
An Architectural Meta-application Model for

Coarse Grained Metacomputing

Stephan Kindermann1 and Torsten Fink2

1 University of Erlangen-Nuremberg, Germany
snkinder@informatik.uni-erlangen.de

2 Free University of Berlin, Germany
tnfink@computer.org

Abstract The emerging infrastructures supporting transparent use of
heterogeneous distributed resources enable the design of a new class of
applications. These meta-applications are composed of distributed soft-
ware components. In this paper we describe a new model for component
based meta-application design based on a formal architectural descrip-
tion of the gross organization of an application. This structural descrip-
tion is enriched by a formal process algebraic characterization of com-
ponent behavior. Using this behavioral model we can formally check
meta-applications in an early development phase. We present simple ar-
chitectural styles developed to support data-flow and control-flow driven
meta-application design on top of the Amica metacomputing infrastruc-
ture.

1 Introduction

There is a growing interest in defining and constructing an infrastructure which
gives users the illusion that distributed, heterogeneous (computing and storage)
resources constitute one giant transparent environment, a metacomputer [8]. It
enables the development of a new class of applications: meta-applications. They
are composed of multiple (partly reusable) components. Looking at the current
practice of meta-application development there is no agreement on a common
programming model for component based application design.

In this paper we describe an abstract, formally concise, and extendable pro-
gramming model defined to develop meta-applications on top of our metacom-
puting environment Amica1 [2]. The overall organization of meta-applications
are given in a formal architecture description language (ADL) (see e.g. [6]).
Different architectural styles [13] are defined to build up a basic description vo-
cabulary which can be refined to define domain specific extensions. For every
element of the vocabulary its behavior is defined by a process algebra term. The
overall behavioral model of an application is automatically derived through the
appropriate composition of the behavioral description of its components. This
model can then be checked against a set of formal requirements (e.g. liveness

1 Abstract Metacomputing Infrastructure for Coarse Grained Applications

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 1223–1230, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

1224 Stephan Kindermann and Torsten Fink

and progress properties). This allows formal correctness checks on Amica meta-
applications in an early development phase.

The remainder of this article is as follows. In Sect. 2 we introduce shortly
the basic concepts and services of Amica. In Sect. 3 we introduce our new pro-
gramming model. In Sect. 4 we describe firstly how applications given in our
programming model are executed using Amica and secondly how a behavioral
model of the application is generated automatically which can be used as input
to formal analysis tools. In Sect. 5 we give an overview of related work and
discuss the advantages of our approach. Finally, an outlook to future work is
given.

2 The Amica Metacomputing Infrastructure

Amica has been designed as a prototypical middleware foundation to investigate
the composition of metacomputing applications from reusable components (e.g.
legacy systems). Amica provides abstraction of heterogeneous distributed data
storage by data objects and of computing facilities by metabricks. Additional
application specific code can be integrated using so called user bricks. Data ob-
jects (possibly replicated) are related dynamically to real storage resources (data
store objects) interconnected by link objects which provide abstraction of the
networking infrastructure of the metacomputer. Metabricks are related to the
basic computational services (bricks) based on a broker mechanism which looks
for appropriate brick factories. The concise meaning of ’appropriate’ is given by
a cost function which takes into account the current load of computing resources
provided by special objects named computation units. Essentially, Amica pro-
vides an infrastructure to carry out the instantiation of abstract data storage
and computing service requests transparently taking into account the current
load within the distributed system. The implementation relies on the standard
middleware foundation CORBA and uses in the current version an interpreter
based instantiation approach. For a more detailed description of the Amica in-
frastructure see [2].

3 The Amica Programming Model

A metacomputing application on top of Amica is composed of data storage and
computation components which are directly related to the abstract data objects
and metabricks of Amica. User-bricks allow additional application specific code
to be integrated. A basic set of control flow and data flow connectors is used to
specify and control component activation and interaction.

In the following we formally describe the organization of meta-applications as
a hierarchical collection of interacting components with well defined properties
and interfaces. This structural description is combined with a formal character-
ization of component behavior based on a process algebra. On this combination
we build up a basic vocabulary for meta-application description.

