Pseudovectorization, SMP, and Message Passing
on the Hitachi SR8000-F1

Matthias Brehm, Reinhold Bader, Helmut Heller, and Ralf Ebner

Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften,
Barer Strafle 21, 80333 Miinchen,
Germany
{Brehm, Bader, Heller, Ebner}@lrz.de
http://www.lrz-muenchen.de/services/compute/hlrb

Abstract. The Leibniz-Rechenzentrum in Munich has started operating
a 112-node Hitachi SR8000-F1 with a peak performance of 1.3 Teraflops
in the second quarter of 2000, the fastest computer in Europe. In order
to make use of the full memory bandwidth and hence to obtain a sig-
nificant fraction of the peak performance for memory intensive applica-
tions, the compilers offer preload and prefetch optimization strategies to
pipeline load /store operations, as well as automatic parallelization across
the 8 processors contained in every node. The nodes are connected by
a conflict-free crossbar, enabling efficient communication via standard
message-passing interfaces. An overview of the innovative architectural
concepts is given. We demonstrate to which extent the capabilities of the
compiler to automatically pseudovectorize/parallelize typical application
code are sufficient to produce well-performing code.

1 Aiming for Top Level Computing

In the first quarter of 2000, the Leibniz-Rechenzentrum (LRZ) Munich installed
a Hitachi SR8000-F1 intended to serve as Top-Level Compute Server in Bavaria
(the German acronym HLRB will be used in the following); this machine will
be again enlarged by approximately half its present computing power in a sec-
ond installation phase in 2Q2002. In installation Phase I the system consists
of 112 nodes. Each pseudo-vector node contains 9 CPUs, 8 of which are avail-
able for computational tasks, and 8 Gigabytes memory which is accessible from
the processors in a shared-memory model. The CPUs are similar to the IBM
Power Architecture, with proprietary extensions added by Hitachi (cf. Section
2.1). Since the processors are operated at a frequency of 375 MHz and 4 floating
point operations can be executed per cycle, each pseudo-vector node yields 12
GFlops peak performance. Thus the HLRB has a peak performance of 1.344
TFlops. The ninth processor on each node is needed as a service processor. The
nodes of the SR8000-F1 are inter-connected via a three-dimensional crossbar
with a bi-directional bandwidth of 2x950 MB/s between two nodes and a hard-
ware latency of about 5 microseconds. Further details of the HLRB hardware
are given in Tables[I] and 2] below.

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 1351-I361] 2000.
© Springer-Verlag Berlin Heidelberg 2000

1352 Matthias Brehm et al.

The LINPACK performance value of the HLRB is 1035 GFlops and a sus-
tained application performance has been measured to 450 GFlops. Hence, LRZ is
currently operating the fastest computer within Europe. Usage of the HLRB will
be open to German research projects which need high sustained performance and
are presently not feasible on any other existing computing platform. Resources
will be allocated to individual projects after a peer review process. Vectorizable
Codes will be preferred, however the SR8000 architecture is sufficiently flexible
that the system may be used in MPP mode as well.

2 The Innovative Architecture of the SR8000-F1

The architecture of the SR8000-F1 allows the usage of the vector programming
paradigm and the scalar SMP-Cluster programming paradigm on the same ma-
chine. This is achieved by combining the superscalar RISC CPUs into a virtual
vector CPU. In a traditional vector CPU the vectorized operations are executed
by a vector pipe which delivers one or more memory references per cycle to
the CPU. On the Hitachi SR8000-F1 the vectorizable operations are distributed
among the 8 effectively usable CPUs of a node (?COMPAS”, COoperative Micro-
Processors in single Address Space); furthermore in case of memory-bound com-
puting, specific memory references can be loaded into the registers or the caches
some time ahead of actual use ("PVP”, Pseudo-Vector-Processing). These two
properties of the SR8000-F1 nodes especially contribute to the high efficiency
obtained in comparison to other RISC systems.

