer, while for other applications this may be difficult or impossible. In
general, however, it still is important to keep the sequential overhead of a di-
vide and conquer system as small as possible, as it allows the creation of more
fine-grained jobs and thus a better load balancing.

The overhead for the other applications we implemented is much lower than
for the (original) Fibonacci program, as shown in Table 1. Here, ts denotes the
run time of the sequential program, t1 the run time of the parallel program on
one machine. In general, the overhead depends on the number of parameters
to spawned methods. All parameters have to be stored in the invocation record
when the work is spawned, and pushed on the stack again, when executed.

4.2 Parallel Applications

We ran ten applications on the DAS cluster, using up to 32 CPUs. Figure 3
shows the achieved speedups while Table 2 provides detailed information about
the parallel runs. All speedup values were computed relative to the sequential
applications, with the Satin-specific annotations removed from the code.

There is a strong correlation between measured speedup and the sequential
overhead value, as already shown in Table 1: the lower the overhead, the higher
the speedup we achieved. In Table 2 we compare the measured speedup with its
upper bound, computed as the number of CPUs divided by the overhead on a sin-
gle CPU. We also show the percentage of this upper bound as actually achieved
by the measured speedup. This percentage is very high for most applications,



696 Rob V. van Nieuwpoort, Thilo Kielmann, and Henri E. Bal

Table 1. Application overhead factors, times in seconds.

application problem size ts t1 overhead

adaptive integration 0, 2.0E5, 1.0E-4 363.137 451.117 1.24
set covering problem 58, 29 1983.723 2071.333 1.04
fibonacci 41 65.517 475.133 7.25
fibonacci threshold 45 473.749 473.834 1.00
Iterative deepening A* 60 220.131 250.001 1.14
knapsack problem 28 1064.220 1150.016 1.08
matrix multiplication 1024 x 1024 137.982 141.742 1.03
n over k 34, 17 971.991 977.847 1.01
n-queens 15 1861.318 1909.942 1.03
prime factorization 1234567890 874.504 930.954 1.06
traveling sales person 17 982.864 1352.617 1.38

0

5

10

15

20

25

30

0 5 10 15 20 25 30

sp
ee

du
p

number of processors

linear
fib. threshold

n over k
n queens

prime factors
integrate

IDA*
TSP

knapsack
mmult

set cover
fibonacci

Fig. 3. Application speedups

Table 2. Parallel performance breakdown for 32 CPUs

#CPUs/ % max
application overhead speedup overhead speedup jobs stolen

integrate 1.24 26.09 25.81 101% 63.3 · 106 2187
set cover 1.04 6.85 30.8 22.2% 51.0 · 106 579
fibonacci 7.25 4.31 4.4 98.0% 536 · 106 2906
fib. threshold 1.00 31.77 32.0 99.3% 22.8 · 106 1951
IDA* 1.14 25.82 28.1 91.9% 33.6 · 106 3866
knapsack 1.08 12.36 29.6 41.8% 33.5 · 106 417
mmult 1.03 9.49 31.1 30.5% 37.4 · 103 8567
n over k 1.01 31.27 31.7 98.6% 1.05 · 106 2458
n-queens 1.03 31.02 31.1 99.7% 2.47 · 106 3027
prime factors 1.06 28.98 30.2 96.0% 33.6 · 106 2609
tsp 1.38 22.79 23.2 98.2% 200 · 106 3026



Satin: Efficient Parallel Divide-and-Conquer in Java 697

denoting that Satin’s communication costs are low. The actual percentage de-
pends (like the sequential overhead) on the number of method parameters and
their total serialized size. Table 2 also lists the total number of spawned jobs and
the number of stolen jobs, which is less than 1 out of 400 for all applications,
except for mmult. Because the number of stolen jobs is so small, speedups are
mainly determined by sequential overhead. A good example is Fibonacci, which
achieves 98% of the upper bound, but still has a low speedup due to the sequen-
tial overhead. Satin’s sequential efficiency thus is important for the successful
deployment of the divide and conquer paradigm for parallel computing.

