Design of a Parallel Accelerator for Volume Rendering

Bertil Schmidt

School of Applied Science, Nanyang Technological University, Singapore 639798,
asschmidtentu.edu.sg

Abstract. We present the design of a flexible massively parallel accelerator
architecture with simple processing elements (PEs) for volume rendering. The
underlying parallel computer model is a combination of the SIMD mesh with
the instruction systolic array (ISA), an architectural concept suited for easy
implementation in very high integration technology. This allows the parallel
accelerator unit to be built as a programmable low cost co-processor, that
suffices to render volumes with up to 16 million voxels (256°) at 30 frames per
second (fps).

1 Introduction

Volume visualisation [4] is a key technology for the interpretation of 3D scalar data
generated by acquisition devices such as biomedical scanners, by supercomputer
simulation, or by voxelising geometric models. Especially important for the
exploration and understanding of the data are sub-second display rates and
instantaneous visual feedback during change of rendering parameters. This is a
challenging task due to its rigorous requirements. Firstly, the datasets are very large,
typically over 16 MBytes and sometimes exceeding 150 MBytes. Secondly, to be
useful the system must be able to produce images at interactive frame rates,
preferably at 30 fps, but at least greater than 10 fps.

These tremendous storage and processing requirements have limited the
widespread use of volume visualisation. Consequently, research has been conducted
towards the development of dedicated volume rendering architectures [11,12,14].
VolumePro [12] is the first single-chip real-time accelerator for consumer PCs.
However, the disadvantage of these special-purpose systems is the lack of flexibility
with respect to the implementation of different algorithms, e.g. interactive
segmentation, feature extraction and other tasks which are to be performed on volume
datasets before rendering cannot make use of the special-purpose architecture. ISAs
combine the speed and simplicity of systolic arrays with flexible programmability [6,
8], i.e. they achieve extremely high performance cost ratio and can at the same time
be used for a wide range of applications, e.g. scientific computing, image processing,
multimedia video compression, computer tomography, and cryptography [15-18].
Thus, the ISA architecture fits well for performing high-speed visualisation and
processing of 3D datasets at low cost. In this paper we present an ISA architecture
that can solve all components of a volume rendering application efficiently by taking
advantage of their high degree of inherent parallelism. It has been designed in order to
render volumes with up to 256° voxels at real-time.

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 1095-1104, 2000.
© Springer-Verlag Berlin Heidelberg 2000

1096 Bertil Schmidt

This paper is organised as follows. Section 2 gives an introduction to volume
rendering algorithms. In Section 3 previous SIMD implementations of volume
rendering are described. The concept of the ISA is explained in Section 4. Section 5
presents the new accelerator architecture. The parallel algorithms for volume
rendering are explained in Section 6 and their performance is evaluated in Section 7.
The outlook to further research topics concludes the paper in Section 8.

2 Volume Rendering Algorithms

Volume rendering involves the direct projection of an entire 3D dataset onto a 2D
image plane. The data is sampled on a rectilinear grid, represented as a 3D array of
volume elements, or voxels. Volume visualisation algorithms can simultaneously
reveal multiple surfaces, amorphous structures, and other internal structures. These
algorithms can be divided into two categories: forward-projection and backward
projection. Forward projection algorithms iterate over the dataset during the rendering
process projecting voxels onto the image plane. A common forward-projection
algorithm is splatting [21]. Backward-projection iterates over the image plane during
the rendering process by resampling the dataset at evenly spaced intervals along each
viewing ray. Ray casting [10] is a common backward-projection algorithm.

In ray casting, rays are cast into the dataset. Each ray originates at the viewing
position (eye), penetrates a pixel in the image plane (screen), and passes through the
dataset. At evenly spaced intervals along the ray, samples are computed using
interpolation. The sample values are mapped to display properties such as opacity and
colour. A local gradient is combined with a local illumination model at each sample
point to provide realistic shading of the object. Final pixel values are found by
compositing colour and opacity values along a ray. Composition models the physical
reflection and absorption of light. Ray casting offers room for algorithmic
improvements by still allowing for high image quality. Several variants of traditional
ray casting have been introduced, e.g. [7,23]. The modifications to the original ray
casting algorithm to make it more suitable for our parallel accelerator architecture are
presented in Section 6.