An Architectural Meta-application Model 1225

3.1 Architecture Description

Despite the variety of existing software architecture description languages (ADLs)
there is a considerable agreement about the role of structure in architecture de-
scription. Our description of metacomputing applications is based on ACME
[5] which emerged from a joint effort of the architecture research community to
provide a common intermediate representation for different ADLs.

Meta-applications are given as collections of components interconnected by
connectors in a meta-application graph. The structural description is enriched
by a behavioral characterization of components and connectors using the process
algebraic description language Lotos [10].

Definition 1. A meta-application graph (MG) is given as a bipartite graph,
which is characterized by a quintuple G = (Nodes, I, E, Beh).

– The Nodes of the graph consist of a set of components Comp and a disjoint
set of connectors Conn: Nodes = Comp ∪ Conn, Comp ∩ Conn = {}.

– The function I : Nodes → 2IP associates each node with its set of intercon-
nection points (∈ IP). Interconnection points are subdivided into ports (for
components) and roles (for connectors). (IP = Ports ∪ Roles).

– The interconnection of components and connectors via their ports and roles
is given by the relation E ⊆ (Comp × Ports) × (Conn × Roles).

– The function Beh : Nodes → LotosT erm associates each node to its behav-
ioral description in form of a Lotos process algebra term.

For a node c in a meta-application graph with an interconnection point p1
and an associated set of actions {a1, .., an} (e.g. services needed or provided or
events emitted at the interconnection point) the associated process term Beh(c)
defines a Lotos process c with parameter list [p1 a1, .., p1 an]. This list is ex-
tended accordingly if multiple interconnection points are defined for a node.
Interaction with other (node-) processes is exclusively possible via synchroniza-
tion with these externally oberservable actions.

3.2 An Architectural Style for Amica Meta-applications

Each node and each interconnection point in a meta-application graph is an
instance of a type from a set of predefined type definitions. These types are
used to build up a basic vocabulary Voc to describe the architecture of a meta-
application. This vocabulary along with a set of constraints is often called an
architecture style [13].

Definition 2. A meta-application vocabulary V oc to build up (behavioral) meta-
application graphs is given as a quintuple (NT, IPT, SC, BC) where NT is a set
of node (component or connector) types, IPT is a set of interconnection point
(port or role) types, SC is a set of structural constraints, and BC is a set of
behavioral constraints.

1226 Stephan Kindermann and Torsten Fink

DataObjectCpT

DataObjectType type
DFlowCnT

DReadPT
DWritePT

CreatePT

DeletePT

CinPT
CoutPT

CFlowCpT

WorkerCpTDAccessPT
String para

MetaBrickCpT
ServiceT service

FarmCnT

CinRT

CoutRT

CFlowCnT◆
CStartCnT

CEndCnT

DobRT
DAccessRTDobPT

◆

◆

0..1

0..1

◆

1
0..1

0..1
◆

◆*

UserBrickCpT

1..*

1

1..*

◆

◆

1

1

Fig.1. Basic meta-application vocabulary

The description of metacomputing applications on top of Amica is currently
based on a simple architectural vocabulary which is illustrated in Fig. 1.

It contains component and connector types to characterize the flow of control
and the flow of data, to describe farm parallelism, and to provide access to data
storage and computing resources. For brevity we omit the structural and seman-
tic constraints. In general, structural constraints are given by the associations in
the class diagram and first order logic predicates. Semantic constraints currently
are given in an action based temporal logic.

