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Abstract. Highly scalable parallel computers, e.g. SCI-coupled work-
station clusters, are NUMA architectures. Thus good static locality is
essential for high performance and scalability of parallel programs on
these machines. This paper describes novel techniques to optimize static
locality at compilation time by application of data transformations and
data distributions. The metric which guides the optimizations employs
Ehrhart polynomials and allows to calculate the amount of static locality
precisely . The effectiveness of our novel techniques has been confirmed
by experiments conducted on the SCI-coupled workstation cluster of the
PC2 at the University of Paderborn.1

1 Introduction

Clusters of workstations promise outstanding computational power at an eco-
nomically attractive price. However, good static locality is a must to utilize the
aggregated power of connected nodes. To give an illuminating example, we ob-
served the execution time of the SOR-loop to be 2.1s for one of two nodes that
was assigned all data, while it was 28.8s for the other node with no local data.
This huge imbalance in execution time illustrates the impact of remote memory
accesses and motivates the need for data transformations and data distributions
that arrange for good data locality.

1.1 Problem Formulation

We use a restricted version of the HPF block-cyclic distribution model [6] start-
ing with a parallel loop nest that comprises affine loop bounds and affine index
functions to multidimensional arrays. The loop nest is expected to possess ex-
actly one parallel loop. We assume that arrays are sliced into blocks along one
dimension, which are then assigned to processing nodes. In the best case, any
such a block is solely accessed by the processing node that owns the block. Hence
it is the duty of data transformations to expose a regular pattern of blocks which
are accessed by unique nodes. The subsequent data distribution then has to de-
termine an assignment of blocks to processing nodes which is consistent with this
1 This work has been supported in part by the DFG Sonderforschungsbereich 376
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pattern. We do not use the owner computes rule. We preserve the assignment of
computations to processors that was computed in previous compiler steps.

In summary, for each array of a regular program we automatically derive a
unimodular data transformation which reshapes the array, and a block-cyclic data
distribution which distributes the array elements among the processing nodes.
The distribution employs some cycle length and a certain offset.

1.2 Related Work

The topics of data transformation and data distribution have attracted great
interest within the last decade, such that an overwhelming amount of publica-
tions has emerged in this field. But unfortunately, it is difficult to compare the
efficiency of our approach to those described in the literature, because in the
literature, locality improvements are measured in runtime improvements with
regard to some specific target architecture. We instead provide a general tech-
nique to derive parametric formulas that map to the number of local and remote
accesses, and the locality optimization we propose also takes place on this level.
Thus we express the achieved improvements in terms of formulas which do not
depend on details of the target architecture. Nevertheless, we also provide run-
time improvements observed on a SCI-coupled workstation cluster.

Known techniques for optimizing data distribution either use integer pro-
gramming [7], or heuristics based on reuse vectors [11], [1], resp. affinity graphs
[2]. These techniques do not consider the geometry of the iteration space, but
only inspect index functions and the nesting structure of loop nests. To the best
of our knowledge none of these techniques uses Ehrhart polynomials [3] to guide
the selection of data transformations and data distributions. In this sense our
novel approach is unique. In its general outline to generate a set of candidates
and to identify one of these candidates using complex mathematical reasoning it
resembles the approach taken in [7]. However, the latter uses integer program-
ming and also neglects the geometry of the iteration space.

2 Geometric Framework

We use a multi-grid application from the area of fluid dynamics to illustrate
our approach. The computational kernel is a variant of the SOR-loop. It is a
2-dimensional loop nest with 5 references to array U and 1 reference to array F.
We focus on references to array U throughout this text. The parallel program
version shown in Fig. 1, has been produced by the automatic parallelizer of our
prototype compiler. The loop nest exposes parallelism on its innermost level and
now is subject to subsequent data locality optimizations:

In the case of 2 parallel processors and a cyclic distribution of the columns
of array U, we observe the access pattern shown in Fig. 2. It illustrates a default-
distribution which results in 50% remote accesses, provided iteration point (i, j)
is executed by processor Pj mod 2. This situation can not be remedied by a data
distribution, because most array elements are accessed by both processors. Since
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DO I = 2, M+N-2

FORALL J = MAX(1, I-M+1), MIN(I-1, N-1)

U(S, I-J, J-1) = (F(S, I-J, J) + U(S, I-J, J-1) + U(S, I-J-1, J)

+ U(S, I-J, J+1) + U(S, I-J+1, J)/4.0

ENDFORALL

END DO

Fig. 1. SOR loop nest from multi-grid

we do not consider replication, some accesses are forced to be remote, no mat-
ter what the distribution parameters are. Nevertheless, the situation can be
improved significantly by a preceding data transformation.