Phase I Phase II

Configuration 1Q2000 Configuration 2Q2002
Number of SMP-Nodes 112 168
CPUs per Node 8 (+1 Service) 8 (4 1 Service)
Number of Processors 112*8 = 896 168*8 = 1344
Peak Performance per CPU 1.5 GFlop/s 1.5 GFlop/s
Peak Performance per Node 12 GFlop/s 12 GFlop/s
Peak Performance SR8000 1344 GFlop/s 2016 GFlop/s
LINPACK Performance of 1035 GFlop/s to be measured
the whole System
Performance from main 163.5 GFlop/s 244 GFlop/s
memory (most un-
favourable case)
Memory per Node 8 GByte 8 GByte
Memory of total system 928 GBytes 1344 GBytes
Aggregated Disk Storage 7.4 TBytes 10 TBytes
Bidirectional Communica- 2x950 MByte/s 2x950 MByte/s
tion bandwidth using MPI | (Hardware: 1 GByte/s) (Hardware: 1 GByte/s)

Table 1. Hardware Overview of LRZ’s HLRB.

Pseudovectorization, SMP, and Message Passing on the Hitachi SR8000-F1 1353

Processor and Memory Characteristics

Frequency and Processor Cycle 375 MHz (2.67 nanoseconds)

Maximum Number of Operations per Cycle 4

Number of Floating Point Registers 160 (Global: 32, Slide: 128)

Number of Integer Registers 32

Data Cache Size 128 KB (write through, 4-
way set associative, direct
mapped)

DCache line size 128 Bytes

DCache bandwidth to registers 32 Bytes / cycle

Memory Frequency and mem-cycle 250 MHz (4 ns)

Maximum Number of Loads from Memory 16 Bytes / mem-cycle

Bandwidth to Memory per Processor 4 GB/s (32 GB/s peak for
8-processor node)

Table 2. Properties of the processor and memory system used by Hitachi in
the Phase I installation. It has not yet been decided whether a more advanced
CPU model will be used in the Phase II upgrade.

2.1 Pseudo-Vector-Processing (PVP)

Hitachi’s extensions to the IBM POWER instruction set, which improve the
memory bandwidth, alleviate the memory bottleneck, which is the main deficit of
RISC-based High Performance Computing. This property, called Pseudo-Vector
Processing by Hitachi, may be used by the compiler to obtain data either directly
from memory via preload or via prefetch through the cache, depending on how
the memory references are organized (see Fig. [[] below). The concept of PVP
may be illustrated by the following example loop:

DO I=1,N Using prefetch operations, which may be overlapped
ACI) = B(I) + C(D) with the floating point operations, one obtains the se-
ENDDO quence shown in the right part of Figure @ Prefetch

is not very efficient when the main memory is accessed non-contiguously because
the prefetched cache line may contain unnecessary data. To improve this situ-
ation the preload mechanism was implemented. Preload transfers element data
directly to the registers as illustrated in Figure Bl The physical registers are
mapped to logical addresses via a sliding window technique. A special instruc-
tion (sliding window step) is used to update the slide window base value which
is held in a special purpose register.

2.2 Cooperative Micro Processors in Single Address Space
(COMPAS)

COMPAS enables the automatic distribution of computational work of a loop
among the 8 CPUs of an SMP node by the compiler (autoparallelization) and
the accompanying hardware support for synchronization. COMPAS may also

transfer of
element data

Matthias Brehm et al.

Preload @

Prefetch

E<:

Load

<:

Arithmetic Unit

i

transfer of
cache lines

Slide

Window
(for program use)

A

Fig. 1. Pseudo-vectorization: Prefetch and Preload.

Without PVP

With PVP

: |

|

load regl B(1) " vy
load regl C(1) Use the pre etc* ed da:a
add regl reg2 -> reg3 to calculate B(*) + C(*)
store reg3 A(1) |
’Kpitemﬁon ‘ Loop iteration *
4—, A Store the
calculation A(*)

Fig. 2. Loop structure without and with PVP Prefetch.

