
Sparse Matrix Structure for Dynamic Parallelisation
Efficiency

Markus Ast1, Cristina Barrado2, José Cela2, Rolf Fischer1, Jesús Labarta2,

Óscar Laborda2, Hartmut Manz1, and Uwe Schulz1

1 INTES Ingenieurgesellschaft für technische Software mbH, Stuttgart, Germany
2 Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. The simulated models and requirements of engineering programs like
computational fluids dynamics and structural mechanics grow more rapidly than
single processor performance. Automatic parallelisation seem to be the obvious
approach for huge and historic packages like PERMAS. The approach is based on
dynamic scheduling, which is more flexible than domain decomposition, is
totally transparent to the end-user and shows good speedups because it is able to
extract parallelism where others are not. In this paper we show the need of some
preparatory steps on the big input matrices for good performance. We present a
new approach for blocking that saves storage and decreases the computation crit-
ical path. Also a data distribution step is proposed that drives the dynamic sched-
uler decisions such that an efficient parallelisation can be achieved even on slow
multiprocessor networks. A final and important step is the interleaving of the
array blocks that are distributed to different processors. This step is essential to
expose the parallelism to the scheduler.

1 Introduction

Although the increase of single processors performance, the requirements of engineer-
ing programs (like computational fluids dynamics and structural mechanics) for bigger
and bigger models grows more rapidly. Simulations tend to require more accuracy,
specify finer meshes, or increase the number of simulations. Standard models to deal
with are around 1 million degrees of freedom (DoF) and up to 10 millions DoF for
industrial benchmarks. For this reason, computational resources (like main memory
limits or CPU time) are still a limiting factor in engineering. Out-of-core capabilities are
essential to solve such problems.
A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 519-526, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Since scalability of single CPU becomes more and more difficult, the solution can not
rely on computers speed alone. Parallelisation of the algorithms seem to be the obvious
approach. The usage of parallel languages like HPF or new environments like Java can
be a good strategy for new software [4.]. However, for huge and historic packages where
rewriting would be too costly, the parallelism has to be integrated with incremental
steps. Domain decomposition has been the a popular way to introduce parallelism in
engineering packages. In this approach, the structure is divided into several meshes that
can be solved in parallel and a last stage merges the results. Solvers based on domain
decomposition show good speedups [10.] but they need more effort in the assembly

520 Markus Ast et al.

phase. Also the domain decomposition done for an architecture configuration usually is
not appropriate for another. An alternative parallelisation strategy is applied in the PER-
MAS system. It is more flexible than domain decomposition because it can exploit
domain grain parallelism but also finer grain parallelism [9.]. Moreover PERMAS par-
allelism is achieved automatically, thus, it is transparent to the programmer. In this way
the whole code is parallelised (i.e. non-linear simulations or contact analysis), while
others just have a parallel solver. Also PERMAS guarantees that the numerical results
are independent of the number of processors used on their computation.

In this paper we evaluate how reordering and data distribution can improve the perform-
ance of PERMAS parallelisation. While the classical reordering step is applied to
improve the matrix fill-in, new steps can be introduced before the actual computations
in order to increase parallelism. We present the three new steps that PERMAS applies
after the classical reordering step: blocking, data distribution and interleaving. The
paper evaluates different heuristics and shows that the achieved speed-up is up to a 5.3
on a 8-processor SGI Origin 2000. As far as we know, other commercial out-of-core
packages [7.] are only able to achieve 1.42 speedup on a 4-processor CRAY-YMP for a
big problem and 3.26 speedup on 8-processor CRAY C90 for a small problem. Even the
speedups of in-core parallel commercial systems [1.] are around 1.8 for small problems
(from 4 to 180 thousands DoF). The paper is organized as follows. Section 2 presents
the storage and parallelisation strategies adopted by PERMAS. Sections 3 and 4 detail
the three preparatory steps (blocking, distribution, interleaving) and presents the meas-
ures of some simulations. Final remarks and conclusion are in section 5.