Data is stored in instances of the type DataObjectCpT. Its definition includes
two port types for read-write access and two port types to create and delete
object instances. The access to data object components is done via connectors
of the type DFlowCnT. It provides roles for connection to data objects and to
objects needing data access. Each component which is wired in control flow is an
instance of type CFlowCpT. This type defines two interconnection points of type
CinPT,CoutPT, characterizing incoming and outgoing control flow. Control flow
components are connected to control flow connectors (type CFlowCnT). Different
subtypes characterize connectors which split and combine control flow.

rep

ind
rep

ind

c_req

do_ind

do_rep

coτ
ccomp co:CoutPT

ci:CinRT co:CoutRT

ci:CinPT
ci

i1 i2

i2 i1
o

τ
cand

cor
o1

o2

[x =|= 0] -> o2

[x = 0] -> o1

vchoice
ci

split
o1

o2

cconn

ci v?x

c: CreatePT

d: DeletePT w_ind

w_rep

DO:DataObjectCpT

c d
r_ind

r_rep

w: DWritePT

r: DReadPT

do: DobRT
ind

rep

dflow:DFlowCnT

c_conf

c:DAccessRT
req

conf

o

oi1

i2

Fig.2. Basic data and control flow components and connectors

An Architectural Meta-application Model 1227

Examples of basic data and control flow components are given in Fig. 2.
Their basic behavior is illustrated in the form of labeled transition systems. Thus
control flow is simply propagated and data flow is based on a simple request–
confirm protocol.

Instances of the special connector type FarmCnT are used to express and
control ”bag of task” like parallel computations. Farm connectors are used only
in a well defined cooperation with data object and worker components, see Fig. 3.
After started the farm reads in a bag containing the tasks to be distributed
(using bi:DobRT) and starts a number of workers over ws:CoutRT (this number
is given as a property value of the connector). Then the tasks are distributed to
the workers using role do:DAccessRT. Thereafter the results are collected over
di:DAccessRT and stored in a result bag data object attached to role bo. This
description of the behavior corresponds directly to the Lotos description given
as skeleton in Fig. 3.

Data Flow

Control Flow

:DataObjectCpT
:DWritePT
:DReadPT

:DataObjectCpT
:DWritePT
:DReadPT

bi:DobRT

:FarmCnT ci:CinRT

workers:Int

ws:CoutRT
we:CinRT

di:DAccessRT
co:CoutRT

co:CoutPT

ci:CinPT
ci

di_req

di_conf

τ

co

do_req

do_conf

 (WorkerStart[ws](workers) >>

(DistributeTasks[do_req,do_conf](n) ||| CollectResults[di_req,di_conf](n)) >>

WorkerEnd[we](workers) >>

endproc

endproc

where

Beh(:FarmCnT) =

 process farm[ci,co,ws,we,bi_ind,bi_rep,bo_ind,bo_rep,di_req,di_conf,do_req,do_conf]:exit :=
ci; bi_ind;bi_rep?n:Nat;

bo:DobRT do:DAccessRT
di:DAccessPT

do:DAccessPT

(bo_ind!n;bo_rep;co;exit))

WorkerGroup[ws,we,do_req,do_conf,di_req,di_conf]

process WorkerGroup[ci,co,di_req,di_conf,do_req,do_conf]:exit :=

 |[ws,we,do_req,do_conf,di_req,di_conf]|

 (worker[ci,co,di_req,di_conf,do_req,do_conf] |||...||| worker[ci,co,di_req,di_conf,do_req,do_conf])

:WorkerCpT

Fig.3. Bag of task like parallelism based on farm connector and worker compo-
nent

3.3 A Small Example

A simple exemplary composition based on our vocabulary defining a ray tracing
meta-application is given in Fig. 4. Two data objects are involved, scen stores
the three dimensional scenario and pic stores the generated picture.

In init these data objects are created and initialised. Then, the remote
computation is started by a metabrick. In parallel the user can monitor the
current state of the picture by a specialized user brick. Using the graphical

1228 Stephan Kindermann and Torsten Fink

:CoutRT:CStartCnT

:DataObjectCpT
pic

type = Picture

:DataObjectCpT
scen

type = Text

init:UserBrickCpT

:DAccessRT

:DobRT
:DFlowCnT

:CoutRT

:CinRT
:CFlowCnT

:DAccessRT

:DobRT
:DFlowCnT

:DobRT

:DAccessRT
:DFlowCnT

:ViewPicUBCpT

:DobRT

:DAccessRT
:DFlowCnT

:MetaBrickCpT

service = PoVRay

:DobRT

:DAccessRT
:DFlowCnT

:CinRT
:CEndCnT

:CreatePT

:DeletePT

:DWritePT

:DReadPT

:CreatePT

:DeletePT

:DReadPT

:DWritePT

:CinPT

para="picture"

