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Abstract. The Bulk-Synchronous Parallel (BSP) model [16] provides a sim-
ple and portable programming discipline that is particularly suitable for coarse-
grained parallel systems such as Networks of Workstations (NOWs). In this work
we examine the issue of predictability of the BSP cost function for a NOW con-
sisting of SUN workstations connected through a 10Mbps Ethernet network. In
particular, we compare the original BSP cost function with a number of newly
proposed variants, with the intent of improving predictability by having the cost
function encompass those parameters of the hardware/software system which
have the largest impact on performance.

1 Introduction

It is widely recognized [15,5] that the quest for a desirable model of parallel program-
ming is made particularly hard by the objective of achieving the following three prop-
erties simultaneously: usability, portability and predictability. Usability refers to the
ease of designing, analyzing, and coding algorithms in the framework provided by the
model. Portability denotes the ability of compiling and running programs written ac-
cording to the model over a wide class of target platforms, achieving good performance
on each platform. Finally, Predictability implies the ability of the model of forecast-
ing performance of a piece of software via an associated cost function. In this paper,
we investigate this latter issue for the Bulk Synchronous Parallel (BSP) programming
model proposed in [16] in the context of low-end parallel systems made of Networks of
Workstations (NOWs).

The BSP model provides an abstract machine made of P processors with local
memory, connected by a router which implements batch communication via message
passing. Computation is divided into phases, named supersteps, each terminated by a
barrier synchronization. During a superstep, the processors may execute local compu-
tation on data held locally at the beginning of the superstep, and/or exchange messages
with other processors. The messages sent during a superstep are made available by the
router to their destinations only at the beginning of the next superstep.

The running time of a BSP program is obtained by summing the running times of
its constituent supersteps. The execution time of a superstep can be expressed as linear
cost function which has the following form [14]:

Tss(w, h) = w + gh + l , (1)
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where w is the local computation time and h is the degree of the relation realized by the
router, that is, the maximum number of bytes sent or received by any processor. Parame-
ters g and l are meant to capture, respectively, the bandwidth and latency characteristics
of the underlying architecture.

The simple programming paradigm offered by BSP implies a good level of usabil-
ity. Also, the inherently machine-independent nature of its communication mechanism,
based on batch communication, allows optimized implementations on a large spectrum
of parallel architectures, hence fostering efficient portability. However, it has often been
noted that the BSP cost function offers only a coarse level of predictability [12,11]. In
fact, such observation has motivated further research into defining more descriptive
(hence, less usable) models which embody additional aspects of a machine that impact
performance (e.g., message injection overhead [6], or clustering [9]). In this paper, we
take a different approach. Rather than changing the BSP programming model, we seek
to improve its predictability by striving for a tighter coupling between its associated
cost function and those features of the hardware/software system under consideration
which have the greatest impact on performance. By intervening on the cost function
only, we aim at enhancing predictability while preserving usability and portability of
the programming model as much as possible.

The programming environment used in this work is based on the message-passing
primitives provided by the BSPlib library developed by the Parallel Applications Centre
of Oxford University [10]. BSPlib has been installed on a NOW of 10 SUN SPARC-
stations available at our department, connected by a 10Mbps Ethernet under the UDP/IP
protocol [8]. Under BSPlib, interprocessor communication occurs when barrier syn-
chronization is called at the end of each superstep, and is realized through a kind of
randomized, time-division multiplexing technique [7]. More specifically, time is di-
vided into time-slices, which are in turn divided into as many time-slots as the number
of sending processors. At each time-slice, the sending processors randomly choose a
time-slot for sending their messages over the Ethernet. Randomization helps the system
pick a transmission schedule that makes a good usage of the available bandwidth of
the communication medium. The time-slot duration depends on the maximum Ethernet
frame size supported, and packet fragmentation is done at the library level accordingly.
As a consequence, when using BSPlib there is a limited payoff in orchestrating com-
munication at the program level so to send one (very) long message rather than many
(relatively) short ones, hence we can safely refer only to the total amount of bytes sent
from one processor to another.

1.1 Our Contribution

The main purpose of this work is to estimate the relative accuracy and the ease of use of
a set of cost functions alternative to the classical BSP function of Equation (1) for the
hardware/software system under consideration. Although our quantitative results are
system-specific, the proposed methodology is rather general and applicable to a wide
range of parallel platforms.

