Logical Instantaneity and Causal Order:
Two “First Class” Communication Modes
for Parallel Computing

Michel Raynal

IRISA
Campus de Beaulieu
35042 Rennes Cedex, France

raynal@irisa.fr

Abstract. This paper focuses on two communication modes, namely
Logically Instantaneity (L1) and Causal Order (cO). These communica-
tion modes address two different levels of quality of service in message
delivery. LI means that it is possible to timestamp communication events
with integers in such a way that (1) timestamps increase within each
process and (2) the sending and the delivery events associated with each
message have the same timestamp. So, there is a logical time frame in
which for each message, the send event and the corresponding delivery
events occur simultaneously. CO means that when a process delivers a
message m, its delivery occurs in a context where the receiving process
knows all the causal past of m. Actually, L1 is a property strictly stronger
than co.

The paper explores these noteworthy communication modes. Their main
interest lies in the fact that they deeply simplify the design of message-
passing programs that are intended to run on distributed memory parallel
machines or cluster of workstations.

Keywords: Causal Order, Cluster of Workstations, Communication Pro-
tocol, Distributed Memory, Distributed Systems, Logical Time, Logical
Instantaneity, Rendezvous.

1 Introduction

Designing message-passing parallel programs for distributed memory parallel
machines or clusters of workstations is not always a trivial task. In a lot of cases,
it reveals to be a very challenging and error-prone task. That is why any system
designed for such a context has to offer the user a set Services that simplify his
programming task. The ultimate goal is to allow him to concentrate only on the
problem he has to solve and not the technical details of the machine on which
the program will run.

Among the services offered by such a system to upper layer application pro-
cesses, Communication Services are of crucial importance. A communication
service is defined by a pair of matching primitives, namely a primitive that al-
lows to send a message to one or several destination processes and a primitive

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 35-&2] 2000.
© Springer-Verlag Berlin Heidelberg 2000



36 Michel Raynal

that allows a destination process to receive a message sent to it. Several commu-
nication services can coexist within a system. A communication service is defined
by a set of properties. From a user point of view, those properties actually define
the quality of service (QoS) offered by the communication service to its users.
These properties usually concern reliability and message ordering.

A reliability property states the conditions under which a message has to
be delivered to its destination processes despite possible failures. An ordering
property states the order in which messages have to be delivered; usually this
order depends on the message sending order. FIFO, causal order (co) [4l14] and
total order (TO) [4] are the most encountered ordering properties [7]. Reliability
and ordering properties can be combined to give rise to powerful communication
primitives such as Atomic Broadcast [4] or Atomic Multicast to asynchronous
groups

Another type of communication service is offered by CSP-like languages.
This communication type assumes reliable processes and provides the so-called
rendezvous (RDV) communication paradigm [2/8] (also called synchronous com-
munication.) “A system has synchronous communications if no message can be sent
along a channel before the receiver is ready to receive it. For an external observer,
the transmission then looks like instantaneous and atomic. Sending and receiving a
message correspond in fact to the same event” [5]. Basically, RDV combines syn-
chronization and communication. From an operational point of view, this type
of communication is called blocking because the sender process is blocked un-
til the receiver process accepts and delivers the message. “While asynchronous
communication is less prone to deadlocks and often allows a higher degree of par-
allelism (...) its implementation requires complex buffer management and control
flow mechanisms. Furthermore, algorithms making use of asynchronous communi-
cation are often more difficult to develop and verify than algorithms working in a
synchronous environment” [6]. This quotation expresses the relative advantages
of synchronous communication with respect to asynchronous communication.

This paper focuses on two particular message ordering properties, namely,
Logical Instantaneity (L1), and Causal Order (CO). The LI communication mode
is weaker than RDV in the sense that it does not provide synchronization; more
precisely, the sender of a message is not blocked until the destination processes
are ready to deliver the message. But LI is stronger than co (Causally Ordered
communication). CO means that, if two sends are causally related [10] and con-
cern the same destination process, then the corresponding messages are delivered
in their sending order [4]. Basically, cO states that when a process delivers a
message m, its delivery occurs in a context where the receiving process already
knows the causal past of m. CO has received a great attention in the field of
distributed systems, this is because it greatly simplifies the design of protocols
solving consistency-related problems [14].