:DAccessPT

para="scenario"

:DAccessPT

:CoutPT

:CinPT

para="picture"

:DAccessPT

:CoutPT

:CinPT

para="output"

:DAccessPT

para="scenario"

:DAccessPT

:CoutPT

Fig.4. An exemplary application

front-end for ACME this application can be intuitively defined by drag-and-
drop nodes out of our meta-application vocabulary. Another simple application
to parallel simulation of mobile communication systems is described in [2].

4 Meta-application Execution and Formal Analysis

A meta-application graph is dynamically interpreted and mapped to the Amica
metacomputer. Also automatically a global behavioral model of the meta-appli-
cation is generated in a compositional way. This model can be analyzed and
checked for design errors (e.g. resulting from component composition mis-
matches). These two steps, namely interpretation and behavioral model gen-
eration are discussed in the following section in more detail.

A simple meta-application interpreter is used to map our basic component
and connector vocabulary to the services provided by Amica: Components of
type DataObjectCpT and MetaBrickCpT are directly correlated to the data ob-
ject and metabrick abstractions of basic data storage and computing services
provided by Amica. The data store network and the broker mechanism of Amica
relate these dynamically to the distributed data objects and bricks (created by
brick factories). Data flow connectors and control flow connectors are interpreted
to control component interaction and activation. In the special case of a farm
connector (type FarmCnT) a specified number of workers is instantiated, the tasks
contained in a bag are distributed and the results are collected.

The structure information given in the meta-application graph is used to
compose the individual node behaviors to the combined overall system behavior.
Composition is based on appropriate synchronization of component and connec-
tor actions. To correlate these actions we have to define a renaming operator

An Architectural Meta-application Model 1229

\{(old1\new1), .., (oldn\newn)} which replaces all actions oldi act over inter-
connection point names oldi to to newi act.

Given a behavioral meta-application graph G = (Nodes, I, E, Beh) with
Nodes = Comp∪Conn = {CP1, .., CPN} ∪ {CN1, ..CNM} the associated over-
all system behavior is given by the parallel (full interleaving |||) composition
of all component instances and also all connector instances. These two groups
synchronize over all actions of their interconnection points (||). Thus the general
structure of the overall system behavior description is given as the following
process term scheme:

(NCP1 ||| ... ||| NCPN) || (NCN1 ||| ... ||| NCNM)

where

NCPi = Beh(CPi)\{(old\new) | old ∈ I(CPi) ∧ new = CNj newp
∧ attachedCN(CPi, old) = (CNj , newp)}

NCNi = Beh(CNi)\{(old\new) | old ∈ I(CNi) ∧ new = CNi old}
The function attachedCN used above gives exactly one attached (connector,

role) pair for a given component and port, that is attachments of multiple roles
to a port are disallowed. In the case of multiple attachments of ports to a role,
the above scheme implies an or semantics (the role-action synchronizes with
an action associated with one of the attached ports). We have extended this
to generally allow n-port to one role attachments with different semantics (e.g.
and) given by the type of the role. This generation scheme was implemented in
Java and we apply powerful formal analysis tools (the CADP tool set [4] and
the model checker XTL [11]) for abstract meta-application property checks.

5 Related Work and Conclusion

Different approaches to build component based meta-applications are used in lit-
erature, ranging from simple data-flow models to general component frameworks.
In WebFlow [9] (restricted) data flow graph models are proposed for component
composition. In [14] a distributed component architecture toolkit is described
for meta-application design on top of the Globus metacomputing infrastructure
[3]. Also scripting languages can be used for meta-application description, see
e.g. [12]. In contrast to these approaches having no or only a very restricted
semantic foundation we use a more flexible and general formal process algebraic
model combined with an architectural description of meta-applications using a
well defined (and extendable) set of components and connectors.