2 PERMAS Global Structure

The general purpose Finite Element (FE) system PERMAS is a commercial software
with 20 years of history. Real problems of structural mechanics and fluid dynamics are
the actual input data. These real problems are defined with an extremely large matrix
(up to 10 millions degrees of freedom), called hypermatrix.

Storage. PERMAS stores the hypermatrix in a three levels structure. In the highest
level, L3, we have the hypermatrix structure. Each element is either a pointer to a second
level submatrix or null if all the elements of the submatrix are zero. Since the hyperma-
trix is symmetric, only the upper triangular of L3 is actually stored. In the second level,
L2, we have again either indirections to L1 or null pointers. This two levels suppose
only about a 5% of the total storage. In the last level, known as L1, we have the actual

data. PERMAS maps the non-zero L1 blocks as dense arrays using the file system and
handles their input/output to disk.

Parallelisation. The parallelisation strategy can be found in [2.] and here we just sum-
marize the principal aspects. The PERMAS main module, which follows a loop-nested
structure to traverse the L3 and L2 levels of the hypermatrix, generates a task for each
numerical computation done over the L1 matrices. Each task is inserted on-the-fly in
the Task Graph (TG). When the TG is larger than a threshold, the main module passes
the control to an additional module, the Parallel Task Manager (PTM). The PTM con-

 Sparse Matrix Structure for Dynamic Parallelisation Efficiency 521

tains a dynamic scheduler and sends the ready tasks to slave processors (executors)
using MPI. The executors do the numerical computations using standard BLAS calls.
This strategy shows several advantages. Parallelisation is done automatic and transpar-
ent to the programmer because the program structure is the same for sequential and for
parallel versions. Previous (sequential) PERMAS programs can be parallelised by just
changing the BLAS calls with new PTM calls. The approach exploits a finer grain par-
allelisation than Domain Decomposition and thus, makes possible a better load balance.
It is more flexible because a same executable works for different hardware configura-
tions (number of processors) without recompilation. Finally, the numeric results are
exactly the same for sequential or parallel (with any number of processors) because the
operation dependences and the execution order do not change.

Preparatory Steps. It is well known that the parallel factorization can be improved with
a preparatory reordering step which permutes the nodes of the FE mesh. Besides the
classical reordering, that PERMAS does using a combined technique of minimum
degree and nested dissection [3.6.8.], it does three more preparatory steps: blocking,
data distribution and interleaving: The blocking step consists on dividing the hyperma-
trix into its three level storage hierarchy. The intuitive way to do it is to superpose a grid
on top of the hypermatrix twice: a fine grid defines the blocks of level L1 and a larger
grid defines those of level L2. Section 3 presents an alternative algorithm for the L1
grid. New data structures are built after blocking to represent the matrix and the elimi-
nation tree at the L1 level. We call Plane Array (PA) to the matrix that represent L1
structure of A. Each element PA(i,j) represents a L1 block. A zero value means that the
block is not really allocated. We named Plane Elimination Tree (PET) to the elimina-
tion tree of PA. These coarser-grain data structures are only needed on preparation.
During execution the PTM exploits a task-level parallelism which is of a finer grain than
the elimination tree parallelism [9.]. Next step is the distribution. It decides the initial
assignment of the L1 blocks to processors. A good distribution is a compromise
between a good load balance and a reduction of the communications. Section 4 presents
the tight relation of the distribution and the PERMAS dynamic scheduling. It also eval-
uates several distribution alternatives and shows the need of the last preparatory step,
interleaving.

3 Blocking: Fixed-Sized vs. Variable-Sized

The main objective of the hypermatrix blocking is the minimisation of the required stor-
age, but, as we will show, this is not the only issue. Fig 1. shows the hypermatrix skyline

of a motivating example, where the grey area represents the non zero elements after the
reordering pass. Fig 1.a presents the classical blocking strategy of PERMAS, lets call it
fixed-sized. The hypermatrix is divided into square blocks by superposing a grid on top
of the it.

