
Limits and Graph Structure of Available
Instruction-Level Parallelism

Darko Stefanović and Margaret Martonosi

Princeton University, Princeton NJ 08544, USA

Abstract. We reexamine the limits of parallelism available in programs, using
run-time reconstruction of program data-flow graphs. While limits of parallelism
have been examined in the context of superscalar and VLIW machines, we also
wish to study the causes of observed parallelism by examining the structure of the
reconstructed data-flow graph. One aspect of structure analysis that we focus on
is the isolation of instructions involved only in address calculations. We examine
how address calculations present in RISC instruction streams generated by opti-
mizing compilers affect the shape of the data-flow graph and often significantly
reduce available parallelism.

1 Background and Related Work

Most studies of the limits of available instruction-level parallelism have focused on the
timing of an optimal schedule of the instruction sequence for an idealized processor
model. We propose to examine directly the data flow graph of the instruction sequence.
Thus we will be able to gain insight into the structural properties of the available paral-
lelism, so that we may understand which elements of the instruction sequence, or which
compiler idioms, affect available parallelism. In particular, here we show that the pres-
ence of address calculations for memory operations greatly affects parallelism; in some
programs, it is precisely the address calculations that limit the asymptotically achiev-
able parallelism. As in earlier studies, we assume no hardware limitations: the degree of
parallelism available is the degree exploitable. Examining very long dynamic code se-
quences means that control flow is entirely revealed and does not constrain parallelism.
Imperfect alias analysis in compilers [1, 2] sequentializes code by enforcing the order
of the store-load pair, together with all potentially aliased memory operations, for any
value that cannot be held in registers and is temporarily stored in memory (register spill,
call save, or otherwise); by precise memory disambiguation at run-time we remove all
such constraints as well.

A number of studies over the past three decades have looked at the limits of paral-
lelism [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], using instruction-scheduling simulators. The sim-
ulator reports the number of cycles needed to execute the program, and the number
of instructions executed. The ratio of the two gives the IPC as the standard measure
of instruction-level parallelism [11]. The simulator effectively constructs the moving
“front line” of the data-flow graph [3]; thus, constructing an entire data-flow graph is not
necessary to obtain a single number, the cycle count. However, having an explicitly con-
structed graph permits us to study its structure: we can inspect the computation nodes

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 1018–1022, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Limits and Graph Structure of Available Instruction-Level Parallelism 1019

repeatedly, and evaluate the graph using multi-pass and backward-flow algorithms. We
will illustrate this new possibility on one example: we will recognize instructions in-
volved in address calculations using a backward-flow algorithm.

While in the past reconstructing large graphs was dismissed as impractical [3], that
is no longer the case. Currently available memory space permits building graphs suf-
ficiently large to capture interesting application behavior—parallelism analysis using a
conceptual dependence graph of a moving window of program execution was demon-
strated by Austin and Sohi [1]. Recently, Ebcioğlu et al. described a system for dynamic
code translation and optimization [12], aimed at transparent porting of applications to a
VLIW execution engine. Among other results, they evaluate achieved parallelism with-
out resource constraints, and with store-load bypassing. We obtain comparable paral-
lelism numbers, except for their results with the “combining” optimization, which in
some cases show much higher parallelism. This optimization breaks dependence chains
of immediate-operand instructions with the dependence on a common register, by ad-
justing the immediate values (a form of constant folding at the machine level); code
modifications are outside the scope of our study.

2 Run-Time Analysis of Programs

Our analysis uses the core of the SimpleScalar architectural simulation toolset [13]
for the Alpha instruction set, and dynamically constructs a program’s data-flow graph.
Conceptually, graph nodes correspond to executed instructions, while graph edges cor-
respond to computed operand values. The values are tracked through memory, including
multi-byte values through partial and unaligned accesses. This allows us to recognize
when entire stored values are reloaded. Nodes are not created for instructions identifi-
able as data transport: register moves and memory loads; instead, the values are appro-
priately bypassed from the producing node to the using node. Thus the data flow of the
computation is reconstructed independent of the storage layout.

We simulated a number of SPEC95 and Mediabench programs, with up to 1800
million instructions executed. Benchmarks were compiled on a Digital Alpha 21164
EV56 using native C and Fortran compilers, and highly optimized as specified by SPEC.
For each benchmark, we varied the size of the instruction window as powers of 2,
between 16 and 1M (limited by the memory capacity of the simulator host).