Now we introduce some convenient abbreviations and define fundamental
geometric abstractions suited to rank transformations and distributions.

A loop nest N defines the iteration space IN . An array X that is accessed
by a reference Rl, l ≥ 1, defines the index space DX. By fl we refer to the
index function of reference Rl. Furthermore, P denotes the number of processors,
d the distribution dimension, B the block size, and j the parallel dimension.
Henceforth, we omit subscripts if there is no risk of confusion.

It is well known that an iteration space I and an index space D both define
convex polytopes [4], [8]. We represent a convex polytope P as usual by a set of
inequations, i.e. P = {x ∈ Zk | A · x+C ·n+ b ≥ 0}. The Ehrhart polynomial
E of a parameterized convex polytope P is a function in parameters of the
polytope and maps to the number of integral points contained within P [3].
The fundamental idea of our approach is to encode iteration points that cause
local accesses by convex polytopes. Then the Ehrhart polynomials provide the
means to judge the quality of a data transformation and data distribution. We
employ the usual condensed notation of Ehrhart polynomials, two examples are
shown in Fig. 2. The notation E(M,N) = [10, 5]N ·M abbreviates the distinction
of the two cases E(M,N) = 10 ·M if N mod 2 = 0, and E(M,N) = 5 ·M if
N mod 2 = 1, respectively. This evaluation scheme extends to higher dimensional
cyclic-coefficients. Moreover, a polytope may have a set of Ehrhart polynomials.

M

N
access, local memory of processor P0

access, local memory of processor P1

Pi number of local accesses Gi

P0
1
4
(5·M ·N − [10, 5]N ·M − [6, 5]M ·N) +

�
12 10
6 5

�
N,M

)

P1
1
4
(5·M ·N − [0, 5]N ·M − [4, 5]M ·N +

�
0 0
4 5

�
N,M

)

Fig. 2. Accesses to array U and default-distribution of array U
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In this case its polynomials are defined for convex subsets of the parameter space,
called the validity domains.

Now our two primitives for data distribution, block aggregation and convolu-
tion of blocks, have to be translated into terms of convex polytopes. We begin
with the primitive that addresses block aggregation. It captures the effect of
data distribution with equally sized blocks :

Let x′ = fl(x) ∈ D denote the index point accessed by reference Rl at
iteration point x ∈ I. Because data distribution applies to dimension d the block
identified by x′d = 
xd/B� is accessed at x. The non-linear expression 
xd/B�
can be transformed into a linear expression at the expense of an additional
unknown b and a constraint Cd. If we encounter an equation containing 
xd/B�,
we replace it by a new free variable b and additionally constrain the admissible
range of xd to satisfy Cd: B · b ≤ xd < B · (b+ 1).

We proceed with the primitive for the convolution of blocks. It captures the
effect of a cyclic data distribution. Let therefore b = fl(x) denote the expression
that evaluates to the block accessed by reference Rl at iteration point x ∈ IN .
Then this block b will be assigned to processor b mod P . The expression b mod P
must be transformed into a linear expression to fit into our linear framework.
We replace it by (b − P · z), where z is a new free variable, and additionally
constrain the expression b to satisfy Cb: P · z ≤ b < P · (z + 1).

Thus we can use the primitives above to describe sets of iteration points
without leaving the domain of convex polytopes.

3 Data Transformation

Our method to select data transformations and data distributions can be subdi-
vided into two phases: The first phase computes a set of optimal transformations
and distributions for each reference separately. This approach is guaranteed to
succeed in the case of injective index functions [5], and optimality coincides
with the absence of remote accesses. The second phase ranks these candidate
transformations; it compares their associated Ehrhart polynomials considering
all references in concert and selects the best transformation among all candidate
transformations.

