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Abstract. The paper describes the Skel-BSP Global Optimizer (GO),
a compile-time technique tuning the structure of skeletal programs to
the characteristics of the target architecture. The GO uses a set of op-
timization rules predicting the costs of each skeleton. The optimization
rules refer to a set of implementation templates developed on top of the
EdD-BSP (a variant of the BSP model). The paper describes the Pro-
gram Annotated Tree representation and the set of transformation rules
utilized by the GO to modify the starting program. The optimization
phases: balancing, scaling and augmenting are presented and explained
running the GO on a cluster of PCs for an image analysis toy-program.
key words: skeletons, BSP, optimization, performance portability.1

1 Introduction

The Skel-BSP [14] approach has been proposed to conjugate Skeletons [3, 5]
and BSP [11] to obtain high level programming and performance portability.
The paper presents the Global Optimizer (GO) a compile-time technique tun-
ing Skel-BSP programs to the target architecture. GO uses a set of transfor-
mation rules preserving the program semantics and chooses the distribution of
processors among the program components. The paper describes the “global”
approach utilized by Skel-BSP on top of the “local” optimizations embedded in
each implementation template [15, 12, 13]. These rules are based on a BSP-like
computational model: the EdD-BSP (see Section 2.2). The paper shows how
these two strategies work together to optimize the EdD-BSP intermediate code
on a given parallel platform. The GO is presented by describing its main proce-
dures: augmenting, balancing and scaling. An example of the GO behavior is
provided compiling an image analysis toy-program on a cluster of PCs (Backus).
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2 The Skel-BSP Methodology

2.1 The Skel-BSP Compiler

Skel-BSP forces the programmer to concentrate on exposing a “parallelization
strategy” more than a parallel algorithm. Therefore the programmer expertise
is exploited in the direction of writing a composition of already defined parallel
patterns (Pipe,Farm,Map,Reduce) according to the P3L programming style [4,
10]. The Skel-BSP compiler derives an optimized implementation using three
additional sources:

– a set of BSP-lib [8] implementation templates ,
– a set of performance equations [14],
– the EdD-BSP parameters of the target architecture,

The “local” optimizations are stored in a set of reusable components (templates)
with associated two optimization rules expressed by the following equations:

– Topt(param,M): the optimal service time on a given EdD-BSP computerM
(see Section 2.2);

– Nopt(param,M): the minimal number of workers obtaining the optimal ser-
vice time on M ;

The tuple of application dependent parameters (param) is computed using a
sequential profiling while the EdD-BSP parameters one (M) is provided by the
parallel profiling phase (see Fig. 1).

GO

Program
Sequential
Profiler

Parellel
Profiler

Skel-BSP

Parser
Sequential

costs
EdD-BSP
Parameters

PAT

(param) (M) equations

EdD-BSP
program

Code

Generator

Performance
Implementation

templates

Executable
Program

Fig. 1. The structure of the Skel-BSP compiler
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2.2 The Cost Model

The EdD(Edinburgh-Decomposable)-BSP model , has been introduced as a vari-
ant of the BSP [11] to predict skeletal programs performance. A BSP computer
is a set of p couples processor-memory interconnected in order to be able to
communicate point-to-point and to perform a global synchronization. A BSP
computation is organized as a sequence of synchronous supersteps including (a)
a local computation phase, (b) a global communication phase and (c) a barrier
synchronization. The cost of each superstep is given by: Tsstep = W + hg + L
where W is the maximum amount of work performed in the local computation
phase, and h is the maximum number of messages sent or received during the
communication phase. The parameters g and L are the “standard” BSP pa-
rameters defined as the costs to send a single message (g) and to perform a
barrier synchronization (L). The EdD-BSP variant introduces two extensions of
the BSP model: a couple of parameters g∞ and N1/2 in place of g modeling the
communication bandwidth as a function of the message size (see [9], and the
decomposability (see the work of Kruskal et al.[6]). An EdD-BSP computer is
then a tuple parallel M including four parameters:

M = (l, g∞, N1/2, p)

A relevant innovation introduced by the second extension is the possibility of
partitioning a BSP computer in submachine. Each submachine acts as an
autonomous BSP computer (i.e. it synchronizes independently). The model ad-
mits two kinds of supersteps: the computational supersteps, and join/partition
supersteps which costs are stated in the following equations:

Tsstep =
{
W + hg∞(N1/2

h + 1) + L computational step
L join-partition

Assuning that at a given time the p processors are partitioned in q < p sub-
machines, the cost to perform a superstep is expressed as the maximum cost
for each submachine to reach the next join operation. This means that Tsstep

has to be computed recursively as the maximum time to execute the EdD-BSP
program running on the i machine. Assuming that no other partition is executed
we would obtain:

Ti =
nstep(i)∑

j=1

Tsstep(i, j)

Where nstep(i) is the number of supersteps performed by the submachine i and
Tsstep(i, j) is the “classic” BSP cost for the j-th superstep of the i-th submachine.
This extension enables EdD-BSP to predict the execution costs of skeletal pro-
grams whose components require different number of synchronizations. A prac-
tical implementation of a decomposable BSP programming has been realized in
the Paderborn University BSP library (PUB) [2]. The need for the EdD-BSP
model and the results of predicting the cost of skeleton programs using such a
model are included in [15, 12, 13].
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3 The Program Annotated Tree (PAT)