Example Loop: Software pipelined Code:
doi=1n FR32 =PLD a(l)
s=s+a(i) FR34 =PLD a(2)
end do FR36 =PLD a(3)
| FRI8=PLDa4) _______
do i=1,n-5
mapping from logical s=s+FR32
register numbers to slide 2
physical register end do
numbers is slided R
(Slide Window Step) s=s+FR34
s =s+FR36
s=s+FR38

PLD

PLD

PLD

time

PLD

DD |

)|

slide ‘ ADD

ADD

Fig. 3. Loop Structure with PVP Preload.

ADD

Pseudovectorization, SMP, and Message Passing on the Hitachi SR8000-F1 1355

be utilized by codes which use the nodes as 8-way SMP-nodes via OpenMP,
since version 1.0 of the OpenMP standard is implemented as part of the Hitachi
Fortran Compiler.

3 Benchmark Results and Principles for Code
Optimization

The most important criterion for evaluation of the offered machines was not the
peak performance but the actually obtained ”sustained” performance for a suite
of application benchmarks. Furthermore, several additional tests were performed
to obtain a measure of how the hardware performs in the least favorable situ-
ations or to evaluate scaling of MPI codes to the largest possible problem size.
The examples discussed in the following subsections will also provide insights on
the principles of optimizing code for the SR8000.

3.1 Memory Throughput

STREAM Benchmark This program (written by John D. McCalpin) is used
to evaluate the memory bandwidth of a node. The following loops are performed:

Copy Scale Add Triad
DO J=1,N DO J=1,N DO J=1,N DO J=1,N
C(I)=A(J) B(J)=S8*C(J) C(IH)=A(J)+B(J) A(J)=B(J)+S*C(J)
END DO END DO END DO END DO

The vector length N used in this case was 19,121,111, corresponding to a
memory usage of 437 MB for the program, and ensuring that it is really the
transfer from/to memory that is measured. The memory bandwidth is plotted
in Figure @] for all types of loops indicated above. A comparison with other
vendor’s hardware is provided in Table[3] The machine balance is obtained as

Platform Bandwidth Peak Machine |Remarks

(MB/s) Performance | Balance

(MFlops) | (Flop/Word)

SR8000-F1 22311 12000 4.3|8 Processors, 375 MHz
R12000 (SGI) 811 2400 23.7|4 Processors, 300 MHz
Pentium IIT 396 500 10.1|1 Processor, 500 MHz
Cray C90 103812 15360 1.2{16 Processors
NEX SX-5 583069 128000 1.8{16 Processors
IBM Nighthawk1 3872 7104 14.7|8 Processors, 222 MHz

Table 3. Overview of Triad memory bandwidth for various platforms.

the quotient of peak performance and bandwidth, the latter being expressed in 8-
Byte words; lower numbers are better, as far as memory-intensive (out-of-cache)
computing is concerned. Typically, RISC-based systems are at least an order of

1356 Matthias Brehm et al.

magnitude worse than the specialized vector processors. However, Hitachi has
nearly managed to bridge this gap by having a better ratio of memory cycle to
processor cycle to start with, as well as being able to access memory from all
processors in the SMP node simultaneously without too high losses: Of the 32
GBytes/s per node naively calculated from the single-processor bandwidth of
at least 22 GByte/s can actually be obtained. In order to see how the memory
bandwidth scales with the number of processors used, an OpenMP parallelized
version of the STREAM benchmark was run. Figure @] shows the efficiency

