
BitValue Inference: Detecting and Exploiting

Narrow Bitwidth Computations�

Mihai Budiu1, Majd Sakr2, Kip Walker1, and Seth C. Goldstein1

1 Carnegie Mellon University
{mihaib,kwalker,seth}@cs.cmu.edu

2 Pittsburgh University
sakr@ee.pitt.edu

Abstract. We present a compiler algorithm called BitValue, which can
discover both unused and constant bits in dusty-deck C programs. Bit-
Value uses forward and backward dataflow analyses, generalizing constant-
folding and dead-code detection at the bit-level. This algorithm enables
compiler optimizations which target special processor architectures for
computing on non-standard bitwidths.

Using this algorithm we show that up to 31% of the computed bytes
are thrown away (for programs from SpecINT95 and Mediabench). A
compiler for reconfigurable hardware uses this algorithm to achieve sub-
stantial reductions (up to 20-fold) in the size of the synthesized circuits.

1 Introduction

As the natural word width of processors increases, so grows the gap between
the number of bits used and those actually required for a computation. Recent
architectural proposals have addressed this inefficiency by providing collections
of narrow functional units or the ability to construct functional units on the
fly. For example, instruction set extensions which support subword parallelism
(e.g., [10]), Application-Specific Instruction-set Processors (ASIPs) (e.g., [9]),
and reconfigurable devices (e.g., [11]) all allow operations to be performed on
operands which are smaller than the natural word size.

Reconfigurable computing devices are the most efficient at supporting arbi-
trary size operands because they can be programmed post-fabrication to imple-
ment functions directly as hardware circuits. In such devices, functional units
are created which exactly match the bit-widths of the data values on which they
compute.

Using the special architectural features requires the programmer to use macro
libraries or specify the bit-widths manually, a tedious and error-prone process.
Furthermore, this is often impossible as there is little or no support in high-level
languages for specifying arbitrary bit-widths.

� This work was supported by DARPA contract DABT63-96-C-0083 and an NSF CA-
REER grant.

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 969–979, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

970 Mihai Budiu et al.

In this paper we present the BitValue algorithm, which enables the com-
pilation of unannotated high-level languages to take advantage of variable size
functional units. Our technique uses dataflow analysis to discover bits which
are independent of the inputs to the program (constant bits) and bits which do
not influence the output of the program (unused bits). By eliminating computa-
tion of both constant and unused bits the resulting program can be made more
efficient.

BitValue generalizes constant folding and dead-code elimination to operate
on individual bits. When used on C programs, BitValue determines that a signif-
icant number of the bit operations performed are unnecessary: on average 14% of
the computed bytes in programs from SpecINT95 and Mediabench are useless.
Our technique also enables the programmer to use standard language constructs
to pass width information to the compiler using masking operations.

Narrow width information can be used to help create code for sub-word par-
allel functional units. It can also be used to automatically find configurations for
reconfigurable devices. BitValue has been implemented in a compiler which gen-
erates configurations for reconfigurable devices, reducing circuit size by factors
of three to twenty.

In Section 2 we present our BitValue inference algorithm with an example.
Results for the implementation in a C compiler are in Section 3 and for a recon-
figurable hardware compiler in Section 4. Related work is presented in Section 5
and we conclude in Section 6.

2 The BitValue Inference Algorithm

For each bit of an arbitrary-precision integer, our algorithm determines whether
(1) it has a constant value, or (2) its value does not influence the visible outputs
of the program. Those two possibilities are similar to constant folding and dead
code elimination, respectively. In our setting, however, these are performed at
the bit-level within each word.

We can cast our problem as a type-inference problem, where the type of a
variable describes the possible value that each bit can have during the execu-
tion of the program. The BitValue algorithm solves this problem using dataflow
analysis.

We represent the bit values by one of: 〈0〉, 〈1〉, don’t
0 1

U

X

Fig. 1. The bit values
lattice.

know (denoted by 〈u〉) and don’t care, (denoted by 〈x〉).
Let us call this set of values B. Some bits are constant,
independent of the inputs and control flow of the pro-
gram; such bits are labeled with their value, 〈0〉 or 〈1〉.
A bit is labeled 〈x〉 if it does not affect the output;
otherwise a bit is labeled 〈u〉. These bit values form a

lattice, depicted in Figure 1. We write ∪ and ∩ for sup and inf in the lattice
respectively. The top element of the lattice is 〈x〉 and the bottom is 〈u〉.