3 Previous SIMD Volume Rendering Work

Schroder and Stoll proposed an algorithm for the Connection Machine CM2 where
the volume is stored one beam per PE. However, the inherent latency of CM2 limited
their performance to 4 fps for a 128° volume [19]. Yoo et al. presented a method to
perform volume rendering on the Pixel Planes 5 machine partly utilising the 2D
SIMD mesh and partly the MIMD Graphic processors [24]. They achieved 20 fps for
a 128x128x56 volume. Hsu designed a segmented ray casting approach for the
DECmpp SIMD mesh [3]. However it distributed the volume in subblocks and only
achieved 4-5 fps. Both Vezina [21] and Wittenbrink [23] proposed algorithms for the
MASPAR MP-1 (a SIMD 8-connected mesh). Yet, neither achieved frame rates better
than 2-5 fps. All of those methods suffered because of the latency inherent in large
general-purpose machines. Dogett [2] presented a special-purpose architecture with a
2D array of PEs for volume rendering. However, his PEs are not programmable

Design of a Parallel Accelerator for Volume Rendering 1097

ASICs. The PAVLOV design presented in [5] achieves 30 fps for a 256’ volume on a
64x64 torus of 8-bit-parallel PEs. This architecture is close to our approach since it is
a 2D mesh with simple PEs. However, its communication mechanism assumes
enough memory to store two times the complete volume on-chip. This is extremely
costly in terms of area requirements for PEs as compared to our design.

4 Principle of the ISA

The ISA is a quadratic array of identical processors, each connected to its four direct
neighbours by data wires. The array is synchronised by a global clock. The processors
are controlled by instructions, row selectors, and column selectors. The instructions
are input in the upper left corner of the processor array, and from there they move step
by step in horizontal and vertical direction through the array. This guarantees that
within each diagonal of the array the same instruction is active during each clock
cycle. In clock cycle k+1 processor (i+1,/) and (i,j+1) execute the instruction that has
been executed by processor (i,7) in clock cycle k. The selectors also move systolically
through the array: the row selectors horizontally from left to right, column selectors
vertically from top to bottom. Selectors mask the execution of the instructions within
the processors, i.e. an instruction is executed if and only if both selector bits, currently
in that processor, are equal to one. Otherwise, a no-operation is executed. This
construct leads to a flexible structure, which creates the possibility of very efficient
solutions for a large variety of applications, e.g., numeric, image processing, video
compression, and cryptography [16-19].

instructions

column

[1]
1
1 1
-] i%l selectors
1

row
selectors

[o]1

Fig. 1: Control flow in an ISA

Every processor has read and write access to its own memory. Besides that, it has a
designated communication register (C-register) that can also be read by the four
neighbour processors. Within each clock phase reading access is always performed
before writing access. Thus, two adjacent processors can exchange data within a
single clock cycle in which both processors overwrite the contents of their own C-
register with the contents of the C-register of its neighbour. This convention avoids
read/write conflicts and also creates the possibility to broadcast information across a
whole row or column with one single instruction. This property can be exploited for
an efficient calculation of row broadcasts, row ringshifts, and row sums, which are the
key-operations in many algorithms.

1098 Bertil Schmidt

5 Accelerator Architecture Design

Since our aim is to develop a special-purpose architecture for multimedia
applications, it is highly desirable to design hardware that can be installed on PCs
within the price range of a PC, i.e. to design add-on-boards for PCs. Due to
experience gathered in the cause of designing and fabricating the Systola 1024 (also
an add-on-board for PCs, with a 32x32 ISA built out of 16 processor chips of 64
processors each [9]), we are in the position of being able to make reliable
performance predictions by extrapolation, based on the change of technology
parameters. While the Systola 1024 is based on 1.0-micron technology, we are now
able to use .25-micron technology, so that on the same chip area that contains 64
processor in case of Systola 1024 we can now place 1024 processors and on a single
PC-board we can place 16K processors (together with memory chips, memory
multiplexers and a controller with program memory).

As on-chip communication can be clocked at significantly higher frequency than
chip-to-chip communication, we have decided to use the 16 processor chips relatively
independently, i.e. we assume that the applications allow simple data partitioning.
Chip-to-chip communication is done exclusively via locally shared memory, i.e. each
processor chip is connected to a memory chip via a simple multiplexer that also
allows access to the memories of the four direct neighbours (NEWS) -- here we
assume a torus architecture in order to be able to perform easily horizontal and
vertical ringshift of data (see Fig. 2). Thus, by avoiding direct off-chip
communication we can assume an on-chip clock cycle time of 200 MHz.