Fixed-sized blocking is a simple and clear strategy. Here, some tuning on the size of the
blocks can help to minimise the storage requirements and the I/O overhead. This is an
input parameter that usually ranges from 30x30 to 128x128 elements per block. There
is a compromise between small sized blocking, which reduces the L1 stored zeros and

522 Markus Ast et al.

big sized blocking which reduces the number of blocks and thus minimises the I/O over-
head. Fixed-sized blocking becomes a problem during parallel execution because of
data dependences. The computations of L1 blocks (tasks) are subjected to the prece-
dences of the PET. These precedences inhibit the dispatching of new computations.
When the precedences are due to true dependences then they must be preserved. But
precedences can be artificially created by blocking. These artificial dependences are not
important on a sequential execution, but on a parallel execution they suppose longer
critical paths and an increase of the computation time. These artificial dependences can
disappear using variable-sized blocking.

 Fig 1.Blocking alternatives

For example, let us consider the fourth diagonal block of Fig 1.a, PA(4,4). At the ele-
ment level, there is a decoupling point that divides the block in two parts, let us call them
Up4,4 and Low4,4. The computations of the elements of the two parts can be done in par-
allel. Moreover, all the elements of block PA(4,5) can be also computed in parallel with
the Up4,4. Nevertheless, since the parallelism grain is the L1 level, the elements of the
two parts of PA(4,4) belong to the same task and execute sequentialy. Moreover, the
transitive closure of the dependences from PA(3,4) to PA(4,4) and from PA(4,4) to
PA(4,5), creates the artificial dependence from PA(3,4) to PA(4,5). The variable-sized
blocking proposed is illustrated in Fig 1.b. It finds the decoupling points of the hyper-
matrix and uses them as the vertices of the superposed virtual grid. The resulting blocks
have different sizes and are not square. The variable-sized blocking decreases the
number of dependences and moreover it saves disk area. On the other side, it increases
the number of blocks. Fig 2. presents the results of simulating the solver part of 4 com-
mercial benchmarks which characteristics are shown in Table 1. Numbers are given for
two fixed-sized and two variable-sized blocking: Plot fixed(16Kw) stands for blocking
into square blocks of 16Kwords (128Kbytes). Values are normalized to this first block-

a) fixed-sized b) variable-sized

ing. The plot fixed(32Kw) use the same strategy with double sized blocks. The two other
plots, variable(16Kw) and variable(32Kw), show the results of the variable-sized block-

Table 1. Benchmark description

Bench Problem DoF total/solver time (m’ s”) Mem (Mb) I/O blocks
Turbine Eigenvalue 66,456 1’ 52” / 32” 90 9,278
Methan ship structure 48,162 2’ 39” / 1’ 12” 135 8,978
BS11 rotating piece 111,057 6’ 19” / 2’ 38” 180 53,058
W124F car 1,310,616 53’ 54” / 27’ 33” 810 209,940

 Sparse Matrix Structure for Dynamic Parallelisation Efficiency 523

ing when the L1 sizes are upper limited to 16Kwords or 32Kwords respectively. Fig 2.a
shows the disk space needed to store the hypermatrices of the 4 benchmarks. Disk
requirements are greater when blocks are bigger, because they include more zero-stored
elements, while small and variable blocking covers better the shape of the hypermatrix
with less space. Fig 2.b shows the number of blocks. This gives a measure of the
dynamic overheads. When more (smaller) tasks are generated, more scheduling time
and more input/output are expected. The Fig 2.c shows the expected execution time
based on the critical path of the TG. The weight of all the tasks are considered to be
equal to 1 when the block size was 16Kwords and equal to 2 for 32Kwords blocks (same
for fixed than for variable sized -as the worst case-).

 Fig 2.Fixed vs. variable sized blocking

Looking at the simulation results we conclude that variable-sized blocking can save up
to 10% of the disk storage. The new storage is more fragmented and introduces a 20%
more overhead on the TGM and on I/O requests. Finally it reduces the critical path
length on around 90%, thus, much more parallelism is exposed. Variable-sized blocking
is now integrated in the PERMAS system as an option. CPU-time improvements are
shown on most applications (i.e. 20% to 40% less execution time for Turbine with
16Kw block size).