BitValue Inference 971

The Bit String Lattice. We represent the type of each value in the program as a
string of bits. We write B∗ to denote all strings of values in B. For example, for
the C statement unsigned char a = b & 0xf0, we determine that the type of
a is 〈uuuu0000〉, and that the type of b, assuming it is dead after this statement,
is 〈uuuuxxxx〉.

The bitstrings also form a lattice L. Space considerations preclude us from
giving the formal definition of the operations on this lattice. The ∪ and ∩ op-
erations in L are done bitwise (i.e. ab ∪ cd = (a ∪ c)(b ∪ d)). When applied to
strings of different lengths, ∪ gives a result of the shorter length, while ∩ gives a
result of the bigger length. The shorter value is sign-extended in the lattice for
the ∩ computation.

The Transfer Functions. In order to certify the correctness of our algorithms,
we need to prove that our transfer functions are monotone and conservative. For
this purpose we provide mathematical definitions for the “best” forward transfer
function and for a conservative backward transfer function.

We now define A, the forward transfer function of an operator in L. We
define the auxiliary “expansion” function exp : L×{〈x〉, 〈u〉} → 2L, which takes
a bitstring s and a bit value b ∈ {〈x〉, 〈u〉}, and generates a set of bistrings: all
bitstrings that can be obtained from s by replacing the bits in s having the value b
by all possible combinations of constant values. For example exp(〈0ux1x〉, 〈x〉) =
{〈0u010〉, 〈0u110〉, 〈0u011〉, 〈0u111〉}.

We now define three auxiliary functions which are used to compute the
transfer function of any operator. Ac : (N → N) × {0, 1}∗ → L operates on
“constant” bitstrings, i.e. bistrings containing only 〈0〉 and 〈1〉. Au : (N →
N) × {〈0〉, 〈1〉, 〈u〉} → L computes the transfer function for bitstrings which
comprise 〈0〉, 〈1〉 and 〈u〉 bits. A : (N → N) × L → L works for bitstrings
with any of the digits in B. Given a unary operation f : N → N, A(f, ·) is its
associated forward transfer function in L → L.

Ac(f, v) = f(value(v)) where v ∈ {〈0〉, 〈1〉}∗
Au(f, v) =

⋂
y∈exp(v,〈u〉) Ac(f, y) where v ∈ {〈0〉, 〈1〉, 〈u〉}∗

A(f, v) =
⋃

y∈exp(v,〈x〉) Au(f, y) where v ∈ L.

The intuition behind these equations is the following: when we compute the
transfer function in L for an input value, we can choose arbitrary values for
the input bits which are marked 〈x〉, but we must search the entire space of
possibilities for the bits marked 〈u〉. This definition can be easily extended to
deal with n-ary operators.

For example, here is what the above definition yields for the C complemen-
tation ~ operator when applied to 〈u0x〉:

972 Mihai Budiu et al.

A(˜, 〈u0x〉) = Au(˜, 〈u00〉) ∪ Au(˜, 〈u01〉)
= (Ac(˜, 〈000〉) ∩ Ac(˜, 〈100〉)) ∪ (Ac(˜, 〈001〉) ∩ Ac(˜, 〈101〉))
= ((˜〈000〉 ∩ ˜〈100〉) ∪ (˜〈001〉 ∩ ˜〈101〉))
= ((〈111〉 ∩ 〈011〉) ∪ (〈110〉 ∩ 〈010〉))
= 〈u11〉 ∪ 〈u10〉
= 〈u1x〉

The backward transfer function will discover don’t care bits in the input
starting from the don’t cares in the output. We do not have a closed form for
the backward transfer function. We can, however, define a conservative approxi-
mation using techniques from Boolean function minimization [6]. The notion of
don’t care input for a Boolean function f of n variables is well known (xi is a
don’t care if ∂f

∂xi
= 0).

We can view an operator which computes many bits (like addition) as a
vector of Boolean functions, each computing one bit of the result. An input bit
is don’t care for the operator if it is a don’t care for all the functions in the
vector whose result is not 〈x〉. If our analysis discovers that some input bits
are constant, we can use those in the backward transfer function computation,
starting the computation with the restriction of f to those constant inputs.