Fig. 3 shows the three main steps in the generation of a candidate trans-
formation. During step one basis vectors are selected which span subspaces of
the iteration space such that these subspaces are accessed by exactly one pro-
cessor (a). Then these vectors are mapped to the index space, where they span
subspaces accessed by at most one processor (b). Within the next step, an uni-
modular transformation is determined which makes these subspaces orthogonal
to one of the axes (c) [5]. Then the resulting array is sliced into blocks along the
selected axis. Each of these blocks is either unused or it is used by exactly one
processor, which leads to a certain utilization pattern of memory blocks.

Finally, an offset is determined to shift the pattern such that it matches
the data distribution. The result is a transformation which turns all accesses
performed by one reference into local accesses.
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3.1 Ranking References

We first show how to rank a data transformation with respect to a single reference
R. We start with the convex polytope of the iteration space I and decompose it
into subspaces Ip, such that subspace Ip is executed by processor Pp. Thus

I = {x ∈ Zk | A · x+C · n+ b ≥ 0}
for appropriate matrices A,C, and a vector b. The Ehrhart polynomial I of I
maps to the number of iterations to be executed by all parallel processors. In
case of the multi-grid-example shown in Fig. 1 we obtain the Ehrhart polynomial

I(M,N) =M ·N −M −N + 1

Because we assume a cyclic mapping of iteration points in the parallel dimension
j onto a total of P parallel processors, it follows that

Ip = {x | x ∈ I ∧ xj mod P = p}
Thus every set Ip also is a convex polytope, and the Ehrhart polynomial Ip of
Ip exists. For example

Ip(M,N) =
1
2
(M ·N −M −

[
2 1
0 1

]
p,M

·N +
[
2 1
0 1

]
p,M

)

for our running example. To compute the index point within the transformed
index space, we have to apply the transformation x �→ T · x+ T n ·n+ t to the
index point f(x). Then we can investigate the block-cyclic distribution of the
array in order to detect whether the array element t(f(x)) = x′′ that is accessed
at iteration point x is a local array element of processor Pp. The according
constraint Cp thus reads

Cp : B · p ≤ πd(x′′)− (B · P ) · z2 < B · (p+ 1)

processor P0 processor P1subspace 1 subspace 2

1

j

i
w2

w1

4

5

6

7

8

9

10

v2

v1

i

j

i

j

(a) iteration space (b) index space (c) new index space

Fig. 3. Steps in the generation of a candidate transformation
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Note that πd(x) denotes the projection onto component xd. Thus the set of
iteration points Lp that spawn accesses to local array elements is equal to

Lp = {x ∈ Ip | Cp(x) = true}

We observe that the set Lp also is a convex polytope. The set Rp that spawns
remote accesses is equal to the difference Rp := Ip − Lp, which is not convex
in the general case. Nevertheless, the polynomial of Rp exists and maps to the
number of remote accesses. For reference R1 = U(I-J, J-1) of our running
example and B = 1, t = id, we obtain:

L0(M,N) =
1
4
(M ·N − [2, 1]N ·M − [2, 1]M ·N +

[
4 2
2 1

]
N,M

)

Note that L0 is a specialization of L(M,N, p) with p = 0. Hence we can compute
the polynomial |L0(M,N)−L1(M,N)|, which denotes the imbalance of remote
memory accesses for the processors involved. In Sect. 6 we will provide further
comments on the effect of such an imbalance.

3.2 Ranking Transformations

At this point we conclude that the construction of Lp as shown above allows to
determine the local-remote access ratio of any reference Rl. We start with the
iteration space as a parametric polytope, introduce a new parameter p to select
iteration points executed by processor Pp and further restrict this polytope to
contain only those points with local accesses. If we omit the parameter p that
represents a processor Pp, we yield the desired polytope Ll.

The volume of the polytope Ll is represented by an Ehrhart polynomial Ll,
which serves as a metric to rank a transformation with respect to reference Rl.
Thus the sum L =

∑
l Ll along all references, complemented by the polynomial

G that represents the total number of memory accesses, reflect the local-remote
access ratio of an entire loop nest N and provides the desired metric to rank the
combination of a linear data transformation and a block-cyclic data distribution.