The Program Annotated Tree is an extension of the syntax-tree of a Skel-BSP
program, where each node includes three fields: (Skel(param), Nw, Tserv). The
Skel(param) field contains a skeleton identifier (Skel) and the list (param)
of performance parameters (i.e. in Fig. 2 the sizes of input output structures
d0, d1, d2). The field Nw contains the number of processors used by the module
and Tserv is the service time of the subprogram rooted at the node. An example
of a node of the PAT is shown in Fig. 2. The initial values stored in the PAT
param fields are computed by the sequential profiling phases while the other
fields are filled by the GO during the init phase.

Seq

Comp

Reduce

Seq

Map

3

1

Pipe ([tfarm, tseq, tcomp];[d0,d1,d2]) Tpipe

Seq([Tseq];[din,dout]) Tseq

Prog

Pipe

Farm

Seq

Seq

Fig. 2. The PAT of a Skel-BSP program

4 The Global Optimizer

4.1 The Transformation Rules

The GO transforms valid Skel-BSP programs (see the grammar in [14]) using
the transformation rules in Tab. 1 to adapt the program to the characteristics
of the target machine. The rules 3 and 4 refer to the Comp constructor which
models the sequential composition of Data Parallel modules. The rule 5 uses
the concat operator which makes a monolitique sequential constructor from
a sequence X1, . . .Xk of sequential modules. Fig. 3 shows an example of two
valid transformations preserving the semantics of the starting program. The two
programs result from two different sequences of program transformations: (b) is
obtained from (a) using 1-3-6, while (c) is obtained using 2-7-5.

4.2 Initializing the PAT

The overall structure of GO is shown in Fig. 4. The init procedure computes the
values of Nw and Tserv for the leaves of the PAT then propagates the results up
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Num. Rule Name

1 Seq −→ Farm(Seq) Farm insertion

2 Farm(Seq) −→ Seq Farm elimination

3 Comp(X1, . . . Xk) −→ Pipe(X1, . . . Xk) Pipe insertion

4 Pipe(X1, . . . Xk) −→ Comp(X1, . . . Xk) Pipe elimination

5 Pipe(X1, . . . Xk) −→ concat(X1, . . . Xk) Pipe collapse

6 Pipe(X1, P ipe(Y1, . . . Yh), . . . Xk) −→ Pipe(X1, Y1, . . . Yh, . . . Xk) Pipe fusion

7 Pipe(X1, Y1, . . . Yh, . . . Xk) −→ Pipe(X1, P ipe(Y1, . . . Yh), . . . Xk) Pipe distribution

Table 1. The GO transformation rules
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Fig. 3. Two transformations of a valid program

to the root. In this phase the optimization rules for each skeleton are computed
on the target M∞ which allows to saturate each parallel components with the
maximum useful parallellism:M∞ = (l, g∞, N1/2,∞). The PAT forM∞ is called
fully parallel version of the program. The pseudo-code of the init procedure is
given in Fig. 5. The first loop computes the values of Tserv and Nw for: Farm,
Map, Reduce and Scan. The functions Topt(Skel,M∞) and Nopt(Skel,M∞)
return the optimal values according to the optimization rules defined in [12, 15].
The second loop propagates the values of Tserv and Nw to the higher layers of
the tree. We have three optimization cases:

1. Nw > p: GO reduces the number of processors minimizing the loss of per-
formance;

2. Nw ≤ p: GO improves the program performance by adding processors;
3. Nw = p: GO terminates;

4.3 Reducing Resources

The goal of this phase is to reduce the number of processors to match the number
of available processors while minimizing the loss of performance. The reduction
takes place in two subphases:
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Fig. 4. The GO structure

For all Node in PAT such that: For all Node in PAT such that:

((Node.Skel=Farm or ((Node.Skel=Pipe or

Node.Skel=Map or Node.Skel=Comp) and

Node.Skel=Reduce or marked(children(Node)) and

Node.Skel=Scan or marked(Node)=false)

Node.Skel=Comp) and Update(Node.Skel)

marked(Node)=false) Node.Nw=Nopt(Node.skel,M)

Node.Nw=Nopt(Node.skel,M) Node.Tserv=Topt(Node.skel,M)

Node.Tserv=Topt(Node.skel,M) mark(Node)}

mark(Node)) endfor

endfor (phase 1) (phase 2)

Fig. 5. The two phases of the GO init algorithm

1. balancing : in this phase the number of processors employed by each pipeline
stage with service time Tserv < Tslow (where Tslow is the service time of the
slowest stage) is “reduced”.

2. scaling: when the balancing phase is completed, if Nw is still larger than p,
the program must be scaled.