For example, let us see how the backward propagation operates on the state-
ment c = a^b when we know already that the types of a, b and c are respectively
〈u0〉, 〈uu〉 and 〈xu〉; we expect the don’t care of c to be propagated to a and
b. The two bits of c are computed by two boolean functions of 4 bits: f0 and
f1: f0(a0 = 0, a1, b0, b1) = a0^b0 and f1(a0, a1, b0, b1) = a1^b1. Because the bit
1 in the result is 〈x〉, we only need to look for the don’t cares of f0 which will
be the don’t cares of the input. For instance, bit a1 is a don’t care, because
f0|a1=0 = f0|a1=1, and so is b1. So the backward propagation proves as expected
that the types of the inputs are 〈x0〉 and 〈xu〉 respectively. In this example the
fact that a0 = 0 was not useful to infer more information, but if we change the
operator from ^ to &, this information provides the type 〈x〉 for b0.

In practice the transfer functions as given by the above definitions can be
expensive to compute, so we resort to using monotone conservative approxima-
tions, described fully in [5].

The Dataflow Analysis. We maintain for each value two types: the best type
and the current type. The best type is initialized conservatively (⊥) and moves
up in the lattice after each pass. The analysis works by alternating forward
and backward dataflow passes, terminating when the best type does not change
during a pass. Each pass starts by initializing the current type for all the values
to �, and proceeds to do the dataflow computation; during this computation
the current types move down in the lattice until a fixed point is reached. At the
end of each pass we update the best type: best = best ∪ current.

BitValue Inference 973

unsigned char

f(unsigned char c,

unsigned char a)

{

unsigned char d;

d = (c + a) & 0x33;

return (d >> 4)

+ (d << 2);

}

+ +

returned
value

returned
value

&

33

r
+

<< >>

2

a c

110011

4d

&

33

r
+

<< >>

2

uu00uuuu

a c

4d

uu00uuuu

00uu

xxuuuuuuuuuuuuuu

uuuuuuuu

10010

uuuuuuuu

uu

uuxxxx

uu00uu00

00uu00uu

uu00uu00

xxuu00uu

xxuu00uu

xxuuuuuu

xxuuxxuu

Fig. 2. A C function and the associated data-flow graph. The types inferred by
forward (backward) propagation are shown in the left (righ) figure. We assume
that a char has 8 bits.

2.1 Example

We illustrate the algorithm on the code in Figure 2.1 The algorithm begins with
the forward pass and examines the first statement. The sources for the first state-
ment are parameters which are defined outside the procedure and thus are set to
be all don’t knows, i.e. every bit is significant. c+a from Figure 2 must be com-
puted on 9 bits. The result is truncated to 8 bits of precision because of the defini-
tion of char in the underlying language implementation. The masking operation
creates a type for d with a combination of constants and don’t knows, 〈00uu00uu〉.

The left shift in the return statement concatenates 0 bits at the least signif-
icant end, while the right shift generates the type 〈00uu〉. Using this informa-
tion, the addition in the return statement infers that the final result has type
〈uu00uuuu〉.

The backward pass uses this information as a starting point. It proceeds to
determine which bits of the computation are actually needed. In this example,
the right shift indicates that the bottom 4 bits of d are don’t cares, and the
left shift indicates that the top 2 bits are don’t cares. Since d is used in two
expressions, its useful bits are represented by the ∩ of these two strings. The
middle two bits of d have been found to be 0 by forward propagation, and they
are not changed.

From the & we deduce that the useful bits of the sum a+c are 〈xxuuxxuu〉. This
don’t care information propagates up through the transfer function associated
with the plus operation, and the compiler deduces that for both a and c only
the bottom 6 bits are significant.

During the next forward pass there are no changes and the algorithm termi-
nates.
1 We assume that all computations are carried on 8 bits; a normal C implementation

would cast all values to int and back.

974 Mihai Budiu et al.

Table 1. Percent reduction in bitwidth for programs in MediaBench (left) and
SpecINT95 (right). We are only counting the most significant bytes. The column
labeled “bitv” indicates that only the BitValue was run, “ind” indicates that
only loop induction-variable analysis was performed, and “both” indicates both
analyses were performed. The results are rounded down; a zero means “less than
one percent”. We were unable to profile gcc.

