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Abstract. An implementation of a real symmetric eigensolver on par-
allel nodes is described and evaluated. To achieve better performance
in the inverse iteration part, a multi-color framework is introduced, in
which the orders of the orthogonalizations are rescheduled so that the
inverse iterations are executed concurrently. With the blocked tridiago-
nalization and backtransformation, our real symmetric eigensolver shows
good performance and accuracy both on the MPP SR2201 and on the
newly developed hybrid machine SR8000.

1 Introduction

In this paper, we treat an implementation of an eigensolver for dense real sym-
metric matrices that consists of tridiagonalization, bisection, inverse iteration
and backtransformation. In each part, we adopted the existing algorithms, im-
proved them from implementative point of views and produced an eigensolver of
the matrix library MATRIX/MPP(03-00) for the hybrid1 machine SR8000 [1].
For the tridiagonalization, the blocked method [2] [3] and lowering byte/flop tech-
niques [4] were found to be successful. The bisection part can also be effectively
parallelized [5]. When it comes to calculating a lot of eigenvectors, however, it is
known that its parallel computation based on the conventional inverse iteration
performs poorly because of the reorthogonalizations [6].

In 1997, Dhillon [7] proposed a new algorithm that solves each eigenvec-
tor in O(N) time and produces automatically orthogonal eigenvectors with-
out any reorthogonalization. The algorithm was implemented in the latest LA-
PACK(version 3.0) [8] subroutine dstegr, but the Dhillon’s algorithm does not
always work well when the relative gaps of eigenvalues are very small. In such
cases, users have to use the conventional inverse iteration ‘dstein’ and endure
poor performance. Furthermore, the ScaLAPACK [9] ‘pdstein’ allocates the clus-
ters on the processing nodes, which usually results in the biased workload.

In this paper, we describe a new framework for the parallel computation of
eigenvectors. Our framework, which we call a multi-color inverse iteration, was
1 hybrid = combination of SMPs(symmetric multiple processors) and MPPs(massively

parallel processors)
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published locally in Japan [10]. It is based on the theory of the conventional
inverse iteration with reorthogonalizations [11] [12]. One feature of our frame-
work is that the orders of reorthogonalizations are rescheduled with coloring so
that dependent eigenvalues are differently colored. Another is that the eigenvec-
tors are evenly distributed over the nodes. Our framework enables some part of
eigenvectors to be solved concurrently even though the reorthogonalizations are
executed.

2 The Multi-color Inverse Iteration

The inverse iteration with reorthogonalizations is usually described as follows.

(T − eiI)vk+1
i = vk

i , k = 0, 1, ..., (1)

vk
i := vk

i −
∑

j∈Oi

(vk
i , vj)vj . (2)

where T is a real symmetric tridiagonal matrix, I is the unit matrix, ei is the
i-th eigenvalue, vi is the corresponding eigenvector and vk

i is its k-th iterate. Oi

denotes the indices set of eigenvectors against which vk
i is reorthogonalized.

In the ScaLAPACK pdstein, the indices set Ostein
i is { j ∈ N ; j < i, |ej −

ei| < eps }, where ‘eps’ is the reorthogonalization criterion. So, all the eigenval-
ues in Fig.1, 2 for example, are gathered in one group and the eigenvectors are
allocated in one node.
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Fig. 1. The reorthogonalization criterion ‘eps’ and ‘connected’ eigenvalues

In the multi-color inverse iteration, we find out the eigenvectors which can be
solved independently. For that, we give colors to all the eigenvectors on conditions
that connected eigenvectors should be colored differently. Table 1 gives a simple
and easily implemented algorithm to color. The result is in the 0th stage of Fig.2.
The calculations of eigenvectors with the same color have no data dependency
with each other and can be done in parallel, because the eigenvectors need not
be reorthogonalized with each other.

The colors also play a role of the priority of computation. First, eigenvectors
with color(i) = 1 are calculated, second, those with color(i) = 2, and so on. The
indices set Omulti

i is { j ∈ N ; |ej − ei| < eps, color(j) < color(i) }.

2 The eigenvalues are connected with polygonal lines when the distances between
them are less than the reorthogonalization criterion ‘eps’.
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The eigenvectors are evenly distributed among nodes as in Fig.2. If necessary,
each node receive the calculated eigenvectors from other nodes by internodes
communication. In the second stage, for example, v6 is transferred from N1
to N2, and v7 is calculated by the inverse iteration with reorthogonalizations
against v6 and v9. Thus the multi-color framework enables effective parallel
implementation that is summerized in Table 2.

Table 1. A greedy algorithm for coloring eigenvalues (ei ≤ ej for i < j)

1. Set color(1) = 1 and i = 2.
2. Set color(i) to a natural number satisfying the following two conditions.

– As small as possible.
– For any j with 0 ≤ ei − ej < eps, color(i) �= color(j).

3. i = i + 1, and if i ≤ n goto 2, otherwise stop.
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Fig. 2. Allocation and the multi-color inverse iteration procedure

3 Numerical Tests and Remarks

First, on one node of the SR2201 3, we compare the residual, orthogonality
and time of the multi-color implementation with those of the equivalence of the
LAPACK dstein for the [1,2,1] matrix with dimension 2000. The orthogonality
is scaled as ||V T V − I||F , Vij = (vi, vj) and the reorthogonality criterion ‘eps’
changed from 10−6 to 1.0. The result in Table 3 shows that the multi-color
inverse iteration performs better and the residual and orthogonality are almost
same as those of the equivalence of dstein.

3 The SR2201 has 300Mflop/s per 1 node and 300MB/s internode bandwidth.
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Table 2. A parallel implementation of the multi-color framework

1. Calculate the indices set Omulti
i for all i on all nodes.

2. Define the color(i) for all i on all nodes.
3. Do k = 1, Total Color Number

Do i = 1, Total Eigenvector Number
IF ( Color(i)=k and My Node Number=Eigenvec Alloc(i) )

(a) Get vj ∈ Omulti
i from other nodes if necessary.

(b) Do the inverse iteration performing the following stages alternately.
i. Solve the linear equation (1).
ii. Reorthogonalize as in the equation (2) with Omulti

i .

Second, we evaluate scalability of the multi-color implementation on the
SR2201 for the [1,2,1] matrix with dimension 8000. The result in Table 4 shows
that scalability is low and there is room for improvement, especially in eps=1.0e-
2. But note that, with the ScaLAPACK pdstein, all eigenvectors in that case fall
into one group and no parallelism would be achieved.

We also evaluate the performance and accuracy for a real symmetric eigen-
solver [4] with the multi-color inverse iteration on the SR80004 . Test matrices
are the Frank matrix Aij = min(i, j) with the dimension 8000 and 16000. The
reorthogonalization criterion used is 10−5. The execution time of each part, and
total accuracy(r:residual, o:orthogonality) and performance are shown in Table
5. In both dimensions, the multi-color inverse iteration is confirmed to scale well,
and total high performance is achieved.

However, we have to prove rigorously for rescheduling and test on a lot of
clustered matrices, which will be our future work. Adoption of ‘dtwqds [7]’ will
be important to solve the low scalability problem.
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