We describe the message routing instance associated to a BSP superstep by means
of a communication pattern, which can be envisioned as a P × P array containing,
for each processor, the number of bytes that the processor sends to any other processor
(including itself). The BSP cost function yields the same prediction for all communica-
tion patterns which realize an h-relation. However, h might be too drastic a summary
for the characteristics of a communication pattern, hence unsuitable to differentiate
among those that have the same value of h but feature very different execution times.



640 Mauro Bianco and Geppino Pucci

To achieve a more effective (yet simple) categorization, we follow a classic approach
in routing theory [13,12] and summarize a communication pattern as an (hi, ho, M)-
relation, where hi (resp., ho) is the maximum number of bytes received (resp., sent) by
any processor and M is the total number of bytes exchanged by the processors.

The candidate cost functions that we consider are the following linear combinations
of the parameters hi, ho, M and h = max{hi, ho}:

1. Fh(h)= g · h + l
2. Fio(hi, ho)= gi · hi + go · ho + l
3. FioM (hi, ho, M)= gi · hi + go · ho + gM · M + l
4. FhM (h, M)= g · h + gM · M + l
5. FM (M)= gM · M + l
6. FoM (ho, M)= go · ho + gM · M + l
7. FiM (hi, M)= gi · hi + gM · M + l
8. Fo(ho)= go · ho + l
9. Fi(hi)= gi · hi + l

In order to obtain the coefficients for the above cost functions, we execute an extensive
set of carefully designed communication patterns, whose objective is to exercise a large
number of feasible combinations of the three parameters hi, ho and M . The running
times collected for such patterns are then used to infer the cost functions through least-
square fitting. Finally, the predictive quality of the functions is validated on a suite of
additional, synthetic access patterns and on a small set of sorting applications.

2 Fitting the Cost Functions

Consider a P -processor BSP machine, where the i-th processor is denoted by Pi, with
0 ≤ i ≤ P − 1. Let also H1 = {h : h = 10000 + 30000 · i, i = 0, . . . , 3}, H2 = {h :
h = 150000 + 75000 · i, i = 0, . . . , 11} and H = H1 ∪H2. Finally, let x be an integer
parameter.

For each value of h ∈ H and 1 ≤ x ≤ P , we define the following synthetic
communication patterns, that will be used for fitting and validating the cost functions:

– (h, x)-scatter (ho = h, hi = h · x/P , M = h · x). For 0 ≤ i ≤ x − 1 and
0 ≤ j ≤ P − 1, Pi sends h/P bytes to Pj .

– (h, x)-gather (hi = h, ho = h · x/P , M = h · x). For 0 ≤ i ≤ P − 1 and
0 ≤ j ≤ x − 1, Pi sends h/P bytes to Pj .

– (h, x)-square (hi = h, ho = h, M = h · x). For 0 ≤ i ≤ x − 1 and P − x ≤
j ≤ P − 1, Pi sends h/x bytes to Pj , with j = P − x, . . . , P − 1.

– random-(h, x)-scatter. A random communication pattern uniformly gener-
ated among all those with ho = h, hi = h · x/P and M = h · x.

– random-(h, x)-gather. A random communication pattern uniformly generated
among all those with hi = h, ho = h · x/P and M = h · x.

– random-(h, x)-square. A random communication pattern uniformly generated
among all those with hi = h, ho = h and M = h · x.

In order to filter out noise, each pattern is executed 20 times and the running time is
considered to be the median of the 20 executions. Together, the first three families of
patterns (obtained by varying h ∈ H and 1 ≤ x ≤ P ) make up Suite 1, which contains
deterministic patterns, while the last three make up Suite 2 which is made of random
patterns sharing the same summary parameters of their deterministic counterparts. Note
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Fh Fio FioM FhM FM FoM FiM Fo Fi

g · 106 3042 2207
gi · 106 587.2 552.6 1433 2850
go · 106 2932 2898 3066 3386
gM · 106 22.94 334.1 891.5 119.8 530.8
l 41.57 25.21 26.59 41.47 396.1 67.79 242.6 76.30 280.3

(a) P = 4

Fh Fio FioM FhM FM FoM FiM Fo Fi

g · 106 6520 4742
gi · 106 644.3 427.1 2336 5699
go · 106 7070 6853 6972 7531
gM · 106 77.61 395.0 994.9 116.4 700.5
l 104.9 74.51 84.06 104.9 995.1 122.6 702.7 142.8 824.5

(b) P = 8

Fig. 1. Cost function coefficients (in msecs).

that the Suites exercise a vast spectrum of feasible values of the 3-tuple (hi, ho, M),
which is crucial to achieve reliable fits. In particular, by varying x, we obtain patterns
characterized by a varying amount and distribution of the global communication traffic,
but featuring the same value h of maximum outbound/inbound traffic from/to the same
processor. Note that scatter-like (resp., gather-like) patterns are likely to incur in higher
overhead during message injection (resp., receipt) since h = ho ≥ hi (resp., h = hi ≥
h0).