It has been shown that these communication modes form a strict hierarchy
[6]T5). More precisely, RDV = LI = CO = FIFO, where X = Y means that if
the communications satisfy the X property, they also satisfy the Y property.
(More sophisticated communication modes can found in [I].) Of course, the less



Logical Instantaneity and Causal Order 37

constrained the communications are, the more efficient the corresponding exe-
cutions can be. But, as indicated previously, a price has to be paid when using
less constrained communications: application programs can be more difficult to
design and prove, they can also require sophisticated buffer management proto-
cols. Informally, LI provides the illusion that communications are done according
to RDV, while actually they are done asynchronously. More precisely, LI ensures
that there is a logical time frame with respect to which communications are
synchronous.

This paper is mainly centered on the definition of the LI and CO communica-
tion modes. It is composed of four sections. Section [2] introduces the underlying
system model. Then, Section [3]and Section [4] glance through the LI and co com-
munication modes, respectively. As a lot of literature has been devoted to Co,
the paper content is essentially focused on LI.

2 Underlying System Model

2.1 Underlying Asynchronous Distributed System

The underlying asynchronous distributed system consists of a finite set P of n
processes {P1,..., P,} that communicate and synchronize only by exchanging
messages. We assume that each ordered pair of processes is connected by an
asynchronous, reliable, directed logical channel whose transmission delays are
unpredictable but finitd]. The capacity of a channel is supposed to be infinite.
Each process runs on a different processor, processors do not share a common
memory, and there is no bound on their relative speeds.

A process can execute internal, send and receive operations. An internal
operation does not involve communication. When P; executes the operation
send(m, P;) it puts the message m into the channel connecting P; to P; and
continues its execution. When P; executes the operation receive(m), it remains
blocked until at least one message directed to P; has arrived, then a message is
withdrawn from one of its input channels and delivered to P;. Executions of in-
ternal, send and receive operations are modeled by internal, sending and receive
events. Processes of a distributed computation are sequential; in other words,
each process P; produces a sequence of events e;1...e; ... This sequence can
be finite or infinite. Moreover, processes are assumed to be reliable.

Let H be the set of all the events produced by a distributed computation.

This computation is modeled by the partially ordered set H= (H, ﬂ), where

" Jenotes the well-known Lamport’s happened-before relation [10]. Let e; , and
e,y be two different events:

t=jNz <y
hb e — ‘ - ;
Cin o €y V 3m : e; 5 = send(m, P;) A e;,, = receive(m)
hb hb
Vide:e —eNe— ey

! Note that channels are not required to be FIFO.



38 Michel Raynal

So, the underlying system model is the well known reliable asynchronous dis-
tributed system model.

2.2 Communication Primitives at the Application Level

The communication interface offered to application processes is composed of two
primitives denoted SEND and DELIVER.

— The SEND(m, dest,,) primitive allows a process to send a message m to a
set of processes, namely dest,,. This set is defined by the sender process P;
(without loss of generality, we assume P; ¢ dest,,). Moreover, every mes-
sage m carries the identity of its sender: m.sender = i. The corresponding
application level event is denoted SEND,;, sender ().

— The DELIVER(m) primitive allows a process (say P;) to receive a message that
has been sent to it by an other process (so, P; € desty,). The corresponding
application level event is denoted DELIVER;(m).

It is important to notice that the SEND primitive allows to multicast a message
to a set of destination processes which is dynamically defined by the sending
process.

3 Logically Instantaneous Communication

3.1 Definition

In the context of LI communication, when a process executes SEND(m, dest,,)
we say that it “Li-sends” m. When a process executes DELIVER(m) we say that
it “Li-delivers” m. Communications of a computation satisfy the LI property if
the four following properties are satisfied.

— Termination. If a process Li-sends m, then m is made available for Li-delivery
at each process P; € dest,,. P; effectively Li-delivers m when it executes the
corresponding DELIVER primitiv.

— Integrity. A process Ll-delivers a message m at most once. Moreover, if P;
LI-delivers m, then P; € dest,,.

— Validity. If a process LI-delivers a message m, then m has been Li-sent by
m.sender.

