
Implementing Explicit and Implicit

Coscheduling in a PVM Environment�

Francesc Solsona1, Francesc Giné1, Porfidio Hernández2, and Emilio Luque2

1 Departamento de Informática e Ingenieŕıa Industrial, Universitat de Lleida, Spain.
{francesc,sisco}@eup.udl.es

2 Departamento de Informática, Universitat Autònoma de Barcelona, Spain.
{p.hernandez,e.luque}@cc.uab.es

Abstract. Our efforts are directed towards the understanding of the
coscheduling mechanism in a NOW system when a parallel job is exe-
cuted with local workloads, balancing parallel efficiency against the lo-
cal interactive response. Explicit and implicit coscheduling techniques
in a PVM-Linux NOW (or cluster) has been implemented. Their perfor-
mance and overheads executing local tasks and representative distributed
benchmarks have been analyzed and compared.

1 Introduction

Over the years, researchers have been developing time-shared distributed sched-
ulers using coscheduling techniques, trying to adapt them to the new situation
of mixing local and parallel workloads [1], [2], [3], [4] and [5].

Explicit coscheduling, all processes in a parallel application are scheduled si-
multaneously, with coordinated time-slicing between them. Generally, this yields
good parallel program performance and this is widely used to schedule parallel
processes involving frequent communication [1]. Coscheduling will ensure that no
process will wait for a non-scheduled process for synchronization/communication
and will minimize the waiting time at the synchronization points.

Two-phase spin-block synchronization primitives used for dynamic coschedul-
ing, named implicit coscheduling in [2], [3] and [4], only requires processes to
block awaiting messages arrivals for coscheduling to happen. With two-phase
spin-blocking, the waiting process spins for a determined time and if the response
is received before the time expires then continues executing else the requesting
process blocks and another one is scheduled.

Algorithms for implementing new explicit and implicit coscheduling envi-
ronments are presented in this paper. Extensive performance analysis, as well as
studies of the parameters and overheads involved in the implementation, demon-
strated the applicability of the proposed algorithms in these new environments.

� This work was supported by the CICYT under contract TIC98-0433

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 1165–1170, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

1166 Francesc Solsona et al.

2 Coscheduling

In this section, the methods and metrics to measure their cost for explicit and
implicit coscheduling distributed tasks in a PVM-Linux NOW are described.

2.1 Explicit Coscheduling

The aim of explicit coscheduling is to schedule all the distributed tasks in the
cluster at the same time and let them execute during a period of time. From one
global controller process running in one node named master, control messages are
sent (in a broadcast form) to every explicit process (named dts) running in the
composing workstations of the cluster, which are responsible for implementing
explicit coscheduling. One of these control messages (init) informs all the dts
processes to start delivering STOP and CONTINUE signals to their local high-
priority distributed processes at regular intervals (see also [5]). The time spent
in starting (Tstart) all the distributed tasks is:

Tstart = Ws(local) + Ww(dts) + Ssig(CONT) + Ww(dis) + Ws(dts), (1)

where Ww/Ws is the elapsed time in waking up/suspending dts, a local task
(local) or a distributed task (dis). Ssig(CONT) is the maximum elapsed time in
sending a CONTINUE signal to all the distributed tasks in the node. The time
spent in stopping (Tstop) all the distributed tasks is:

Tstop = Ws(dis) + Ww(dts) + Ssig(STOP) + Ww(local) + Ws(dts), (2)

where Ssig(STOP) is the maximum elapsed time in sending a STOP signal to
all the distributed tasks in the node. Because the time in delivering a signal to
a group of processes does not depend on the signal to deliver, we consider that
Ssig(STOP) = Ssig(CONT) = Ssig. Similarly, the values Ww = Ws = W are
considered to be equal. In consequence 1 and 2 can be reformulated as:

Tex = Tstart = Tstop = 4W + Ssig. (3)