We use the two Suites of patterns to fit (over the patterns in Suite 2) and validate
(over the deterministic patterns in Suite 1) the BSP-like cost functions defined in the
previous sections for two submachines of 4 and 8 processors, respectively. The coeffi-
cients of the cost functions obtained for P = 4 and P = 8 are shown in Fig. 1.

3 Validation Results

The results of the validations of the cost functions on Suite 1 are shown in Fig. 2, where
for each submachine and each cost function we report, respectively, the maximum and
the average relative errors incurred by approximating the running time of a pattern with
the value returned by the function. Note that for P = 4, the two-parameter function
Fio behaves better, on average, than the three-parameter function FioM . This counter-
intuitive phenomenon can be explained if we consider that the least-square function
obtained from the fitting minimizes the ‖ · ‖2-error, while we have chosen to check the
quality of our functions against the (more intuitive) metric of relative error between
predicted and measured running time. However, when P = 8, FioM becomes slightly
more predictive than Fio, which provides evidence that the impact of parameter M
becomes more important as P grows.

Also, note that the classical Fh function is consistently much worse than functions
Fo, Fio and FioM , and that all functions including ho as a parameter behave decidedly
better than those not including it. In retrospect, this behaviour can be explained by the
message-scheduling strategy implemented by BSPlib[7], where the number of time-
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Fh Fio FioM FhM FM FoM FiM Fo Fi

P = 4
Max. Err.(%)
Ave. Err.(%)

168
24.7

17.2
9.4

16.4
9.6

124
25.7

810
95.6

99.3
18.0

489
68.1

120
19.2

594
78.1

P = 8
Max. Err.(%)
Ave. Err.(%)

425
34.8

65.4
7.31

62.5
6.80

316
31.5

559
86.4

51.0
7.54

379
70.6

44.9
7.86

461
87.7

Fig. 2. Maximum and average validation errors on Suite 1.

slots and time-slices (hence, the duration of the routing) mainly depends on ho and is
independent of hi.

In addition, we note that when P = 8, function Fo is roughly as predictive as
functions FoM , Fio and FioM , the other parameters embodied by the latter functions
having only a second-order effect on improving predictability. Therefore, the simple
Fo function (in fact, even simpler than the classical BSP Fh function) represents the
best compromise between accuracy and simplicity of prediction for a moderately-sized
machine. Since the impact of the overall traffic volume (as measured by M ) on predic-
tive quality seems to increase with P , it is reasonable to assume that for larger systems,
function FoM would be a better choice.

From our analysis it follows that parameter hi may be disregarded on our system,
since communication time does not seem to depend crucially on the number of mes-
sages received by a processor. On the other hand, communication time exhibits a strong
linear dependence on parameter ho. Finally, the synthesis between this two parameters
used by the classical BSP function Fh, does not seem to yield good predictions.

In order to fully appreciate the crucial impact of ho on performance, in Fig. 3 we plot
the execution times of some patterns (for varying values of h) in Suite 1, together with
all the cost functions under examination, for P = 8. Note that when x = 8, (h, x)-
scatter, (h, x)-gather and (h, x)-square patterns all become total exchange
patterns, with all processors sending/receiving h/P bytes to/from one another, hence
Fig. 3(b) ((h, 8)-gather) also represents an (h, 8)-scatter or an (h, 8)-square.
By comparing Figg. 3(a) and 3(b) we note that the running time of an (h, x)-gather
heavily depends on x, while a comparison of Fig. 3(b) with Figg. 3(c) and 3(d) reveals
that there is no such dependency for (h, x)-scatter and (h, x)-square. Finally, it
is very clear from the plots that all functions including ho as a parameter are much better
predictors than the remaining functions, which give rather poor predictions especially
for unbalanced patterns (small values of x).