We do not consider the case of multiple validity domains for the polytopes
Ll. In this case, one would need more information regarding the parameters of
the program in order to choose the right validity domain.

3.3 Final Selection

To finally select a transformation that performs well for the entire loop nest, we
symbolically compare the Ehrhart polynomials of different transformations and
keep the best among all candidate transformations. Given a finite set of trans-
formations, which will be constructed in Sect. 4, we compare the polynomials
L of these transformations. Without further knowledge on program parameters,
we first simplify periodic coefficients, i.e., we replace them by their arithmetic
average, we unify program parameters, and then we compare the coefficients
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EM (M, N, p) =
1

4
· (5 · M · N −

�
10 5
0 5

�
p,N

· M −
�
6 5
4 5

�
p,M

· N +

"�
12 10
6 5

�
N,M

,

�
0 0
4 5

�
N,M

#
p

)

EN(M, N, p) =
1

4
· (6 · M · N −

�
12 6
0 6

�
p,N

· M − 6 · N +

�
12 6
0 6

�
p,N

)

Fig. 4. Ehrhart polynomials associated with default-distributions

of the polynomials in descending order of their degree. Fig. 4 shows Ehrhart
polynomials EM and EN , of our running example for 2 parallel processors. The
polynomial EM represents a default-distribution along the M -axis, whereas EN

represents a distribution along the N -axis. Both polynomials map to the number
of local accesses, which implies that the data distribution along the N -axis is
superior to that along the M -axis, because 6

4 ·M · N > 5
4 ·M · N for signif-

icant problem parameters M,N . Moreover, these terms do not depend on the
processor coordinate p. The distribution of array U along the M -axis (EM ) is
illustrated in Fig. 2.

4 Enumerating Transformations

Although the result of the preceding subsection allows to rank a data transforma-
tion or a given program formulation and therefore provides a precious result by
itself, we are interested in enumerating candidate transformations that provide
locality in order to pick the best one by means of metric L.

We first search for n − 1 vectors w1, . . . ,wn−1 within the n-dimensional
iteration space I that span disjoint subspaces of dimension n− 1. If Io is such a
subspace identified by some origin o, i.e., Io = {x ∈ I | x = o+

∑n−1
i=1 ki·wi, ki ∈

Q}, the following implication should hold:

x,x′ ∈ Io ⇒ xp mod P = x′p mod P

Thus we intend to assign a subspace Io to a unique processor. In terms of
generating vectors wi we require for arbitrary iteration points x,x′ ∈ I that

x′ = x+
n−1∑
i=1

(ki · wi) ⇒ xp mod P = x′p mod P (1)

Theorem 4.1 gives a sufficient condition that allows for the selection of wi. Note
that below p denotes the parallel dimension of the loop nest:

Theorem 4.1 Let w1, . . . ,wn−1 denote linearly independent generating vec-
tors from Zn such that wi = (w1,i, . . . , wn,i)

t. Then these vectors wi satisfy
constraint (1) above, if:
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i) ∀i : gcd(w1,i, . . . , wn,i) = 1 and
ii) ∀j : there exists at most one i: wj,i �= 0 and
iii) ∀i : wp,i mod P = 0

The following implication applies to the index space:

Theorem 4.2 Let w1, . . . ,wn−1 denote linearly independent vectors from Zn

satisfying constraint (1). Let f(x) = F ·x+F n ·n+f denote an index function
having a square and invertible access matrix F . Let further vi = F · wi denote
images of vectors wi under the linear part of the index function f . Then:

f(x′) = f(x) +
n−1∑
i=1

ki · vi ⇒ xp mod P = x′p mod P

Thus vectors vi mentioned in Theorem 4.2 span subspaces of the index space
which are accessed by at most one processor. The formulation of Theorem 4.2
implies that only those index points are involved which have a counterpart in
the iteration space. Fig. 3 (a) illustrates generating vectors wi, whereas Fig. 3
(b) illustrates vectors vi of both theorems above.