2.2 Implicit Coscheduling

The implicit coscheduling aim is to schedule only communicating distributed
tasks at the same time. We are interested in only spinning the tasks during at
most a context-switch period and not in spinning during the deliver of a round-
trip message as in [2,3,4], as distributed tasks can follow many types of com-
munication patterns and the messages can arrive asynchronously to distributed
tasks, at any time. The metric Tim is used to compute the maximum overhead
added in spinning, which also gives us a first reference to choose the spin interval
(sp):

Tim = Ws(dis) + Ww(local) (4)

Implementing Explicit and Implicit Coscheduling in a PVM Environment 1167

Algorithm 1 ImCoscheduling. Implements the implicit coscheduling.
Initialize input time, execution time, sp
while (no new fragment) and (execution time ¡ sp)
and (execution time ¡ timeout) do

execution time = current time - input time
if (no new fragment)

if (timeout) then block (timeout - execution time)
else block (indefinitely)

Algorithm 2 OneFragment. Reads the fragment in only one phase.
call pvm receive and wait until the fragment arrives
read the whole fragment (header + body)

3 Algorithms

The implemented algorithms detailed in this section show how new distributed
environments were created.

Function ImCoscheduling (Algorithm 1) implements implicit coscheduling by
realizing a spin-block while the fragments (unit of PVM transmissions) compos-
ing a message are read. Algorithm 2, called OneFragment, reads each fragment
in only one phase, instead of twice, as PVM does. Both algorithms were imple-
mented in the pvm recv() PVM routine.

Algorithm 3, called Priority was implemented outside the PVM, in a process
named Priority, a copy of which is in each node of the cluster. It is responsible
for assigning a high priority to distributed tasks. To do this only is necessary to
assign a high priority (one unit level less than Priority) to pvmd in its creation.

4 Experimentation

The experimentation has been performed in a Nowmade up of an interconnection
network of 100 Mbps Fast Ethernet and four PVM-Linux PCs with the same
characteristics: 350Mhz Pentium II processor, 128 MB of RAM, 512 KB of cache.

A distributed application, sintree was implemented to measure performance
of the implemented environments. It attends for a communication pattern of one
to vary, and vary to one. sintree accepts two arguments: number of processes
(M) and number of iterations (N). By default M = 4 and N = 30.000. Also, two
kernel benchmarks (class A) from the NAS parallel benchmarks suite [6] were
used: is and mg. In all the benchmarks, the communications between remote
tasks was done through RouteDirect PVM mode.

4.1 Implemented Environments

The next distributed environments were created. The algorithm(s) used to imple-
ment each model is in parenthesis. PVM: original PVM. SPIN (1): the spin-block

1168 Francesc Solsona et al.

50

100

150

200

250

300

350

400

0 0.5 1 1.5 2 2.5 3

T
IM

E
 (

S
)

LOCAL TASKS

MXISPIN
PRIOSPIN

SPIN
MXI

PVM
EXPLICIT

PRIO

100

200

300

400

500

600

700

800

900

0 0.5 1 1.5 2 2.5 3

T
IM

E
 (

S
)

LOCAL TASKS

MXISPIN
PRIOSPIN

SPIN
MXI

PVM
EXPLICIT

PRIO

Fig. 1. sintree execution. (left) N = 30000. (right) N = 70000.

is only performed in the reading of the data fragment. MXI (2). MXISPIN (1,
2). PRIO (3). PRIOSPIN (1,3). EXPLICIT: periodically, after 90000 µs the dts
daemon in each node delivers a STOP signal to all the local distributed processes
and then, elapsed 10000 µs, dts delivers a CONTINUE signal to reawaken them.
The measured Tim � 10 µs, so in the spin models an sp of 10 µs was chosen.

Algorithm 3 Priority. Assigns a high priority to distributed tasks.
fork&exec (pvmd)
set priority (pvmd = max priority - 1)

4.2 Results

Distributed Tasks Performance Fig. 1 shows the sintree execution times
executing in the seven above cited modes while the local workload in each node
(simulated by compiling applications) is varied from 0 to 3.