In summary, our experiments imply that one can obtain reliable performance pre-
dictions on the hardware/software system under study by adopting a simple variant of
the classical BSP cost function, where the contribution of parameter ho is made explicit.
More importantly, we want to point out that BSPlib attains such level of predictability
while making good use of the hardware, since the peak transmission bandwidth ob-
served during our experiments (8.8Mbps for total exchange patterns) comes close to
90% of the maximum available bandwidth of the communication medium (10Mbps).

4 Predicting the Communication Time of Sorting Algorithms

To test the quality of the above cost functions in real scenarios, we have exercised them
on predicting the communication time of BSPlib implementations of three classical
sorting algorithms, namely, Batcher’s Bitonic Sort [2]; a simple parallelization of the
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Fig. 3. Running times and predictions for (h, x)-gather, (h, x)-scatter and
(h, x)-square, for x = 1,8. (Fig. 3(b) is also a plot for (h, 8)-scatter and (h, 8)-
square.)

Radix Sort algorithm for integer sorting; and finally Sample Sort with oversampling
[4]. We measured the communication times of each constituent superstep by subtracting
the time required for local computation from the overall running time of the superstep.
(More details on the algorithms will be provided in the full version of this extended
abstract.)

Let N1 = {N : N = 2500 + 7500 · i, i = 0, . . . , 3}, N2 = {N : N = 37500 +
18750 · i, i = 1, . . . , 11} and N = N1∪N2. The sorting algorithms have been executed
with random inputs of size N ·P , for each N ∈ N , with measured communication times
chosen as the median time out of five executions.

The table in Fig. 4 compares the maximum and average prediction errors incurred,
for each sorting algorithm, by the BSP function Fh and the functions that turned out
to be better predictors on the synthetic patterns, namely Fio, FioM , Fio and Fo. Also,
Fig. 5 plots the measured communication times against the predictions of Fh (the worst
function) and FioM (the best function) as a function of N . As before, it is clear that
functions including parameter ho yield much better predictions than Fh, although the
difference in quality is not so dramatic as the one observed on the patterns in Suite 1.
This relatively better behaviour of the Fh function is mainly due to the fact that the
most expensive communication patterns (at least for radix and sample sort) generated
by the sorting applications tend to be total exchanges of N/P 2-length messages, which
are those on which Fh incurs into the least prediction errors, since such patterns have
h = hi = h0, hence coalescing the indegree and the outdegree of the relation into the
“summary” parameter h does not imply a large loss of information. Consequently, the
improvement of over 50% on the quality of the predictions provided by the more com-
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plex FoM and FioM functions can be explained mainly with the presence of parameter
M , which captures the impact of the overall traffic volume generated by the pattern.

Bitonic Radix Sample
P = 4 P = 8 P = 4 P = 8 P = 4 P = 8

Fh 43.51 26.52% 17.90 16.43% 22.77 11.10%
Fio 35.74 16.15% 13.31 9.93% 17.35 5.01%
FioM 35.45 13.92% 12.26 6.42% 18.72 4.01%
FoM 36.98 13.62% 11.78 3.17% 42.18 7.37%
Fo 39.69 16.91% 15.24 6.72% 42.91 10.25%

Fig. 4. Average prediction errors for bitonic sort, radix sort and sample sort for P = 4, 8
and n ∈ N

The data collected for bitonic sorting are definitively the most puzzling. Although
the communication patterns generated by the algorithm are extremely regular (namely,
permutations of N/P -length messages) all the cost functions tend to severely under-
estimate the associated running time. We conjecture that this phenomenon is due to
a suboptimal management of this important class of communication patterns by the
scheduling algorithm provided by the BSPlib library. Note, however, that even in this
case, functions embodying the ho parameter are much better predictors than the BSP
function Fh.

5 Future Work

Further investigation is needed to determine to which extent the newly proposed cost
functions can be effectively used in practice as an alternative to the classic BSP function
to enhance predictability. We believe that the value of separating the contributions of
hi and ho and adding a parameter of global congestion of the communication medium
such as M will prove to be even more substantial for applications characterized by more
irregular communication patterns than sorting. In order to substantiate this intuition, we
are thinking of exercising our cost functions over a bulk-synchronous version of the
NAS benchmarks [1].

An orthogonal line of investigation concerns devising cost functions for other net-
work architectures, such as 100Mbps or Gigabit Ethernet, Myrinet or ATM, or compar-
ing the performance/predictability levels achieved by BSPlib against those attained by
other communication libraries, such as the BSP PUB library developed at Paderborn
University [3].
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