Mmult does not get good speedups, because the problem size is small due
to memory constraints, the run time on 32 cpus is only 14 seconds. Also, much
data is transferred, in total over all CPUs, 31 MByte is sent per second. The
mediocre speedup of knapsack, a very irregular application, is caused by load
imbalance. The search space is pruned by both the weights and the values of
the elements in the knapsack, making it difficult to estimate the grain size of a
job. Therefore, many small jobs get stolen. The same holds for the set-covering
problem, where a large percentage of the time is spent in finding work. On 32
nodes, only 1.2 percent of the work stealing attempts were successful.

5 Related Work

We discussed Satin, a divide and conquer extension of Java. Satin has been de-
signed for distributed memory machines, while most divide and conquer systems
use shared memory machines (e.g. Cilk [6]). There is also a version of Cilk for dis-
tributed memory machines, called CilkNOW [5], but it only supports functional
Cilk programs (without shared memory), and it does not make a deep copy of
the parameters to spawned methods. Our own previous work on parallel divide
and conquer [9] was based on the C language while having similar restrictions
as CilkNOW. Alice [7] and Flagship [18] offer a hardware solution for parallel
divide and conquer programs (e.g., a reduction machine with one global address
space for the parallel evaluation of declarative languages), while Satin is purely
software based, and does not require, or provide, a single address space.

Mohr et al. [13] describe the importance of avoiding thread creation in the
common, local case (lazy task creation). Satin also avoids creating threads in
the local case, targeting distributed memory adds the problem of copying the
parameters of parallel invocations (marshalling). Satin builds on the ideas of
lazy task creation, and avoids both the starting of threads and the copying of
parameter data by choosing a suitable parameter passing mechanism.

Another divide and conquer system based on Java is Atlas [2]. Atlas is not
a Java extension, but a set of Java classes that can be used to write divide
and conquer programs. While Satin is targeted at efficiency, Atlas was designed
with heterogeneity and fault tolerance in mind, and aims only at a reasonable
performance. Because Satin is compiler based, it is possible to generate code
to create the invocation records, thus avoiding all runtime type inspection. The



698 Rob V. van Nieuwpoort, Thilo Kielmann, and Henri E. Bal

Java classes presented in [11] can also be used for divide and conquer algorithms.
However, they are restricted to shared-memory systems.

A compiler-based approach is also taken by Javar [4]. In this system, the
programmer uses annotations to indicate divide and conquer and other forms of
parallelism. The compiler then generates multi-threaded Java code, which runs
on any JVM. Therefore, Javar programs run only on shared memory machines
and DSM systems, whereas Satin programs run on distributed memory systems.
Java threads impose a large overhead, which is why Satin does not use threads at
all, but provides light weight invocation records. There are many other projects
which use Java for parallel processing, for instance [14] and the work referenced
in this paper.

6 Conclusions and Future Work

We have described our experiences in building a parallel divide and conquer sys-
tem for Java, which runs on distributed memory machines. We have shown that
an efficient implementation is possible by choosing convenient parameter seman-
tics. An important optimization is the on-demand serialization of parameters to
spawned method invocations. This was implemented using explicit invocation
records. Our Java compiler generates code to create these invocation records for
each spawned method invocation. We have also demonstrated that divide and
conquer programming can be cleanly integrated into Java, and that problems
introduced by this integration (e.g., through garbage collection) can be solved.

Our ultimate goal is to use Satin for distributed supercomputing applications
on hierarchical wide-area clusters. We believe that divide and conquer programs
will map efficiently on such systems, as the model is also hierarchical. Our inten-
tion is to carry out research on the scheduling of divide and conquer programs
on hierarchical wide-area systems.

Acknowledgments

This work is supported in part by a USF grant from the Vrije Universiteit. The wide-
area DAS system is an initiative of the Advanced School for Computing and Imag-
ing (ASCI). We thank Aske Plaat for his contribution to this research, and Ronald
Veldema, Jason Maassen, Ceriel Jacobs, and Rutger Hofman for their work on the
Manta system. We thank Kees Verstoep and John Romein for keeping the DAS in
good shape. We also thank the anonymous referees for their useful comments on this
paper.