— Logical Instantaneity. Let IN be the set of natural integers. This set consti-
tutes the (logical) time domain. Let H, be the set of all application level
communication events of the computation. There exists a timestamping func-
tion 7 from H, into IN such that V(e, f) € H, x H, [11]:

2 Of course, for a message (that has been Li-sent) to be Li-delivered by a process
P; € destn, it is necessary that P; issues “enough” invocations of the DELIVER
primitive. If m is the (z + 1)th message that has to be Li-delivered to P;, its LI-
delivery at P; can only occur if P; has first Li-delivered the = previous messages and
then invokes the DELIVER primitive.



Logical Instantaneity and Causal Order 39

(LI ) e and f have been produced by the same process with e first
=T(e) <T(f)
(LI3) Vm :Vj € desty, : € = SENDyy, sender(m) A f = DELIVER;(m)
=T(e)=T7(f)

From the point of view of the communication of a message m, the event
SENDy, sender (M) is the cause and the events DELIVER,(m) (j € dest,,) are the
effects. The termination property associates effects with a cause. The validity
property associates a cause with each effect (in other words, there are no spurious
messages). Given a cause, the integrity property specifies how many effects it can
have and where they are produced (there are no duplicates and only destination
processes may deliver a message). Finally, the logical instantaneity property
specifies that there is a logical time domain in which the send and the deliveries
events of every message occur at the same instant.

Figure [Mla describes communications of a computation in the usual space-
time diagram. We have: mj.sender = 2 and dest,,, = {1,3,4}; ma.sender =
mag.sender = 4, desty,, = {2,3} and dest,,, = {1,3}. These communications
satisfy the LI property as shown by Figure[l.b. While RDV allows only the ex-
ecution of Figure [Ilb, L1 allows more concurrent executions such as the one
described by Figure [l a.

logical time tm; < tmy, < tmg
* * *

P l
o / w1
" J

mz ms3 | y M2 s

a. A "Real” Computation b. Its "L1” Counterpart

Fig. 1. Logical Instantaneity

3.2 Communication Statements

In the context of LI communication, two types of statements in which commu-
nication primitives can be used by application processes are usually considered.

— Deterministic Statement. An application process may invoke the DELIVER
primitive and wait until a message is delivered. In that case the invocation
appears in a deterministic context (no alternative is offered to the process
in case the corresponding SEND is not executed). In the same way, an ap-
plication process may invoke the SEND primitive in a deterministic context.



40 Michel Raynal

— Non-Deterministic Statement. The invocation of a communication primitive
in a deterministic context can favor deadlock occurrences (as it is the case,
for example, when each process starts by invoking DELIVER.) In order to
help applications prevent such deadlocks, we allow processes to invoke com-
munication primitives in a non-deterministic statement (ADA and similar
languages provide such non-deterministic statements). This statement has
the following syntactical form:

select_com SEND(m, dest,,) or DELIVER(m') end_select_com

This statement defines a non-deterministic context. The process waits until
one of the primitives is executed. The statement is terminated as soon as
a primitive is executed, a flag indicates which primitive has been executed.
Actually, the choice is determined at runtime, according to the current state
of communications.

3.3 Implementing LI Communication

Due to space limitation, there is not enough room to describe a protocol imple-
menting the LI communication mode. The interested reader is referred to [12]
where a very general and efficient protocol is presented. This protocol is based
on a three-way handshake.

4 Causally Ordered Communication

4.1 Definition

In some sense Causal Order generalizes FIFO communication. More precisely, a
computation satisfies the cO property if the following properties are satisfied:

— Termination. If a process CO-sends m, then m is made available for co-
delivery at each process P; € dest,,. P; effectively co-delivers m when it
executes the corresponding DELIVER primitive.

— Integrity. A process CO-delivers a message m at most once. Moreover, if P;
co-delivers m, then P; € desty,.

— Validity. If a process cO-delivers a message m, then m has been CO-sent by
m.sender.

— Causal Order. For any pair of message m1 and m2 such that co-send(m1) s
co-send(m2) then, V p; € dest,,1 Ndestn2, p; CO-delivers m1 before m2.

Actually, cO constraints the non-determinism generated by the asynchrony of
the underlying system. It forces messages deliveries to respect the causality order
of their sendings.