% ISA
% ISA L ISA
% ISA % ISA

——— 0 ——— A
% ISA m % ISA % ISA .= ISA

Fig. 2: Data paths of the accelerator architecture

ISA ISA

VAR E&L
T pL

ISA

Conroller [

=

B

The analysis of ray casting and its processing efforts leads to a fixpoint PE
architecture (see Section 6). The PE needs a small local memory for the storage and
fast supply of local voxel data. For 8-bit input voxels an intermediate operand length
of 16 bits in most computations provides enough accuracy for ray casting [1]. Thus,
the wordlength of the data items is set to 16 bits. To allow flexible use of the
architecture the PEs must also be able to process longer operands and shorter
operands efficiently, e.g. adding two 32-bit numbers in two instructions or adding two

Design of a Parallel Accelerator for Volume Rendering 1099

8-bit numbers in one instruction. This idea is incorporated in the design of our
computational units. Figure 3 depicts the PE architecture for volume rendering.

column selector in| | instruction in A ‘ data links north

64 global bus
=
external/ R63 external/
internal internal
write R48 read
R47
| internal internal
X RAM
write read
RO
—
=i communication register I|'
row v T . row
selector »rs csl instruction decoder I » selector
in I ‘ out
v
conditional v vie
. «— !
data ﬁ) unit § ; «—— Ut p data
links ALU 2. E. links
west ¢ * = cast
2 a
oo
v -
>i flag manager |; °
h AN,
i shifter |: P’y
v
multiplier clock
}
—]
column selector out ¥ ¥ instruction out v data links south

Fig. 3: Block diagram of the processor architecture

Due to the limited chip area the processor has to be very compact. This leads to our
choice of a bit-serial data organisation. The bit-serial design allows a higher number
of PEs per chip and a higher clock frequency than a corresponding bit-parallel design.
The main components of the PE are a set of 64 data registers, a C-register, an ALU, a
conditional unit, a multiplier, and a shifter. In addition to the registers there are flags
(zero flag, negative flag, activation flag) that control the processing units depending
on the state of the processor and several special registers. The wordlength of data
items is 16 bits. Because the data is processed bit-serially, the execution of each
instruction takes exactly 16 clock cycles. After receiving an instruction, the PE stores
it in the instruction register, decodes the two operand addresses and the destination
address, retrieves the operands from the register file, executes the instruction, writes
the result back to the destination register, and passes the instruction to the next
processor. The corresponding instruction set consists of 44 instructions. Since all this
is done bit-serially, it can be pipelined on bit-level, such that a new instruction can be
fetched and processed every 16 clock cycles.

Extrapolating the design parameters used for Systola 1024 allows us to predict that
a 32x32 array of these PEs on a lcm? chip is realistic for a .25-micron CMOS process
with a 200 MHz true single phase clock. For a word format of 16 bits the theoretical
peak performance for one chip is 12.8 GIPS and for the complete board 204.8 GIPS.

1100 Bertil Schmidt

There is already a SIMD single chip architecture with a 32x32 array of bit-serial
PEs in .25-micron technology on the market [20]. But the architecture proposed in
this paper achieves twice the clock frequency due to adhering as closely as possible to
local communication, and its main advantage it gets through its unique control
structure that allows the execution of aggregate/reduction functions in a fraction of
time as compared to conventional SIMD architectures.

For the fast exchange of data with the processor array each PE has two memory
banks. Each memory bank contains 8 interface registers. One of these banks is always
assigned to the corresponding processor, the other to a neighbouring memory chip by
means of a fast data channel. The exchange of data between ISA and the memory chip
is done by bank switching. Both memory banks can be active at the same time, i.e.
data transfer can be done concurrently to the execution of an ISA program.

6 Mapping of Ray Casting to the Accelerator Architecture

Fig. 4 shows three possible approaches to parallelising ray casting. According to the
form of parallelism that is exploited, we call them ray, beam, and slice parallel.

p

a) ray parallel b) beam parallel ¢) slice parallel

Fig. 4: Three different approaches to parallelising ray casting. Shaded voxels are processed
simultaneously. The thick arrows indicate the direction in which the algorithm proceeds.