References

[1] H. E. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K. Langendoen, T. Rühl, and
F. Kaashoek. Performance Evaluation of the Orca Shared Object System. ACM
Transactions on Computer Systems, 16(1):1–40, Feb. 1998.



Satin: Efficient Parallel Divide-and-Conquer in Java 699

[2] J. Baldeschwieler, R. Blumofe, and E. Brewer. ATLAS: An Infrastructure for
Global Computing. In Proceedings of the Seventh ACM SIGOPS European Work-
shop on System Support for Worldwide Applications, 1996.

[3] R. A. F. Bhoedjang, T. Rühl, and H. E. Bal. User-Level Network Interface Pro-
tocols. IEEE Computer, 31(11):53–60, Nov. 1998.

[4] A. Bik, J. Villacis, and D. Gannon. javar: A prototype Java restructuring compiler.
Concurrency: Practice and Experience, 9(11):1181–1191, November 1997.

[5] R. Blumofe and P. Lisiecki. Adaptive and reliable parallel computing on networks
of workstations. In In Proceedings of the USENIX 1997 Annual Technical Con-
ference on UNIX and Advanced Computing Systems, Anaheim, California, 1997.

[6] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
Y. Zhou. Cilk: An efficient multithreaded runtime system. In Proceedings of the 5th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP’95, pages 207–216, Santa Barbara, California, July 1995.

[7] J. Darlington. Alice: a multi-processor reduction machine for the parallel evalu-
ation of applicative languages. In Arvind, editor, 1st Conference on Functional
Programming Languages and Computer Architecture, pages 65–76, Wentworth-by-
the-Sea, Portsmouth, New Hampshire, 1981.

[8] The Distributed ASCI Supercomputer (DAS). http://www.cs.vu.nl/das/.
[9] B. Freisleben and T. Kielmann. Automated Transformation of Sequential Divide–

and–Conquer Algorithms into Parallel Programs. Computers and Artificial Intel-
ligence, 14(6):579–596, 1995.

[10] K. S. Gatlin and L. Carter. Architecture-cognizant divide and conquer algorithms.
In SuperComputing ’99, November 1999.

[11] D. Lea. A java fork/join framework. In ACM Java Grande 2000 Conference, San
Francisco, California, June 2000.

[12] J. Maassen, R. van Nieuwpoort, R. Veldema, H. Bal, and A. Plaat. An Efficient
Implementation of Java’s Remote Method Invocation. In ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pages 173–182, Atlanta,
GA, May 1999.

[13] E. Mohr, D. Kranz, and R. Halstead. Lazy task creation: a technique for increasing
the granularity of parallel programs. In Proceedings of the 1990 ACM Conference
on Lisp and Functional Programming, pages 185–197, June 1990.

[14] M. Philippsen and M. Zenger. JavaParty—Transparent Remote Objects in Java.
Concurrency: Practice and Experience, pages 1225–1242, Nov. 1997.

[15] R. Rugina and M. Rinard. Automatic parallelization of divide and conquer al-
gorithms. In Seventh ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 72–83, Atlanta, May 4-6 1999. Massachusetts Insti-
tute of Technology.

[16] Sun MicroSystems, Inc. Java (TM) Object Serialization Specification, 1996.
ftp://ftp.javasoft.com/docs/jdk1.1/serial-spec.ps.

[17] J. Waldo. Remote procedure calls and Java Remote Method Invocation. IEEE
Concurrency, pages 5–7, July–September 1998.

[18] I. Watson, V. Woods, P. Watson, R. Banach, M. Greenberg, and J. Sargeant.
Flagship: A parallel architecture for declarative programming. In 15th IEEE/ACM
Symp. on Computer Architecture, pages 124–130, Honolulu, Hawaii, 1988. ACM
SIGARCH newsletter,16(2).


	Introduction
	The Programming Model
	Spawn and Sync
	The Parameter Passing Mechanism

	The Implementation
	Performance Evaluation
	Basic Spawn Overhead (Fibonacci)
	Parallel Applications

	Related Work
	Conclusions and Future Work