) as a function of the number of threads

E(n) = measured Bandvx.zldth(n) for the various loop types. The peak
n - peak Bandwidth(1) bandwidth for 1 processor is assumed

to be 4 GB/s (cf. Table). One ob-

STREAM: Memory bandwidth scaling (OpenMP)
T T T T T

0.95 T
Triad

0.9
0.85

08

Efficiency

0.75

0.7

0.65

0.6

.
1 2 3 4 5 6 7 8
Threads

Fig. 4. Memory band-width as measured in STREAM benchmark

serves a degradation for increasing numbers of threads. The differences between
Triad/Add and the other two tests are accounted for by a difference between
Load and Store: Triad/Add involves 2 Loads and 1 Store, while Scale/Copy
has only 1 Load and 1 Store. However it is not entirely clear why there is a
measurable difference between Scale and Copy. It must be remarked that other
RISC SMP machines degrade far more than the SR8000 node: On 8-way sys-
tems one can expect at most 40% of peak bandwidth. In the top ten list kept at
http://www.cs.virginia.edu/stream/top10/Bandwidth.html the SR8000-
F1 (as well as its predecessor) would be ranked at position 7.

Parallelization and Pseudo-vectorization for Triads Performing Triads
for variable vector length yields information not only about the memory through-
put, but of the complete register/cache/memory system. Furthermore, some of
the compiler’s capabilities to automatically parallelize and pseudovectorize code
are investigated. Figure [3] shows the per-formance of the (3 load + 1 store, 2
operation) triad

Pseudovectorization, SMP, and Message Passing on the Hitachi SR8000-F1 1357

DO I=1,N as a function of vector length for the four exe-
A(I) = B(I)*C(I) + D(I) cution modes possible on the SR8000:
END DO 1) COMPAS-parallel and pseudo-vectorized, 2)

COMPAS-parallel without pseudo-vectorization, 3) Non-parallel, but pseudo-
vectorized, 4) Neither parallel nor pseudo-vectorized. For these measurements,
the desired effect was obtained within a single program unit by inserting ap-
propriate compiler directives. Looking at case 3) first, one observes uniformly
high performance of up to 490 MFlops until the Level-1 Cache is exhausted at
approximately n = 4000. After that, performance is governed by the memory
throughput, where PVP achieves around 230 MFlops in the n — oo limit. Using
8 IPs in parallel allows for eightfold cache usage, hence the vector-like range
ends at n=30000, where a performance of 3360 MFlops is reached, the 6.86-fold
of what is obtained on a single IP. The vector-like characteristic of the perfor-
mance for small n is due to the domination of COMPAS startup times for short
vector lengths. The size of the cache performance window strongly depends on
the particular loop kernel. Very fat loop kernels may lead to register spill and
hence may require to be split up, too thin kernels are fused or suitably unrolled.
All of this is automatically performed by the compiler.

The n — oo performance achieved here is 1410 MFlops, which is the 6.13-fold
value of a single IP. Hence, due to PVP the triad achieves more than 40% of its
mazimum performance even when leaving the cache performance window, while
without PVP one obtains the RISC-typical value of around 7 %. This is of very
high importance for memory intensive computing tasks in technics and science.

Contiguous Triads
3500 T T T
Parallel, vectorized ———

Z“\ Parallel, not vectorized --se--r
3000 i\ Nonparallel, vectorized - Henene i
-

N¢nparallel, not vectorized

2500

2000 g

MFlops

1500 i —

1000 1

10000 100000 le+06 le+07
Vector Length

Fig. 5. Performance of Contiguous Triads as function of vector length.

3.2 Scalability of MPI Programs

Part of the LRZ benchmark suite was concerned with scalability studies. The
programs

1358 Matthias Brehm et al.

— FT (Fast Fourier Transform from NAS Parallel Benchmarks)
— MG (basic Multigrid Algorithm from NAS Parallel Benchmarks)
— HRD (ScaLAPACK call for Hessenberg transformation)

were performed on the SR8000-F1, the results of which are presented in the
following. The Class C 512x512x512 three dimensional Fast Fourier Transform
and the Class C Multigrid Test were performed in COMPAS mode on an in-
creasing number of nodes. The HRD Test was performed with a fixed number of
nodes but varying matrix sizes. The tests generally showed high scalability and
very good performance. From the programmers point of view, it is advantageous
that one has to deal only with a relatively small number of nodes instead of the
eightfold higher number of processors.