We first look at the parallelism reported for the graphs consisting of all instructions
in the examined window; the results are presented in plots (a) and (b) in Figures 1 and 2.
The solid lines, labelled all in the graph height plots (a), show the growth of average
graph height (length of critical path) with increasing instruction window size. The axes
in graphs (a) are both logarithmic; the slopes of the curves (below 1) show that the
dependence is sublinear. The solid lines, labelled all in the graph parallelism plots (b),
show the ratio of graph size (number of instruction nodes) to height. This ratio is a
measure of average available parallelism, because it reflects the potential speedup of a
machine with unbounded hardware resources (limited only by data dependences) over a
sequential machine that executes exactly one instruction per cycle in program order. As
the instruction window size increases, so does the parallelism. However, we note some
distinct behaviors. In 145.fpppp, the parallelism saturates quickly: with an instruction



1020 Darko Stefanović and Margaret Martonosi

window size of 128K, it is 314, with 1M, it is 357. Not so in 110.applu: parallelism
grows smoothly (but sublinearly) even as very large window sizes are reached. The
absolute values of parallelism are vastly different: whereas 145.fpppp achieves over
300, and 110.applu over 1000, we have only 45 for 129.compress (not shown). This
agrees with observations [3] that some numerical programs have very high intrinsic
parallelism, proportional to problem size and exposed by unrolling loops (which we in
effect do).

1

10

100

1000

10000

10 100 1000 10000 100000 1e+06 1e+07

G
ra

p
h

 h
ei

g
h

t

Instructions in window

all
excluding address

(a) Graph height

0

200

400

600

800

1000

1200

1400

1600

1800

10 100 1000 10000 100000 1e+06 1e+07

G
ra

p
h

 s
iz

e/
h

ei
g

h
t

Instructions in window

all
excluding address

(b) Graph parallelism measure

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000 100000 1e+06 1e+07

R
at

io
s 

(e
xc

lu
d

in
g

 a
d

d
re

ss
)/

(a
ll)

Instructions in window

graph size ratio
graph height ratio

(c) Ratios excluding address calculation

Fig. 1. Benchmark 145.fpppp

1

10

100

1000

1 10 100 1000 100001000001e+06 1e+07

G
ra

p
h

 h
ei

g
h

t

Instructions in window

all
excluding address

(a) Graph height

0

200

400

600

800

1000

1200

1 10 100 1000 100001000001e+06 1e+07

G
ra

p
h

 s
iz

e/
h

ei
g

h
t

Instructions in window

all
excluding address

(b) Graph parallelism measure

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 100001000001e+06 1e+07

R
at

io
s 

(e
xc

lu
d

in
g

 a
d

d
re

ss
)/

(a
ll)

Instructions in window

graph size ratio
graph height ratio

(c) Ratios excluding address calculation

Fig. 2. Benchmark 110.applu

Excluding Address Calculations. Will there be differences with respect to avail-
able parallelism between the data-flow graph as built, and its subgraph that excludes
purely address calculations? This is an interesting question, because the latter graph



Limits and Graph Structure of Available Instruction-Level Parallelism 1021

seems closer to the algorithmic intent of the program, address calculations being partly
an artifact of the particular compiler/RISC architecture realization of the program. Re-
call that while we are reconstructing the data-flow graph at run-time, we are able to
recognize when a load instruction L retrieves a value written to memory by a previous
store instruction S and produced by a previous computational instruction C. We bypass
such a load—an instruction that uses the loaded value sees it instead as coming from C,
similar to the load-store telescoping optimization [12]. Note that L is no longer needed
to represent the computation, and in some cases S also is no longer needed (if L is
the only load of the value). Loads and stores are preceded by instructions to calculate
an address. (These instructions may in turn include other loads.) If certain loads and
stores are no longer needed to represent the computation, then the corresponding ad-
dress calculations are not needed either. However, while we are building the graph we
cannot know which computations will end up being used only to calculate addresses.
This we determine in a separate, backward-propagating pass over the data-flow graph.
(Address calculation recognition subsumes the stack pointer register analysis of [10].)
The dashed lines, labelled excluding address in plots (a) and (b), give the graph height
and graph parallelism measure for the data-flow subgraph without address calculations.
Plots (c) show the relative size and height of the subgraph with respect to the full graph.
We show both in the same plot area to make it easier to compare with the graph paral-
lelism measure plot. (Consider the intersections of (c) curves and the intersections of (b)
curves: their abscissæ coincide.) Let us first look at the relative subgraph size, labelled
“graph size ratio” in plots (c). This ratio changes very little with instruction window
size, and the small observed change is in the direction of somewhat smaller ratios as the
window size is increased. Indeed, in the backward-propagating algorithm we must con-
servatively assume that values present at the end of the instruction window may be used
as non-addresses in the continuation of the program after the window; as the window
grows, the inaccuracy of that assumption diminishes and with it the number of instruc-
tions inaccurately assumed to be involved in non-address computation. The ratio varies
greatly across benchmarks: 0.9 for 145.fpppp, 0.8 for 110.applu and 124.m88ksim, but
just 0.2 for 129.compress.