Figure [l depicts two distributed computation where messages are broadcast.
Let us first look at the computation on the left side. We have send(ml) L
send(m?2); moreover, m; and mgy are deliverd in this order by each process.
The sending of mg is causally related to neither m; nor mo, hence no constraint



Logical Instantaneity and Causal Order 41

applies to its delivery. If follows that communication of this computation satisfies
co property. The reader can easily verify that the right computation does not
satisfy the cO communication mode (the third process delivers m; after mao,

while their sendings are ordered the other way by Eﬁ)

N Nl
= =

m3 m3

Fig. 2. Causal Order

4.2 TImplementation Protocols

Basically, a protocol implementing causal order associates with each message a
delivery condition. This condition depends on the current context of the receiving
process (i.e., which messages it has already delivered) an on the context of the
message (i.e., which message have been sent in the causal past of its sending).

The interested reader will find a basic protocol implementing causal order in
[14]. More efficient protocols can be found in [3] for broadcast communication
and in [13] for the general case (multicast to arbitrary subsets of processes). A
formal (ad nice) study of protocols implementing the CO communication mode
can be found in [J].

References

1. Ahuja M. and Raynal M., An implementation of Global Flush Primitives Using
Counters. Parallel Processing Letters, Vol. 5(2):171-178, 1995.

2. Bagrodia R., Synchronization of Asynchronous Processes in CSP. ACM TOPLAS,
11(4):585-597, 1989.

3. Baldoni R., Prakash R., Raynal M. and Singhal M., Efficient A-Causal Broad-
casting. Journal of Computer Systems Science and Engineering, 13(5):263-270,
1998.

4. Birman K.P. and Joseph T.A., Reliable Communication in the Presence of Fail-
ures. ACM TOCS, 5(1):47-76, 1987.

5. Bougé L., Repeated Snapshots in Distributed Systems with Synchronous Com-
munications and their Implementation in CSP. T'CS, 49:145-169, 1987.

6. Charron-Bost B., Mattern F. and Tel G., Synchronous, Asynchronous and
Causally Ordered Communications. Distributed Computing, 9:173-191, 1996.

7. Hadzilacos V. and Toueg S., Reliable Broadcast and Related Problems. In Dis-
tributed Systems, ACM Press (S. Mullender Ed.), New-York, pp. 97-145, 1993.



42

10.

11.

12.

13.

14.

15.

Michel Raynal

Hoare C.A.R., Communicating Sequential Processes. Communications of the
ACM, 21(8):666-677, 1978.

Kshemkalyani A.D. and Singhal M., Necessary and Sufficient Conditions on In-
formation for Causal Message Ordering and their Optimal Implementation. Dis-
tributed Computing, 11:91-111, 1998.

Lamport, L., Time, Clocks and the Ordering of Events in a Distributed System,
Communications of the ACM, 21(7):558-565, 1978.

Murty V.V. and Garg V.K., Synchronous Message Passing. Tech. Report TR
ECE-PDS-93-01, University of Texas at Austin, 1993.

Mostefaoui A., Raynal M. and Verissimo P., Logically Instantaneous Commu-
nications in Asynchronous Distributed Systems. 5th Int. Conference on Parallel
Computing Technologies (PACT’99), St-Petersburg, Springer Verlag LNCS 1662,
pp- 258-270, 1999.

Prakash R., Raynal M. and Singhal M., An adaptive Causal Ordering Algorithm
Suited to Mobile Computing Environments. Journal of Parallel and Distributed
Computing, 41:190-204, 1997.

Raynal M., Schiper A. and Toueg S., The Causal ordering Abstraction and a
Simple Way to Implement it. Information Processing Letters, 39:343-351, 1991.
Soneoka T. and Ibaraki T., Logically Instantaneous Message Passing in Asyn-
chronous Distributed Systems. IEEE TC, 43(5):513-527, 1994.



	Introduction
	Underlying System Model
	Underlying Asynchronous Distributed System
	Communication Primitives at the Application Level

	Logically Instantaneous Communication
	Definition
	Communication Statements
	Implementing {sc li} Communication

	Causally Ordered Communication
	Definition
	Implementation Protocols


