
A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 320-324, 2000.
 Springer-Verlag Berlin Heidelberg 2000

Optimal Mapping of Pipeline Algorithms1

Daniel González, Francisco Almeida, Luz Marina Moreno, Casiano Rodríguez

Dpto. Estadística, I. O. y Computacion, Universidad de La Laguna, La Laguna, Spain
{dgonmor, falmeida, casiano}@ull.es

Abstract. The optimal assignment of computations to processors is a crucial
factor determining the effectiveness of a parallel algorithm. We analyze the
problem of finding the optimal mapping of a pipeline algorithm on a ring of
processors. There are too many variables to consider, the number of virtual pro-
cesses to be simulated by a physical processor and the size of the packets to be
communicated. We provide an analytical model for an optimal approach to
these elements. The low errors observed and the simplicity of our proposal
makes this mechanism suitable for its introduction in a parallel tool that com-
pute the parameters automatically at running time.

1 Introduction

The implementation of pipeline algorithms on a target architecture is strongly condi-
tioned by the actual assignment of virtual processes to the physical processors, their
simulation, the granularity of the architecture, and the instance of the problem to be
executed. To preserve the optimality of a pipeline algorithm, a proper combination of
these factors must be considered.

The amount of theoretical works [1], [4] contrast with the absence of software tools
to solve the problem, most of these solve the case under particular assumptions. Un-
fortunately, the inclusion of the former methodologies in a software tool is far of being
a feasible task.

The llp tool presented in [2] allows cyclic and block-cyclic mapping of pipeline al-
gorithms according to the user specifications. We have extended it with a buffering
functionality and it is also an objective of this paper to supply a mechanism that al-
lows llp to generate automatically the optimal mapping.

1 The work described in this paper has been partially supported by the Canary Government

Research Project PI1999/122.

Optimal Mapping of Pipeline Algorithms 321

void f() {
 Compute(body0);
 While (running) {
 Receive();
 Compute(body1);
 Send();
 Compute(body2);
 }
}

Fig. 1. Standard loop on a pipeline
algorithm.

2 The Problem

The pipeline mapping problem is defined as finding the optimal assignment of a vir-
tual pipeline to the actual processors to minimize the execution time. We consider that
the code executed by every virtual process of the pipeline is the standard loop of fig-
ure 1. The code of figure 1 represents a wide range of situations as is the case of many
parallel Dynamic Programming algorithms [2], [3].

The classical technique consist of
partitioning the set of processes following a
mixed block-cyclic mapping depending on
the Grain G of processes assigned to each
processor. According to the granularity of the
architecture and the grain size G of the
computation, it is convenient to buffer the
data communicated into the sender processor
before an output is produced. The use of a
data buffer of size B reduces the overhead in
communications but can introduce delays
between processors increasing the startup of
the pipeline.

We can now formulate the problem: Which are the optimal values for G and B?

3 The Analytical Model

Given a parallel machine, we aim to find an analytical model to obtain the optimal
values of G and B for an instance of a problem. The time that elapses from the mo-
ment that a parallel computation starts to the moment that the last processor finishes
executions has to be modeled. This problem has been previously formulated by [2]
using tiling. The size of the tiles must be determined assumed the shape. However, the
approach taken assumes that the computational bodies 0 and 2 in the loop are empty.
Also, the considerations about the simulation of the virtual processes are omitted.

When modeling interprocessor communications, it is necessary to differentiate
between external communication (involving physical processors) and internal commu-
nications (involving virtual processors). For the external communications, we use the
standard communication model. At the machine level, the time to transfer B words
between two processors is given by β + τ B, where β is the message startup time and τ
represents the per-word transfer time. With the internal communications we assume
that per-word transfer time is zero and we have to deal only with the time to access the
data. We differentiate between an external reception (βE) without context switch
between processes and an internal communication (βI) where the context switch must
be considered. We will also denote by t0,t1,t2i the time to compute respectively body0,
body1 and body2 at iteration i.

322 Daniel González et al.

Ts will denote the startup time between two processors. Ts includes the time needed
to produce and communicate a packet of size B. Tc denotes the whole evaluation of G
processes, including the time to send M/B packets of size B:

Ts = t0*(G - 1) + t1 * G * B + G*Σi = 1, (B-1) t2i + 2*βI * (G - 1)* B + βE * B +
β + τ *B

Tc = t0*(G - 1) + t1*G*M + G*Σi = 1, M t2i + 2*βI *(G - 1)*M + βE*M + (β + τ*B)*
M/B

The first three terms accumulate the time of computation, the fourth term is the
time of context switch between processes and the last terms include the time to com-
municate packets of size B.