Benchmark |Nodes|Processors| Performance |MPI Efficiency
(GFlops) (relative to 4 nodes)
FT 4 32 15.5 1.00
8 64 29.5 0.95
16 128 56.9 0.92
32 256 109.8 0.89
MG 4 32 14.8 1.00
8 64 27.7 0.93
16 128 46.9 0.79
32 256 72.3 0.61
Benchmark|Nodes|Processors| Performance Matrix Size
HRD 32 256 11.8 1000 x 1000
32 256 52.8 10000 x 10000
32 256 134.0 30000 x 30000

3.3 Case Studies for the Hybrid (COMPAS/OpenMP + MPI)
Programming Paradigm

Parallel Vector Times Matrix As an example for the hybrid programming
model, we are going to look at a simple implementation of vector-matrix mul-
tiplication. Using MPI for the distributed memory version, there are only few
changes from the serial version. The structure of the code is shown in Figure [6]
(for the pure MPI version the OpenMP directives are just ignored). The perfor-
mance for matrix size n=10000 and n=40000 is given in Figure [{] It is obvious
that the hybrid version performs much better than the pure MPI version. We
first thought that this was due to the reduced amount of MPI communication.
However, further examination showed that not only the communication part
had shorter execution time, but also the computational part. The latter effect is
caused by the increased vector length in the algorithm. For an algorithm with
higher ratio of MPI-communication to computation the differences will be even
more marked.

Parallel Matrix Multiplication Parallelization of Matrix Multiplication via
MPI uses a ringcast scheme for matrix blocks, where the block size is chosen

Pseudovectorization, SMP, and Message Passing on the Hitachi SR8000-F1 1359

Computation Communication
(MPI_REDUCE_SCATTER)

B
m = vector length per node
m’ = m/(procs per node) = !SOMP PARALLEL
vector length per processor !$OMP DO PRIVATE(J,L)
DO J=1,N
SX(J) =0.0D0
Summation of local results | PO L=LM
m SX(J) = SX(J) + AL)*B(L,J)
> QA END DO
[INRIN— + END DO
!$OMP ENDDO NOWAIT
\ !$OMP END PARALLEL
mw c CALL MPL_REDUCE_SCATTER(...

Node 3 Redistribute (scatter) result

Fig. 6. Code Structure for parallel vector times matrix multiplication.

Vector x Matrix (veclength 10K and 40K)

40
w0 ﬁ
4
o
g 20
7] /\///
10
0 r
0 1 2 3 4 5 6 7 8 9

Number of Nodes (1 Node=8 Procs)

—— hybrid 10K e hybrid 40K
—e— pure mpi 10K = pure mpi 40K

Fig. 7. Performance for vector by matrix multiplication.

optimally for a given cartesian processor grid. Given a block (IB, JB) of ma-
trix C situated on a particular processor P, the required blocks of matrices A
and B are pipelined through this processor in the course of the calculation. Be-
tween the communication steps, a normal DGEMM-call is performed. One can
expect a nearly linear speed-up provided the block size is chosen large enough

1360 Matthias Brehm et al.

to essentially circumvent MPI latency. For this test a fixed amount of memory
per node was used; the matrix dimension correspondingly scales upward with
the square root of the number of nodes used. Figure |8 shows the dependence of

Parallel Matrix Multiply
900

COMPAS ===sex=: i
800 MPP (no changes) «««=x Y.
| MPP (optimized) « o=+ vy Wit
700 MATRIX/MPP s raeees A : ¥ H

600
500
400
300
200

Performance (GFlops)

—_
[=3
(=)

Nodes in X
—_— W RO\ 0\

Fig. 8. Performance of parallel matrix multiplication.