Static % Dynamic %

Benchmark ind bitv both ind bitv both

adpcm e 0 19 19 0 19 19
adpcm d 0 19 19 0 24 24
g721 Q d 1 32 33 4 26 31
g721 Q e 1 32 33 4 25 29
gsm e 1 30 31 7 7 14
gsm d 1 30 31 4 24 24
epic e 0 5 5 0 0 0
epic d 0 3 3 0 4 4
mpeg2 e 0 12 13 24 4 28
mpeg2 d 0 9 10 1 7 8
jpeg e 0 4 4 1 7 9
jpeg d 0 4 4 0 11 11
pegwit e 0 14 15 0 13 13
pegwit d 0 14 15 0 16 16
mesa 0 5 5 0 5 5

Static % Dynamic %

Benchmark ind bitv both ind bitv both

124.m88ksim 1 22 22 1 19 20
129.compres 2 11 13 0 11 12
099.go 0 6 7 0 2 2
130.li 0 14 14 0 12 12
132.ijpeg 0 5 5 1 10 11
134.perl 0 11 11 0 8 8
147.vortex 0 6 6 0 5 5
126.gcc 0 19 19 * * *

3 Experiments with a C Compiler

We evaluate our algorithm implemented in SUIF [15] on C programs from Me-
diaBench [8] and SpecINT95 [12]. BitValue is implemented as a work-list based
dataflow algorithm starting from def-use chains [14]. Both def-use and BitValue
are local analyses. Information from alias analysis or an interprocedural BitValue
analysis would improve our results, at a cost of greater compilation time.

3.1 Evaluation

In this section we compare the merits of induction variable analysis, BitValue,
and the interaction between them. Induction variable analysis has been used
in [13] to compute ranges of values for each variable which is used to reduce the
number of necessary bits. We have used a simplified form of this analysis to an-
alyze FORTRAN-style for loops. We only detect values which depend linearly
on the loop index.

We ran three experiments for each benchmark: the induction-variable analysis
only, BitValue only, and both. When we ran both analyses, we first ran the
induction-variable analysis, and we fed the bounds derived by it into the initial
information for BitValue.

BitValue Inference 975

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

none Ind BitV Both none Ind BitV Both

32
24
16
12
8
4

adpcm_e g721_d

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

none Ind BitV Both none Ind BitV Both

32
24
16
12
8
4

m88ksim ijpeg

Fig. 3. Percentage breakdown of widths from some programs (dynamic counts).

Depending on the hardware model which exploits the narrow bitwidths, not
every constant or don’t care bit can be eliminated. For instance, a constant bit
in the middle of a byte cannot be discarded when using subword parallelism.
To account for this, the data in Table 1 counts only the most significant bytes
as useless. For example, in a 16-bit data item with inferred type 〈x001u001
xxxuuuxx〉 we count no saved bytes because there is a useful bit in each of the
bytes. These results underestimate the performance of the algorithm but apply
to a wider range of architectures. If we count all the bit savings, we obtain on
average an additional 6% reduction.

Most often BitValue and the induction-variable analysis complement (or even
reinforce) each other: there are benchmarks (e.g., jpeg e) where the “both” count
surpasses the sum of the two other counts.

In Figure 3 we show the histograms of the data sizes operated upon for
some selected benchmarks. The value sizes are rounded up. For each program
we present four histograms: one for the original program (with no analysis), one
for the induction variable analysis alone, one for BitValue analysis alone, and
one for both analyses (induction followed by BitValue).

For example, we can interpret the graphs for adpcm e in the following way:
the first bar says that about 5% of the values in the original program are 16-bit
or less. The fourth bar shows that using BitValue we discover that 16 bits are
actually enough for about 30% of the values in the program.

We have examined the main sources of reductions to gain insight into the
effectiveness of the algorithm. The sources of reduction found by BitValue come
from several patterns: (1) the use of shift, bitwise and and or, addition and mul-
tiplication by small constants are the most powerful; (2) the propagation of cast
information through the backward analysis; (3) array element index computa-
tions.

A preliminary evaluation of the benefits of discovering narrow values shows
that the analysis is important in the context of reconfigurable functional units
(RFUs). We used as a target architecture a VLIW processor augmented with an
PipeRench-like [7] RFU on the data path. For example, compiling g721 e for the

976 Mihai Budiu et al.

processor+RFU combination without the analysis yields an 18% reduction in the
running time. If we optimize the portion mapped to the RFU using BitValue we
obtain a 26% reduction in running time.