4 Data Distribution and Interleaving

The data distribution main objective is to improve load balancing while minimising
communications. Several algorithms [4.11.12.], based on recursive traverse of the elim-
ination tree, have being proposed for column-based and submatrix based approaches
(i.e. subtree recursive mapping of columns). They show benefits for the static parallel-
ised solver. In this section we show the PERMAS approach. It does a preparatory step
where the L1 blocks are assigned to virtual processors. Then, the dynamic scheduler [5.]

Turbine Methan BS11 W124F
0

20

40

60

80

100

120

140

a) matrix size b) number of blocks

fixed (16Kw)
fixed (32Kw)
variable (16Kw)
variable (32Kw)

Turbine Methan BS11 W124F
0

50

100

150

6,818 7,332 15,327 147,242

c) critical path

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
0.0

0.2

0.4

0.6

0.8

1.0

Turbine Methan BS11 W124F

 1’52" 2’39" 6’19" 53’54"

total
solver
uses this informations as a suggestion, but subjected to the availability of the actual
processors.

Four different data distributions are tested for a Cholesky factorization on an 8 proces-
sor architecture. Fig 3.a shows their parallel speed-ups relative to the sequential
execution and Fig 3.b shows their number of messages. We choose a 10Mbps (slow)
Ethernet network as the worse case for message passing, in order to show that an effi-
cient parallelisation is only possible with a good data distribution.The random, row-
random and group-random distributions use an easy cyclic distribution with increasing

524 Markus Ast et al.

coarse levels. The random plot stands for a L1 block level distribution, while the row-
random stands for a distribution done at the row level and group-random distributes
groups of 10 rows. Since there are always dependences from the diagonal block to the
rest of the blocks on the same row, the row-random distribution converts them to local
and the number of messages decreases. For the architecture simulated this is still not
enough to make the parallel execution faster then the sequential. The group-random dis-
tribution decrements more the number of inter-processor communications but still the
speed-up is null. The last heuristic, named balanced, uses the PET to distribute

 Fig 3.Data distribution simulations for a 8 multiprocessor

rows. Fig 3.b shows that this reduces the number of data communication again, now in
a factor form 5 to 9. This reduction makes the difference in terms of speed-up, which is
raised up to 6 for the simulated architecture. The balanced data distribution works as
follows. Initially it assigns all the PET nodes to one processor. Then it enters in an iter-
ative loop that decides to reassign a subtree from the most heavily loaded processor to
the less loaded processor. The computational weight of the subtree is considered when
deciding the PET cutting point. The loops iterates until a 5% threshold on processors
balance is achieved.

The hypermatrix of Fig 4.a shows with 8 colours the results of the balanced distribution.
The colours are clearly defined because joint consecutive rows. This block ordering is
now a problem for the dynamic scheduler. The probability of having a Task Graph with
tasks distributed to different processors is very low. The solution interleaving, this is, to
find an equivalent reordering of the PA such that blocks distributed to a same processor
are not consecutive.

fixed (16Kw)
fixed (32Kw)
variable (16Kw)
variable (32Kw)

Turbine Methan BS11 W124F

50

100

150

 2920 1727 4927 44669 fixed (16Kw)
fixed (32Kw)
variable (16Kw)
variable (32Kw)

Turbine Methan BS11
0

1

2

3

4

5

6

7

8

Speed-up (10Mbps Ethernet)

random
row random
group random
balanced

 Fig 4.Example of interleaving on BS11 for 8 processors

a) data distribution b) interleaving by rows c) interleaving by blocks

 Sparse Matrix Structure for Dynamic Parallelisation Efficiency 525

The mixture of colours of Fig 4.b an Fig 4.c shows this graphically. Such new reordering
can expose the parallelism to the PTM from the beginning because the operands of the
tasks on the dynamic TG are distributed over all the processors. Fig 4.b is achieved with
a post-ordering at the block-row level. This schema showed very good speedups on the
simulations but was no introduced in PERMAS environment because it introduced
much storage in the L2 level. Fig 4.c shows the final heuristic integrated in PERMAS
which uses a coarser post-ordering heuristic (10 rows).