Other approaches exist which are promoting the general idea of combining
an architectural description with a formal behavioral model in the more general
context of distributed software design. The ADL Darwin is combined with la-
beled transition systems in [7] to facilitate a compositional reachability analysis
and in [1] CSP is used within the ADL Wright.

To conclude, we have described a formal model supporting component based
meta-application development. A formal architecture description language was

1230 Stephan Kindermann and Torsten Fink

combined with a process algebraic behavioral description to define a basic ex-
tendable vocabulary of component types for meta-application development. This
vocabulary has been implemented on top of the Amica metacomputing infra-
structure. Component compositions can automatically be checked based on well
known state space analysis methods (e.g. model checking). Next steps include
an extension of our vocabulary (including e.g. event propagation and handling)
and an application to more complex problems. As we want to check not only
functional but also performance properties of meta-applications we plan to use a
stochastic process algebra description of component behavior. Also a behavioral
model of the Amica infrastructure itself will be integrated in the future.

References

[1] R. Allen and D. Garlan. A formal basis for architectural connection. ACM
TOSEM, 6(3):213–249, July 1997.

[2] T. Fink and S. Kindermann. First steps in metacomputing with Amica. In
Euromicro-PDP 2000, pages 197–204. IEEE Computer Society, 2000.

[3] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.
The International Journal of Supercomputer Applications and High Performance
Computing, 11(2):115–128, 1997.

[4] H. Garavel, M. Jorgensen, R. Mateescu, C. Pecheur, M. Sighireanu, and B. Vivien.
CADP’97 - status, applications, and perspectives. In Proceedings of 2nd COST
247 Int. Workshop on Applied Formal Methods in System Design, 1997.

[5] D. Garlan, R.T. Monroe, and D. Wile. ACME: An architecture description inter-
change language. In Proceedings of CASCON ’97, November 1997.

[6] D. Garlan and M. Shaw. Software Architecture: Perspectives on an emerging
Discipline. Prentice Hall, April 1996.

[7] D. Giannakopoulou, J. Kramer, and S.C. Cheung. Behaviour analysis of dis-
tributed systems using Tracta. Journal of Automated Software Engineering,
6(1):7–35, January 1999. R. Cleaveland and D. Jackson, Eds.

[8] A. Grimshaw, A. Ferrari, G. Lindahl, and K. Holcomb. Metasystems. Communi-
cations of the ACM, 41(11), 1998.

[9] T. Haupt, E. Akarsu, and G. Fox. Webflow: a framework for web based metacom-
puting. In HPCN Europe ’99, April 1999.

[10] ISO/IEC. Lotos — a formal description technique based on the temporal ordering
of observational behaviour. International Standard 8807, ISO — Information
Processing Systems — OSI, Genève, September 1988.

[11] R. Mateescu and H. Garavel. Xtl: A meta-language and tool for temporal logic
model-checking. In Tiziana Margaria, editor, STTT’98 (Denmark), July 1998.

[12] R.P. Mc Cormack, J.E. Koontz, and J. Devaney. Seamless computing with Web-
Submit. Concurrency: Practice and Experience, 11(15):946–963, 1999.

[13] M. Shaw and P. Clements. A field guide to boxology: Preliminary classification
of architectural styles for software systems. In Proceedings COMPSAC, 1997.

[14] J. Villacis, M. Govindaraju, D. Stern, A. Withaker, F. Berg, P. Deuskar, T. Ben-
jamin, D. Gannon, and R. Bramley. Cat: A high performance, distributed com-
ponent architecture toolkit for the grid. In Proceedings of the High Performance
Distributed Computing Conference, 1999.

	Introduction
	The Amica Metacomputing Infrastructure
	The Amica Programming Model
	Architecture Description
	An Architectural Style for Amica Meta-applications
	A Small Example

	Meta-application Execution and Formal Analysis
	Related Work and Conclusion