3.2 Practical Issues

Our implementation of BitValue is fast and scales linearly in practice with pro-
gram size. The space complexity is linear. We analyze on average 900 lines/second
on a PIII @750Mhz, with an untuned implementation.

An interesting side-effect of our analysis is that it gives a portable high-
level method for specifing widths: by using a masking operation we can seed the
BitValue algorithm. For example, the statement c = c & 0x3c indicates that
only the middle 4 four bits of c are useful, and this knowledge is propagated by
BitValue throughout the code.

Our current implementation runs the induction variable analysis only once
and BitValue afterwards. Improvements can be obtained by iterating these anal-
yses until a fixed-point is reached. Future work will investigate the possible gains.

4 Experiments with a Reconfigurable Hardware Compiler

In this section we evaluate the BitValue algorithm as it is used in the DIL
compiler [4] which we developed for reconfigurable hardware. The DIL language
operates on arbitrary-precision integer data types and does not require the values
to be annotated with an explicit width.

Because of this there is no baseline for comparing the performance of the
algorithm (in C we could compare the reduced sizes with the C type-specified
sizes). For evaluation purposes we artificially set the sizes of all variables to
32-bitsand then we run the algorithm to determine the reduction in size.

Table 2 shows the amount of hardware required to implement kernels com-
piled with the DIL compiler. Note that the impact of the analysis is significant:
it can decrease the silicon real-estate (and implicitly, decrease the power con-
sumption and decrease the latency of the computation) with a factor between 3
and 20.

5 Related Work

There is a wealth of static and dynamic analyses which suggest that many of
the bits computed by a program are useless.

Brooks and Martonosi [3] use a simulator to show that for the programs
in both SpecInt95 and MediaBench more than half of all integer computations
require at most 16 bits of precision. Our compile time analysis proves statically
that on average 30% of the widths are 16 bits or less for any input data. They
suggest hardware techniques for creating instructions which operate on narrow
widths on the fly. The work of Bondalapati and Prasanna is similar, looking

BitValue Inference 977

Table 2. The size of the circuits in bit-operations/8, for two circuit versions: one
where all values are 32-bit and one with variable sizes. The percent column shows
the remaining size of the circuit after optimizations (the smaller, the better).

Program Description Original Final %

cordic 12 stage implementation of Cordic vector rotations 1507 332 23
encoder 8-bit Huffman encoder with the code table hardwired 2286 578 26
dct 1-D 8-point Discrete Cosine Transform 366 94 26
fir FIR filter with 20 taps and 8-bit coefficients 320 123 39
idea Complete 8 round key-specific International Data En-

cryption Algorithm
2074 576 28

nqueens Evaluator for the n-queens problem on an 8x8 board 144 7 5
over Porter-Duff “over” operator 280 49 18
popcnt Count the number of “1” bits in a 16-bit word. 96 5 6

at dynamically changing functional unit sizes based on dynamically maintained
width information [2].

Static techniques for inferring minimum bit-widths using don’t care detection
are prevalent in the logic synthesis community, for example [6]. This approach
computes satisfiability don’t care sets on a network of Boolean operators. Such
an analysis operates at the bit (and not at the word level) and is significantly
slower but more precise than our approach. These algorithms are exponential
in complexity, and even heuristic methods cannot address benchmarks of the
size we are analyzing. Our algorithm has worst-case quadratic complexity. We
compared our algorithm to the Synopsis Synplify compiler, a commercial CAD
tool, using the DCT benchmark from Section 4. Our analysis runs two orders
of magnitude faster and generates circuits within 30% of the size obtained by
Synopsis.

Most similar to our work is Razdan [11]. His analysis uses a ternary logic of
0, 1 and don’t know (denoted in this paper by x); he also operates on strings
of bits, and uses forward and backward analyses. Although he handles loop
induction variables for loops with a statically know trip-count, he does not offer
a complete solution for handling loop-carried dependences, where a lot of savings
can be gained.

Babb et al. [1] suggest that width analysis can be performed by determining
the maximum values that can be carried on the wires, for example by examining
loop bounds. This technique is further investigated by Stephenson et al. in [13].
These techniques are orthogonal to ours. Our analysis would very likely combine
well with this technique, because the results of one could be used to seed the
starting point of the other one, in the same way we handle induction variables.