In the ray parallel approach, all voxels along a ray are processed simultaneously (the
shaded voxels in Fig. 4a). The algorithm proceeds ray by ray in scanline order (the
thick arrow in Fig. 4a). However, simultancous access to all voxels along a ray
requires irregular data transfer patterns between volume memory and PEs. An
alternative to operating on all samples of a single ray is to simultaneously operate on
samples of several neighbouring rays. Depending on how the algorithm proceeds, we
call these approaches beam parallel (Fig. 4b) and slice parallel (Fig. 4c). A beam is a
line of voxels that is parallel to a principle axis of the dataset. The beam parallel ray
casting approach follows a group of rays by fetching consecutive beams in major
viewing direction. However, the stepping along slanted planes of rays requires
complicated addressing mechanisms. The slice parallel approach processes
consecutive data slices that are parallel to the base plane of the volume dataset (Fig.
4c) and achieves a uniform data access. The base plane is the face of the volume that
is closest to perpendicular to the major component of the viewing direction.

A 2D array of ISA PEs can inherently process slice order algorithms very
efficiently, since an entire slice of the volume can be processed in parallel. Therefore,

Design of a Parallel Accelerator for Volume Rendering 1101

we choose the slice order approach to be mapped on our architecture. Our
implementation combines the slice order ray casting approach [1] with segmented ray
casting [3] for parallel projections: The volume is partitioned into subcubes. These
subcubes are distributed evenly across the memory modules. Each ISA chip computes
the colour and opacity values of the portion of the rays, which lie inside the subblock,
and writes them into its adjacent memory module. After all subcubes have been
processed the segments are composited using chip-to-chip communication. The
algorithm consists of the following steps:

Subcube partitioning: Determined by the memory capabilities of PEs, the size of
the non-overlapping subcubes is set to 64°. Each slice is mapped onto a 32x32 ISA by
loading 2x2 voxels into each PE. As the algorithm requires a small local
neighbourhood of each voxel, three slices are stored in the processor array at any time
and processors at the borderline need some data from neighbouring subcubes.

Gradient estimation: The first computing step is the determination of gradients to
approximate surface normals for classification and shading. x-, y-, and z-gradient are
computed for a voxels sample value P;;, at location (i,j,k) using central differences:
Gy = Pirji - Pirjw Gy = Pijiig - Pijigs G = Pijgri - Pijr1. Each PE can compute
gradients for its 2x2 voxel samples of the current slice in parallel using neighbouring
samples. Because the processor array holds three slices at the same time, samples
needed from the ahead and behind slice are stored locally in each PE. Samples needed
in the two dimensions within the current slice are either also stored locally or in one
of the four neighbouring PEs. Other algorithms that use larger neighbourhoods and
produce higher quality gradients at additional computational costs can also be mapped
efficiently on our architecture. Afterwards gradient magnitude computation continues
locally by taking the sum of the squares of the gradient components and then a
Newton-Raphson iteration to compute the square root of this value, resulting in an
approximation of the gradient magnitude.

Classification: Classification maps a colour and opacity to sample values. Opacity
values range from 0.0 (transparent) to 1.0 (opaque). On special-purpose architectures
[11,12,14] classification is typically implemented using look-up tables (LUTs). These
LUTs are addressed by sample value and gradient magnitude and they output sample
opacity and colou. In our architecture using LUTs is not appropriate, as the local
memories of PEs are very small. Thus, we are using few low degree polynomials
depending on the sample value (for colour) and the product of sample value and
gradient (for opacity).

Shading: The Phong shading algorithm [13] is often used in shading subsystems
within volume rendering architectures. It requires gradients, light, and reflection
vectors to calculate the shaded colour for each sample location. The shading
calculation can be expressed as: [= A + D (L*N) + S (R*V)’, where N is the
(normalised) gradient vector, / is the light vector, R is the reflection vector, V is the
viewing vector, A, D, L represent ambient, diffuse, and specular material components,
and s is the specular exponent. The shading equation can be computed in each PE
locally. To normalise the gradient vector we compute the reciprocal of the gradient
magnitude by a Newton-Raphson iteration, followed by three multiplications. Parallel
view and light vectors are assumed in order to make the reflection independent of the
place. Thus, L and V can be stored as constants within each processor. In this case
also the computation of the reflection vector can be avoided by using the halfway
vector between L and V instead.

1102 Bertil Schmidt

Compositing: Compositing is responsible for summing up colour and opacity
contributions from interpolated sample locations along a ray into a final pixel colour
for display. The front-to-back formulation for composting is Cyee = (1.0 - Aaee) Coample
+ Cyee and Ao = (1.0-Ayec) AsampieT Aace, Where Cy is the accumulated colour, A, is
the accumulated opacity, Csmple 15 the interpolated samples colour, and Agmple 1S the
interpolated samples opacity.