Relative subgraph height, labelled “graph height ratio” in plots (c), shows significant
variation with window size. In 145.fpppp it remains close to 1 up to a window size
of 16K, but drops sharply thereafter, so that by 1M it is just 0.2. In other words, for
smaller windows, the subgraph height is about the same as the full graph height, but
for larger windows, the subgraph height collapses. The critical path is determined by
a dependence chain of address calculations carried in a loop. If address calculations
are eliminated, a much larger amount of parallelism is exposed. We observed the same
pattern in 141.apsi, 099.go, 134.perl, 126.gcc, 130.li, and mpeg2decode. On the other
hand, in 110.applu the ratio of graph heights is close to 1: the critical path is for the
most part determined by the “data” calculations, i.e., instructions other than address
calculations. We observed a similar pattern in 146.wave5, 124.m88ksim, and adpcm.

We may summarize the findings as follows: When address calculations form long
dependence chains, they can dominate “data” computations, and their removal is ben-
eficial for parallelism. When address calculations are localized, their removal does not
affect graph height, yet it reduces graph size; therefore, parallelism is reduced.



1022 Darko Stefanović and Margaret Martonosi

3 Future Directions

With data-flow graphs explicitly constructed we are not restricted to critical paths
through the entire graph, but can zoom in on particular nodes. For instance, we can
examine the critical path of the computation that produces the address for a load (with
a view to prefetching), or the critical path that produces a conditional value (with a
view to scheduling beyond the corresponding branch). We should consider what can
be done in language implementation to reform the way memory data are accessed: a
compiler optimization such as array index “strength reduction” can introduce a chain
of address calculations where none is apparent at the source level. On the other hand,
to appreciate the practical repercussions of available parallelism, we should consider
code mappings to realistic processors, where memory bandwidth and control flow un-
certainty are taken into account. We intend to combine the analysis of instruction-level
parallelism with analysis of bit usage [14], which will lead to a finer-granularity descrip-
tion of parallelism as the basis for code mapping decisions for hybrid fixed-configurable
processors.

References

[1] T. M. Austin and G. S. Sohi. Dynamic dependency analysis of ordinary programs. In 19th
ISCA, pages 342–351, May 1992.

[2] J. W. Davidson and S. Jinturkar. Improving instruction-level parallelism by loop unrolling
and dynamic memory disambiguation. In MICRO-28, Dec. 1995.

[3] A. Nicolau and J. A. Fisher. Measuring the parallelism available for very long instruction
word architectures. IEEE Trans. Comput., C-33(11):968–976, Nov. 1984.

[4] D. W. Wall. Limits of instruction-level parallelism. WRL Research Report 93/6, Digital
Equipment Corporation, Western Research Laboratory, Palo Alto, CA, Nov. 1993.

[5] C. C. Foster and E. M. Riseman. Percolation of code to enhance parallel dispatching and
execution. IEEE Trans. Comput., C-21(12):1411–1415, Dec. 1972.

[6] N. P. Jouppi. The nonuniform distribution of instruction-level and machine parallelism and
its effect on performance. IEEE Trans. Comput., 38(12):1645–1658, Dec. 1989.

[7] M. D. Smith, M. Johnson, and M. A. Horowitz. Limits on multiple instruction issue. In
ASPLOS III, pages 290–302, Boston, Massachusetts, 1989.

[8] M. Butler, T.-Y. Yeh, Y. Patt, M. Alsup, H. Scales, and M. Shebanow. Single instruction
stream parallelism is greater than two. In 18th ISCA, pages 276–286, May 1991.

[9] M. S. Lam and R. P. Wilson. Limits of control flow on parallelism. In 19th ISCA, pages
46–57, May 1992.

[10] M. A. Postiff, D. A. Greene, G. S. Tyson, and T. N. Mudge. The limits of instructions level
parallelism in SPEC95 applications. In 3rd Workshop on Interaction Between Compilers
and Computer Architecture, Oct. 1998.

[11] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufman Publishers, Inc., San Mateo, California, 1996. Second Edition.

[12] K. Ebcioğlu, E. R. Altman, S. Sathaye, and M. Gschwind. Optimizations and oracle paral-
lelism with dynamic translation. In MICRO-32, Nov. 1999.

[13] D. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0. Computer Architecture
News, pages 13–25, June 1997.

[14] D. Stefanović and M. Martonosi. On availability of bit-narrow operations in general-
purpose applications. In 10th FPL, Villach, Austria, 2000.


	Background and Related Work
	Run-Time Analysis of Programs
	Future Directions