It remains to compute the transformation T . Let v′
i = T ·vi denote the image

of vi under transformation T . If there exists an index j such that all vectors
v′

i have a 0-entry in their jth component, then it is efficient to distribute along
this dimension. We compute such a transformation T by application of Gaussian
elimination combining vectors vi into a matrix of n rows and n− 1 columns. Its
rank is n−1, because vectors vi are linearly independent. Now we eliminate the
entries of the last row by Gaussian elimination and place that row on a desired
level. The elimination algorithm emits the transformation T .

5 Data Distribution

So far, we have computed the transformation matrix. It remains to determine
the distribution parameters. This is done in two steps. First we determine the
resulting utilization pattern, then an offset for the transformation function is
computed

5.1 The Utilization Pattern

First, we introduce an important prerequisite, the notion of an array slice:

Definition 5.1 A slice of an array X with respect to a dimension d is a subspace
of the index space DX which results from the evaluation of a fixed coordinate
in dimension d. We say that a processor owns a slice Sk, if it accesses elements
within the slice but no other processor does access its elements.

The utilization pattern consists of slices that are owned by a specific processor
and of unused slices. Using ’*’ to denote unused slices, we can describe the
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(a) predicted performance (b) observed performance

Fig. 5. Estimated and observed performance of several multi-grid versions

pattern for the candidate transformation in Fig.3 (c) as ’0,*,*,*,1,*,*,*’. We
have a slice owned by processor 0, followed by three unused slices, followed by a
slice owned by processor 1, etc. This pattern repeats cyclically. The blocks with
unused slices always have the same size [5], in this case three.

Therefore, a simple iterative algorithm can be used to compute the pattern.
Three cases must be distinguished: In the first case, the pattern fits immediately
to a cyclic distribution, like the pattern ’0, *, 1, *, 2, *’ fits in the case of 3
processors. In the second case, a reversal transformation must be applied to the
array to make the pattern fit to a distribution, which for example is true for the
pattern ’2, *, 1, *, 0, *’. In the third case, the pattern cannot be mapped to
the distribution. Hence these transformations are removed from the set of valid
candidates.

5.2 The Offset

Up to now, we just know the portion T of the transformation t(x) = T ·x+T n ·
n+ t. The offset T n ·n+ t should be chosen such that every processor accesses
those slices that it owns itself. This property is satisfied for the index function
without offset. We have to determine the offset of transformation t such that it
compensates the offset of f .

In the context of our simple processor-mapping the iteration point 0 is exe-
cuted by processor P0. Moreover, slice S0 is always owned by processor P0. Thus
it is sufficient to choose the offset such that iteration point 0 causes an access
to slice S0. Starting with t(f(0)) = 0 we yield T n = −T · F n ∧ t = −T · f .

6 Results and Conclusion

We have applied our techniques to a multi-grid application and investigated their
impact on its execution time. Fig. 5 (a) shows ratios of remote accesses to be
executed, whereas Fig. 5 (b) shows the execution time in seconds we observed
on a SCI-cluster of 8 nodes and a matrix size of 512× 512.

The bars from left to right represent two default versions, of which the first
had all data on one node, while the second one employed a default distribution
provided by the shared memory interface, 5 versions that have been optimized



424 Felix Heine and Adrian Slowik

for one of the 5 references to array U, one that has been optimized for array F
and combinations optimized for U and F.

Stacked bars in sub-figure (a) are subdivided to indicate contributions of
single references. Absent hatch patterns indicate that the according references
do not contribute remote accesses. The real execution time observed on the
SCI-cluster shown in sub-figure (b) is seen to conform strikingly well to that
estimated by inspection of the remote-to-local ratio. The small deviation is due to
imbalances in remote references across processors. These cause some processors
to stall at synchronization barriers [5]. Compared to the worst default-parallel
version, which takes 12.37s to complete, the selected version of the multi-grid
application needs only 3.58s. It has been optimized for arrays U and F (bar F1U1)
in concert. This gives an improvement of approx. 3.5.

From this example we conclude that our novel techniques significantly boost
the performance of regular programs on NUMA-architectures. They are suited
to improve data distributions of explicitly parallel programs and to guide data
distribution optimizations of parallelizing compilers. Future work will address a
broader set of application programs and more workstations.
Acknowledgments: We are grateful to Philippe Clauss who provided the
initial implementation of Ehrhart polynomials.
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