Since we are processing in slice order fashion, the data is sampled in each slice at
the point the ray would intersect the current slice by using bilinear interpolation.
Because all the points needed for bilinear interpolation are contained within the slice
of voxels currently being processed, it is simpler than trilinear interpolation
performed in traditional ray casting. It is also more accurate than nearest neighbour
interpolation. As the algorithm moves through the dataset, the point where the ray
intersects the current slices moves off the current PE position. This offset is stored
and accumulated. Once the ray moves closer to another PE position, the compositing
information is shifted to be stored in the corresponding neighbouring PE. In other
words, the compositing information of each ray is stored in the PE closest to the ray
intersection with the current slice. For parallel projections the corresponding data
movement pattern is regular. Thus, whenever a ray attempts to shift to another PE, all
the rays in the entire slice buffer shift together.

The rays are cut into segments by the planes that separate the subcubes. These
planes are either parallel to the x-y-plane, or the x-z-plane, or the y-z-plane. We refer
to these planes as x-y-planes, x-z-planes, and y-z-planes. Without loss of generality we
assume that the main viewing axis is the z-axis. Firstly, we composite rays that pierce
the x-z-plane between subblocks and then we composite rays that pierce the y-z-plane.
Due to the fact that z is the main axis, this can be done in one step. Afterwards
compositing has to happen at the x-y-planes. This can be done for k& x-y-planes in
log,k steps using a binary tree approach.

Finally, a 2D warp depending on the viewing vector is computed to produce the
image for display. Since this is only a 2D operation, it does not influence overall
computing time significantly and can be neglected.

7 Performance Evaluation

We execute ray casting within a 256° volume by firstly executing ray casting within
64> subblocks (subblock processing) and secondly compositing results of rays that
move through neighbouring subblocks (final compositing). We have written a C++
cycle accurate simulation of our architecture. During subblock processing we produce
the rays slice by slice. Each slice needs 1385 instructions as shown in Table 1. (Table
1 also shows the number of instructions for each substep.)

Table 1: Instruction count (IC) for the ray casting algorithm of Section 6 of one 64x64 slice of
a 64° subblock with 8-bit voxels on a 32x32 ISA module. For intermediate operands we mostly
use a length of 16 bits.

Task Gradient Classification Shading Compositing Sum
IC 369 208 504 304 1385

Design of a Parallel Accelerator for Volume Rendering 1103

Assuming an instruction cycle of 80 ns and computing 64 slices per subblock and 4
subblocks per ISA module, leads to total execution time of 28.4 ms for subblock
processing. The data I/O for these steps (based on 150 MBytes/s throughput between
each ISA module and RAM) is totally dominated by above computing time and thus
can be ignored (see Section 5). Because the final composition step does not require
bilinear interpolation it is dominated by the data transfer time. In the worst case (45°
viewing angles) it requires 392 KByte per module. The runtime for a 256° volume is
shown in Table 2. The processing time for larger volumes scales linear with the
volume size.

Table 2: Runtime for the rendering of a 256> volume with 8-bit voxels on the introduced
accelerator architecture. It includes computing time on the ISA and data transfer time between
ISA modules and RAM.

Task Subblock Final Compositing Sum

Runtime Accelerator 28.4 ms 2.9 ms 31.3 ms

8 Conclusions

In this paper we have presented a massively parallel architecture for volume rendering
combining the SIMD computing model with the ISA concept. The accelerator unit has
been designed as a co-processor to fit into an inexpensive PC class machine. The
global architecture of the accelerator engine has been discussed as well as the detailed
implementation of PEs. It has been shown how a volume rendering application can be
mapped on the new architecture in order to render a 256> volume in real-time.

The introduced architecture is faster, cheaper, and smaller than previous general-
purpose SIMD mesh arrays. Different from special-purpose designs, it provides more
functionality, e.g. it allows multiple rendering algorithms, and, more importantly, it
allows volume processing such as segmentation and feature extraction. The design
will give be benefits to a medical or scientific PC where normally users wish to do
more than merely render volumetric data. Future work would include identifying
applications that profit from this type of processing power. For example, some users
may wish to analyse the frequency of local density patterns of a volume and
subsequently visualise these measurements. It would be also interesting to study the
performance of the new architecture in totally different application areas like
scientific computing and multimedia video processing.