As was expected, optimal execution of the PRIO case can be observed. EX-
PLICIT without tasks is the worst mode, by increasing the workload, its perfor-
mance scarcely decreases due to Tex does not vary. MXI and SPIN modes scale
fine and their performance is always between the PVM and PRIO. SPIN is faster
than PVM because avoids a lot of times the blocking overhead in receiving mes-
sages. The PRIOSPIN case gives worse results than PRIO, as the unnecessary
spin-block phase added in the first mode, this only adds an unnecessary overhead
in the reading of the fragment. MXISPIN works worse than MXI, as in this case
penalties when time-slice expires are more than ones in context switching.

Fig. 2 shows the results obtained from executing is and mg in the different
models. The behavior of mg is similar to the sintree one. On the other hand, is
does not work as fine as mg and sintree in the SPIN cases.

Implementing Explicit and Implicit Coscheduling in a PVM Environment 1169

100

150

200

250

300

350

400

450

500

550

0 0.5 1 1.5 2 2.5 3

T
IM

E
 (

S
)

LOCAL TASKS

MXISPIN
PRIOSPIN

SPIN
MXI

PVM
EXPLICIT

PRIO

100

150

200

250

300

350

400

450

500

550

0 0.5 1 1.5 2 2.5 3

T
IM

E
 (

S
)

LOCAL TASKS

MXISPIN
PRIOSPIN

SPIN
MXI

PVM
EXPLICIT

PRIO

Fig. 2. Execution of the NAS parallel benchmarks (left) mg and (right) is.

Table 1. slowdown of a compiling local task.

slowdown PRIO PRIOSPIN EXPLICIT SPIN MXI MXISPIN

sintree 1.4 1.4 1.4 3.6 1.4 3.6

is 2.8 2.8 4.2 2.1 0 2.1

mg 90 92 42 8 1.6 8

Local Tasks Performance The influence of the models in the local tasks was
based on measuring the slowdown calculated as follows:

sdMOD =
TMODEL − TPV M

TPV M
100,

where TMODEL (TPVM) is the execution time of a local task (a compiling
application) when it was executed in such model (original PVM). See Table 1.

As might have been expected, when intensive message-passing distributed
applications are executed (sintree and is), no effect in the local task is produced.
On the other hand, a high slowdown is introduced if intensive CPU distributed
tasks are executed (mg). As was to be expected, the explicit model has a great
impact on the local task and even more in the PRIO and PRIOSPIN cases.

5 Conclusions and Future Work

In a PVM environment made up of a NOW of Linux nodes, we have implemented
and discussed different coscheduling techniques and compared their performance.
Also, we have discussed their main advantages and drawbacks. We are interested
in developing a dynamical model and new coscheduling techniques for that en-
vironment.

References

1. Ousterhout, J.K.: Scheduling Techniques for Concurrent Systems. In Third Inter-
national Conference on Distributed Computing Systems. (1982) 22–30.

1170 Francesc Solsona et al.

2. Arpaci, R.H., Dusseau, A.C., Vahdat, A.M., Liu, L.T., Anderson, T.E., Patterson,
D.A.: The interaction of Parallel and Sequential Workloads on a Network of Work-
stations. SIGMETRICS’95. (1995). 267–278.

3. Arpaci, R.H., Dusseau, A.C., Culler, D.E., Mainwaring, A.M.: Scheduling with Im-
plicit Information in Distributed Systems. SIGMETRICS’98. (1998).

4. Dusseau, A.C., Arpaci, R. H., Culler, D. E.: Effective Distributed Scheduling of
Parallel Workloads. SIGMETRICS’96 . (1996).

5. Solsona, F., Giné, F., Hernández, P., Luque, E.: Synchronization methods in dis-
tributed processing. IASTED AI’99. (1999) 471–473.

6. Bailey, D. et al.: The NAS parallel benchmarks. International Journal of Supercom-
puter Applications. vol. 5 no. 3 (1991) 63–73.

	Introduction
	Coscheduling
	Explicit Coscheduling
	Implicit Coscheduling

	 Algorithms
	Experimentation
	Implemented Environments
	Results

	Conclusions and Future Work