6 Conclusions

We have presented BitValue, a compiler algorithm which infers statically the
values of the bits computed by a program. Trimming constant bits or unused
bits can reduce the width of the computed values, enabling the compiler to use

978 Mihai Budiu et al.

narrow width functional units, which have become available in new architectures
(e.g., MMX, reconfigurable functional units, and Application-Specific Instruction
Processors).

BitValue can be used to analyze both C and DIL programs to significantly
reduce the number of bits used to perform computations. We show that BitValue
inference can determine that on average 14% of the most significant bytes (and
20% of the bits) computed are unnecessary for programs from MediaBench and
SpecINT95. BitValue analysis can reduce the size of the programs synthesized
for a reconfigurable architecture between three- and twenty-fold. Finally, using
our algorithm we were able to increase the simulated performance of several Me-
diaBench programs by more than 20% when run on a CPU with a reconfigurable
functional unit. The algorithm we present is an essential ingredient in develop-
ing a compiler which will target sub-word parallel media extensions, low power
extensions, or reconfigurable devices.

References

1. J. Babb, M. Rinard, A. Moritz, W. Lee, M. Frank, R. Barua, and S. Amaras-
inghe. Parallelizing applications into silicon. In IEEE/FCCM Symposium on Field-
Programmable Custom Computing Machines, Napa Valley, CA, April 1999. MIT.

2. K. Bondalapati and V.K. Prasanna. Dynamic precision management for loop
computations on reconfigurable architectures. In IEEE/FCCM Symposium on
Field-Programmable Custom Computing Machines, Napa Valley, CA, April 1999.
Organization: University of Southern California.

3. D. Brooks and M. Martonosi. Dynamically exploiting narrow width operands to
improve processor power and performance. In HPCA-5, January 1999. Princeton
University.

4. M. Budiu and S.C. Goldstein. Fast compilation for pipelined reconfigurable fab-
rics. In ACM/FPGA Symposium on Field Programmable Gate Arrays, Monterey,
CA, 1999.

5. M. Budiu and S.C. Goldstein. BitValue — Detecting and Exploiting Narrow
Bitwidth Computations. Technical Report CMU-CS-00-141, Carnegie Mellon
University, June 2000.

6. M. Damiani and G. de Micheli. Don’t care specifications in combinational and syn-
chronous logic circuits. In IEEE Transactions on CAD/ICAS, pages 365–388, 1992.

7. S.C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R.R. Taylor, and
R. Laufer. Piperench: A coprocessor for streaming multimedia acceleration.
In Proceedings of the 26th Annual International Symposium on Computer
Architecture, pages 28–39, May 1999.

8. C. Lee, M. Potkonjak, and W.H. Mangione-Smith. Mediabench: a tool for eval-
uating and synthesizing multimedia and communications systems. In Micro-30,
30th annual ACM/IEEE international symposium on Microarchitecture, pages
330–335, 1997.

9. P. Marwedel and G. Goossens, editors. Code generation for embedded processors.
Kluwer Academic Press, 1995.

10. A. Peleg, S. Wilkie, and U. Weiser. Intel MMX for multimedia PCs. Communi-
cations of the ACM, 40(1):24–38, 1997.

BitValue Inference 979

11. Rahul Razdan. PRISC: Programmable reduced instruction set computers. PhD
thesis, Harvard University, May 1994.

12. http://www.specbench.org/osg/cpu95/.
13. M. Stephenson, J. Babb, and S. Amarasinghe. Bitwidth analysis with application

to silicon compilation. In Proceedings of the SIGPLAN conference on Programming
Language Design and Implementation, June 2000.

14. E. Stoltz, M. P. Gerlek, and M. Wolfe. Extended SSA with Factored Use-Def chains
to support optimization and parallelism. In Proceedings Hawaii International
Conference on Systems Sciences, Maui, Hawaii, Jan. 1994.

15. R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson, S. Tjiang, S.-W.
Liao, C.-W. Tseng, M. Hall, M. Lam, and J. Hennessy. SUIF: An infrastructure
for research on parallelizing and optimizing compilers. In ACM SIGPLAN Notices,
volume 29, pages 31–37, December 1994.

	Introduction
	The BitValue Inference Algorithm
	Example

	Experiments with a C Compiler
	Evaluation
	Practical Issues

	Experiments with a Reconfigurable Hardware Compiler
	Related Work
	Conclusions