References

1. Bitter, I, Kaufman, A.: A Ray-Slice-Sweep Volume Rendering Engine, Proc.
SIGGRAPH/Eurographics’97, ACM (1997) 121-130

2. Doggett, M.: An array based design for Real-Time Volume Rendering, Proc.
Eurographics’95, Eurographics (1995) 93-101

3. Hsu, W. M.: Segmented Ray Casting for Data Parallel Volume Rendering, Parallel
Rendering Symposium, IEEE (1993) 7-14

1104

12.

13.
14.

20.

21.

22.

23.

24.

Bertil Schmidt

Kaufman, A.: Volume Visualization, IEEE CS Press (1991)

Kreeger, K., Kaufman, A.: PAVLOV: A Programmable Architecture for Volume
Processing, Proc. SIGGRAPH/Eurographics’98, ACM (1998) 77-86

Kunde, M., et al.: The Instruction Systolic Array and its Relation to Other Models of
Parallel Computers, Parallel Computing 7 (1988) 25-39

Lacroute, P.: Analysis of a Parallel Volume Rendering System Based on the Shear-Warp
Factorization, I[EEE Trans. on Visualization and Comp. Graphics 2 (3) (1996) 218-231
Lang, H.-W.: The Instruction Systolic Array, a parallel architecture for VLSI, Integration,
the VLSI Journal 4 (1986) 65-74

Lang, H.-W., MaaB, R., Schimmler, M.: The Instruction Systolic Array - Implementation
of a Low-Cost Parallel Architecture as Add-On Board for Personal Computers, Proc.
HPCN 94, LNCS 797, Springer Verlag (1994) 487-488

Levoy, M.: Display of Surfaces from Volume Data, IEEE Computer Graphics and
Applications 5 (3) (1988) 29-37.

. Meiliner, M., Kanus, U., Straler, W.: VIZARD II: A PCI-Card for Real-Time Volume

Rendering, Proc. SIGGRAPH/Eurographics’98, ACM (1998) 61-67

Pfister, H., et al.: The Volume Pro Real-Time Ray-Casting System, Proc. SIGGRAPH 99,
ACM (1999) 251-260

Phong: Illumination for Computer Generated Pictures, Comm. ACM 18(6) (1975) 311-317
Ray, H., et al.: Ray Casting Architectures for Volume Visualization, /EEE Trans. On
Visualization and Computer Graphics, 5 (3) (1999) 210-223

Schimmler, M., Lang, H.-W.: The Instruction Systolic Array in Image Processing
Applications, Proc. Europto 96, SPIE 2784 (1996) 136-144

Schmidt, B., Schimmler, M.: A Parallel Accelerator Architecture for Multimedia Video
Compression, Proc. EuroPar’99, LNCS 1685, Springer Verlag (1999) 950-959

Schmidt, B., Schimmler, M., Schroder, H.: Long Operand Arithmetic on Instruction
Systolic Computer Architectures and Its Application to RSA cryptography, Proc. Euro-
Par’98, LNCS 1470, Springer Verlag (1998) 916-922

Schmidt, B., Schimmler, M., Schréder, H.: The Instruction Systolic Array in Tomographic
Image Reconstruction Applications, Proc. PART 98, Springer Verlag (1998) 343-354
Schroder, P., Stoll, G.: Data Parallel Volume Rendering on the MasPar MP-1, Workshop
on Volume Visualization, ACM (1992) 25-32

Teranex Inc.: Parallel Processing Solves the DTV Format Conversion Problem,
http://www.teranex.com/whitepapers.html (1999)

Vezina G., Fletcher, P. A., Robertson, P. K.: Volume Rendering on the MasPar MP-1,
Workshop on Volume Visualization, ACM (1992) 3-8

Westover, L.A.: Splatting: A Parallel, Feed-Forward Volume Rendering Algorithm, PhD
thesis, Dept. of Computer Science, Univ. of South Carolina in Chapel Hill (1991)
Wittenbrink, C.M., Somani, A.K.: Time and Space Optimal Data Parallel Volume
Rendering using Permutation Warping, Parallel and Distrib. Comp. 46(2) (1997) 148-164
Yoo, T.S. et al.: Direct Visualization of Volume Data, /EEE Computer Graphics and
Applications 12 (4) (1992) 63-71

	1 Introduction
	2 Volume Rendering Algorithms
	3 Previous SIMD Volume Rendering Work
	4 Principle of the ISA
	5 Accelerator Architecture Design
	6 Mapping of Ray Casting to the Accelerator Architecture
	7 Performance Evaluation
	8 Conclusions
	References