The balance procedure computes the minimum number of processors mp such
that: Tserv ≤ Tslow. In the case: mp = 1 the suitable elimination rule is applied
and the PAT is transformed by setting: Node.skel = Seq. At the end of the
balancing phase, three optimization cases may occur:

1. Nw = p GO terminates;
2. Nw < p GO performs the augmenting phase;
3. Nw > p GO performs the scaling phase;

The difficulty of scaling the program arises from the fact that many transfor-
mations may reduce the number of processors and GO must select which one
leads to the optimum. Other works have demonstrated [1] that using a gradient
method the optimizer may stop in a local optimum while the global optimum
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could have been reached by accepting not optimal moves along the computation.
Therefore the choice made in GO is to apply an exhaustive search. GO gener-
ates the transformations that reduce the value of Nw to p creating a sequence
of sets scal PAT (i) containing the PATs obtained using Nw − i processors. The
solution must be located in scal PAT (Nw − p) where all the PATs are filled
and a simple search of the minimum service time is performed to find the best
implementation. We have the following assertion:

Assertion 1 (scaling) The complexity Tscal of scaling is bounded by:

Tscal ≤ (Ntr ! Nsk)Nw−p ! Nsk

Where Ntr is the number of transformations of our system and Nsk is the number
of skeletons in the program.

Since the transformations reducing the number of processors are: (a) cutting
processors from Farm, Map etc., (b) replacing a Pipe with Comp, (c) collapsing
a Pipe to a Seq, in our system Ntr = 3.

4.4 Augmenting Parallelism

This phase exploits the available p − Nw processors to minimize the program
cost. Since the starting PAT uses the maximum parallelism for the user program,
the program must be transformed in order to increase parallelism. Two types
of suitable transformations can be applied: (a) the insertion of Pipe in place of
Comp (b) the Farm insertion (since the other parallel constructors already use the
optimal number of processors). We have the following assertion:

Assertion 2 (Augmenting) the complexity of augmenting is bounded by:

Taug < (NSeq +NComp)(p−Nw) ! Nskel

where NComp and NSeq are the number of Comp and Seq constructors respectively.

The cost of the augmenting algorithm is furtherly reduced using a pruning tech-
nique to decrease the number of generated solutions. In practice the only PATs
generated and compared are those in which the number of processors is smaller
than p. The pseudo code of the augmenting algorithm is shown in Fig. 6. The
procedure Enumerate inserts in solutions the allocations of processors to con-
structors satisfying the constraint that the number of processors assigned does
not exceed Nopt. The Procedure Prune eliminates the solutions where the num-
ber of processors exceeds p. Finally the procedure Generate builds the suitable
PATs and Findopt selects the solution with the minimum Tserv.

5 Case Study

A simple example of the behavior of the GO procedures has been provided using
as a case study an image analysis toy-program: IA. IA is a synthetic program
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int assigned[1..Nseq+Ncomp];

int max[1..Nseq+Ncomp];

int solutions[1..maxsol;1..Nseq+Ncomp];

int Ntr,Nsol;

real Tserv[1..maxsol];

Ntr=Nseq+Ncomp;

for i = 1 to Ntr

select(Node,i);

max[i]=max(Nopt(Node.skel,M),p-Nw)

endfor

Enumerate(assigned,max,solutions);

Prune(Solutions,Nsol);

Generate(Solutions,Tserv);

Findopt(Solutions,Tserv,assigned);

Fig. 6. The GO augmenting algorithm

including a four stages pipeline where the stages implement: (1) the input from
file; (2) the filtering of data; (3) a convolution like computation; (4) the output
on file. The sintax tree of IA written in Skel-BSP is shown in Figure 7. The
application has been profiled on top of Backus a 10 PCs cluster with PII 266
Mhz CPU and 128 Mbytes RAM running Linux. The machine parameters (M)
and the IA param list are shown in Tab. 2. Using the values in Tab. 3 the GO
produces the transformation visualized in Fig. 8.

Seq Farm Comp Seq

Map

Seq Seq

Seq

Pipe

Input

Filter

Reduce Output

Conv Binop

Fig. 7. The Skel-BSP structure of IA

6 Conclusions and Related Work

The paper shows that GO may adapt the structure of a skeletal application to
optimize its running time on a specific target architecture. Skel-BSP programs
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g∞ (µ sec) L (µsec) N1/2 (bytes) p (processors) X

M (Backus) 0.8 1500 64 10 X

tin tfilter tconv tred tout

Tseq(msec) 10 20 80 30 15

din dfilt dconv dred dout

sizes (Mbytes) 32 32 32 32 32

Table 2. The parameters of Backus and the IA param list

Skeleton Nopt (proc) Topt (msec)

Farm 6 8

Map 10 10

Reduce 10 4

Table 3. The values of Nopt and Topt for the IA example on Backus

must be simply recompiled to modify their parallel behavior, therefore Skel-BSP
seems a promising approach to reach performance portability. The GO exploit a
set of formula providing the costs of optimized implementation of each skeletons
based on the EdD-BSP cost model. A related approach is the transformational
frame proposed by Gorlatch et al. [7] where an “ad hoc” cost model is proposed
to drive a semi-automatic transformation system. The future development of the
GO will include:

– evaluating a general approch to efficiently implement the current GO opti-
mization algorithm;

– an extensive validation on several parallel architectures;

finally the set of transformation rules will be enlarged.
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