According to the parameters G and B two situations may appear when executing a
pipeline algorithm. After a processor finishes the work in one band it goes to compute
the next band. At this point, data from the former processor may be available or not. If
data are not available, the processor spends idle time waiting for data. This situation
arises when the startup time of processor p (the first processor of the ring in the sec-
ond band) is larger than the time to evaluate G virtual processors, i. e, when Ts * p ≥
Tc. Then we denote by R1 the values (G, B) where Ts * p ≤ Tc and R2 the values (G, B)
such that Ts * p ≥ Tc.

For a problem with N stages on the pipeline (N virtual processors) and a loop of
size M (M iterations on the loop), if 1 ≤ G ≤ N/p and 1 ≤ B ≤ M the execution time
T(G, B) is:

T(G, B) =
T1(G, B)= Ts * (p - 1) +Tc * N/(G*p) in R1

T2(G, B)Ts * (N/G � 1)+Tc in R2

Fixed the number of processors p, the parameters βI,βE, β and τ are constants ar-
chitectural dependent and t0, t1, t2i , M and N are variables depending on the instance
of the problem. The actual values for these variables are known at running time. An
analytical expression for the values (G, B) leading to the minimum, will depend on the
five variables and seems to be a very complicated problem to solve. Instead of an
analytical approach we will approximate the values for (G, B) numerically. An impor-
tant observation is that T(G, B) first decreases and then increases if we keep G or B
fixed and move along the other parameter. Since, for practical purposes, all we need is
to give values for (G, B) leading us to the valley of the surface, a few numerical
evaluations of the function T(G, B) will be sufficient.

To introduce the model into a tool that automatically computes G and B, during the
execution of the first band, the tool estimates the parameters defining the function
T(G, B) and carries out the evaluation of the optimal values of G and B. The overhead
introduced is negligible, since only a few evaluations of the objective function are
required. After this first test band, the execution of the parallel algorithm continues
with the following bands making use of the optimal Grain and Buffer parameters.

Optimal Mapping of Pipeline Algorithms 323

4 Validation of the Model

We have applied the model to estimate the optimal grain G and optimal buffer B for
the 0-1 Knapsack Problem (KP) [3] and the Resource Allocation Problem (RAP) [2].
A pipeline algorithm for the RAP has the property that body2 does not take constant
time. Table 1 presents the values for (G-Model, B-Model) obtained with the model,
the llp-running time of the parallel algorithm for this parameters (Real Time), the
running times obtained with the best values of (G-Real, B-Real) and the best running
time (Best Real Time). The table also shows the error made ((Best Real Time - Real
Time) / Best Real Time) when we consider the parameters provided by the tool instead
of the optimal values.

The model shows an acceptable prediction in both examples with an error not
greater than 15 %.

5 Conclussions

We have developed an analytical model that predicts the effects of the Grain of proc-
esses and Buffering of messages when mapping pipeline algorithms. The model allows
an easy estimation of the parameters through a simple numerical approximation. The
model is capable to be introduced into tools (like llp) that produce the optimal values
for the Grain and Buffer automatically.

References

1. Andonov R., Rajopadhye S.. Optimal Orthogonal Tiling of 2D Iterations. Journal of Parallel
and Distributed computing, 45 (2), (1997) 159-165.

2. Morales D., Almeida F., García F., González J., Roda J., Rodríguez C.. A Skeleton for Par-
allel Dynamic Programming. Euro-Par�99 Parallel Processing Lecture Notes in Computer
Science, Vol. 1685. Springer-Verlag, (1999) 877�887.

Table 1. Estimation of G, B for the KP and RAP.

 P G-Model B-Model Real Time G-Real B-Real Best Real Time Error
KP 2 10 2048 140.08 20 5120 138.24 0.003
KP 4 10 768 70.84 20 1792 69.47 0.053
KP 8 10 512 35.85 20 768 35.08 0.097
KP 16 10 192 18.29 10 768 17.69 0.150
RAP 2 10 10 73.33 5 480 70.87 0.034
RAP 4 5 10 36.73 5 160 36.01 0.020
RAP 8 2 10 19.26 5 40 18.45 0.044
RAP 16 1 10 10.79 5 40 9.57 0.127

324 Daniel González et al.

3. Morales D., Roda J., Almeida F., Rodríguez C., García F.. Integral Knapsack Problems:
Parallel Algorithms and their Implementations on Distributed Systems. Proceedings of the
1995 International Conference on Supercomputing. ACM Press. (1995) 218-226.

4. Ramanujam J., Sadayappan.. Tiling Multidimensional Iterations Spaces for Non Shared-
Memory Machines. Supercomputing�91. (1991) 111-120.

	1	Introduction
	2	The Problem
	3	The Analytical Model
	4	Validation of the Model
	5	Conclussions
	References