performance on the number of nodes in various situations in the upper box, for
the COMPAS case the lower box gives information about the node layout in the
cartesian grid; e. g., for 21 nodes a 3x7 grid was used. In the COMPAS case,
scaling is reasonably linear; for a yet unknown reason, square grids (4x4, 5x5,
...) appear to work particularly badly and should be avoided, at least with this
particular communication pattern. Memory per node was 1.6 GByte. For the
MPP (intra-node MPI) case, where 200 MByte of memory were used to obtain
the same memory footprint per node as in the COMPAS case, runs with usually
up to 256 processors (corresponding to 32 nodes) were performed. One obtains
the very bad performance shown by the lowest curve if one simply recompiles
the COMPAS code in scalar mode, using the scalar version of BLAS provided
by Hitachi. The reason for this is simply that the latter library was not properly
optimized at the time the tests were performed; as the ”matmul_gemm” curve in
Figure @shows, the code apparently did not optimally reuse the cache. Since the
LRZ hand-coded routine ("matmul_opt2”) works best for matrix sizes around
60-80, a smaller block size was chosen for a further run of the program yielding
the second-lowest curve in Figure 10, which shows an improvement by a factor
of 2.5. However, Hitachi also provides a proprietary library of highly optimized
routines, MATRIX/MPP. Use of these — with a large block size — yields a per-
formance comparable to COMPAS also for the internode case, as shown in the

Pseudovectorization, SMP, and Message Passing on the Hitachi SR8000-F1 1361

Performance in scalar mode
T

1200

T
matmul_gemm =—t—

matmul_opt2 ===x===
matmul_j5i4kb «e¥ee -
matmul_j4i5kb -
1000 + matmul_f90matmul -
best_fortran

800 | .- 4

600 |- i

Performance in MFlops

400 |

200

P S
1

L
1 10 100 1000
Vector Length

Fig. 9. Non-parallel (single-IP) matrix multiplication. The following variants are il-
lustrated: 1. matmul_gemm: Hitachi BLAS, 2. matmul_opt2, matmul_j5idkb, mat-
mul_j4i5kb: blocking and loop unrolling done by hand, 3. matmul f90matmul: Fortran
90 intrinsic, 4. best_fortran: Hitachi’s MATRIX/MPP implementation.

third-lowest curve of Figure[8. The drawback of MATRIX/MPP is that there is
a different API and presumably more working space has to be used.

4 Conclusion

Hitachi’s SR8000-F1 installation easily manages to provide the computational
power demanded by LRZ’s requirements and Hitachi’s own commitments. Our
first tests indicate that generally more effective usage of the machine may be
made by using the COMPAS mode as opposed to intra-node MPI (MPP-mode).
The automatic parallelization features available with the Fortran and C com-
pilers make it a relatively easy task to optimize high performance computing
code.

5 Further Reading and Details

A Superscalar RISC Processor with 160 FPRs for Large Scale Scientific Processing:
http://www.lrz-muenchen.de/services/compute/hlrb/system-en/Iccd99.pdf
Node Architecture and Performance Evaluation of the Hitachi SR8000:
http://www.lrz-muenchen.de/services/compute/hlrb/system-en/NodeArch.pdf
An overview of the Hitachi SR8000-F1 by Hitachi may also be found at:
http://www.hitachi-eu.com/hel/hpcc

Some of the STREAM results were taken from:
http://www.cs.virginia.edu/stream/top10/Bandwidth.html

	Aiming for Top Level Computing
	The Innovative Architecture of the SR8000-F1
	Pseudo-Vector-Processing (PVP)
	Cooperative Micro Processors in Single Address Space (COMPAS)

	Benchmark Results and Principles for Code Optimization
	Memory Throughput
	Scalability of MPI Programs
	Case Studies for the Hybrid (COMPAS/OpenMP + MPI)
Programming Paradigm

	Conclusion
	Further Reading and Details