 Fig 5.Elapsed time (SGI Origin 2000)

Finally, Fig 5. shows the performance of PERMAS parallelisation after applying the
preparatory steps using 2, 4 and 8 slave processors. The total application execution time
and the solver execution time are shown. Time savings of up to 20% and 40% of the
total application time are achieved for 2 and 4 processors respectively. With 8 proces-
sors an additional gain of 5% saved time shows that more effort has still to be done in
scalability. The main benefits are obtained on the parallelisation of the solver, but still
the rest of the application has improvements from 10% to 15%. The solver speedup, that
ranges from 2.4 to 5.3, is much better than speedups reported for Abaqus [1.] or MSC/
Nastran [7.], which are less than 2 for large problems. This is an impressive perform-
ance if we consider the important amount of I/O overhead of the PERMAS out-of-core
applications, specially in the backward and forward substitutions.

5 Conclusions and Future Work

This paper shows the need of several preparatory steps on sparse matrix structure for
obtaining good performance of the automatic parallelisation of PERMAS. We propose
a variable sized blocking of the hypermatrix and show how this blocking alternative
saves storage and speeds the parallel execution. Also, a data distribution step is pro-

Turbine Methan BS11
100

1000

10000

100000

Number of messages

random
row random
group random
balanced
posed and considered together with the dynamic scheduler that shows promising
speedups even on slow multiprocessor networks. Finally, the interleaving step, done
with a post-ordering algorithm, shows to be essential to expose dynamically the availa-
ble parallelism. All these steps are integrated into the core of the PERMAS system. The
speedups measured for real executions are much better than other commercial out-of-
core FE systems. The benefits are achieved mostly for the solver part of the application,
but PERMAS parallelisation approach also benefits the rest of the application. We are
now working on the extension of the parallelisation to other parallel paradigms (multi

526 Markus Ast et al.

threading). We also plan to investigate additional parallelisation granularity (medium
and coarse grain), and the parallelisation of all the application (matrix assembly opera-
tions, preparatory steps).

Acknowledgments. This work has been partially supported by the Ministry of Education of Spain
under contract TIC98-0511, by the CEPBA and by the European Commission under ESPRIT con-
tract n.22740 (PARMAT project).

References
1. Abaqus product performance. http://www.abaqus.com/products/p_performace58.htm
2. M. Ast, R. Fischer, J. Labarta and H. Manz. “Run-Time Parallelization of Large FEM Anal-

yses with PERMAS”. NASA’97 National Symposium. 1997.
3. T. Bui and C.Jones “A heuristic for reducing fill in sparse matrix factorization”. 6th SIAM

Conf. Parallel Processing for Scientific Computing, pp.445-452, 1993.
4. S. Fink , S. Baden and S. Kohn. “Efficient Run-Time Support for Irregular Block-Structured

Applications”. Journal of Parallel and Distributed Computing 50, pp.61-82. 1998.
5. T. Johnson. “A concurrent Dynamic Task Graph”. International Conference on Parallel

Processing, 1993.
6. G. Karypis and V. Kumar. “A fast and highly quality multilevel scheme for partitioning irreg-

ular graphs. SIAM Journal on Scientific Computing. 1995.
7. L. Komzsik, “Parallel Processing in MSC/Nastran’. 1993 MSC World Users Conference, Vir-

ginia, 1993. http://www.macsch.com
8. V. Kumar et al. “Introduction to parallel Computing. Design and analysis of algorithms. The

Benjamin/Cumminngs Pub. 1994.
9. J. Liu. “Computational models and task scheduling for parallel sparse Cholesky factoriza-

tion”. Parallel Computing 3, pp.327-342, 1986.
10. Marc product description. http://www.marc.com/Product/MARC
11. R. Schreiber. “Scalability of sparse direct solvers”. Graph theory and sparse matrix computa-

tions, The IMA volumes in mathematics and its applications, vol. 56, pp.191-209, 1993.
12. S. Venugopal, V. Naik. “Effects of partitioning and scheduling sparse matrix factorization on

communications and load balance”. Supercomputing’91, pp.866-875, 1991.

	1 Introduction
	2 PERMAS Global Structure
	3 Blocking: Fixed-Sized vs. Variable-Sized
	4 Data Distribution and Interleaving
	5 Conclusions and Future Work
	References

