
SEEDS: Airport Management Database System

Tomáš Hrúz1,2, Martin Bečka3, and Antonello Pasquarelli4

1 SolidNet, Ltd., Slovakia, www.sdxnet.com,
tomas@sdxnet.com

2 Department of Adaptive Systems, UTIA,
Academy of Sciences of the Czech Republic, Prague‡

3 Mathematical Institute, Slovak Academy of Sciences,
P.O.Box 56, 840 00 Bratislava, Slovakia,

becka@ifi.savba.sk
4 Alenia Marconi Systems, Via Tiburtina km 12.4, I-00131 Rome,

apasquarelli@aleniasystems.finmeccanica.it

Abstract. The article describes an airport database management sys-
tem, which is a part of large simulation environment developed under
the ESPRIT project SEEDS. Airport management database is a dis-
tributed computing system written entirely in Java and connected to
the rest of the SEEDS system through CORBA interface. The majority
of the SEEDS modules is written in C++ and communicates through
CORBA. The airport management database consists of an application
server, three different clients and a CORBA connection module.

1 Introduction

This article describes an Airport Management Database (AMDB) system which
is a part of larger simulation environment SEEDS [1,6].

SEEDS is a distributed simulation environment composed of powerful work-
stations connected in local network, suitable to evaluate advanced surface move-
ment guidance and control systems, to validate new international standards and
to train operators.

The aim of AMDB software module is to describe various external aspects of
the core airport simulation model like meteorological situation and its changes,
flight data list (FDL) and its changes, Initial Climbing Procedures (ICP), In-
strument Approach Charts (IAC), Standard Instrumental Departure (SID) and
Standart Approach Route (STAR) description and visual information. To em-
phasize the external aspect of AMDB with respect to the core simulator we
sometimes use the term external world model instead of AMDB.

The AMDB module is designed to contain a relational database subsystem to
handle large data sets and a three level architecture (SQL server [7], application
server and clients) to achieve high level of flexibility. Another aspect of AMDB
module design is a wide area network operation emphasis, which is leading to
the architecture centered around the Java system.
‡ Grant GACR 102/1999/1564

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 861–868, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



862 Tomáš Hrúz, Martin Bečka, and Antonello Pasquarelli

The core of the SEEDS simulator is written in C++ and uses the CORBA
standard to communicate between different system modules. The AMDB module
is entirely written in Java. This situation provides an excellent occasion to test
the cooperation between Java and CORBA based C++ subsystems.

In particular, the application server (APS) is written in Java to see whether
the speed of recent Java virtual machine (JVM) implementations is able to cope
with the tasks arising in such complex applications.

As far as SEEDS together with AMDB module contains various hardware
and software platforms we have decided to use only open software tools for which
we had the source code. This approach has two reasons:

1. In very complex and multi-platform systems we consider the absolute
control over the development process provided by source code as inevitable for
any high quality software.

2. Open software systems usually contain a less powerful visual development
tools and we were interested in knowing whether these high level visual features
are really necessary for development of very complex systems.

The article is organized as follows: in Sec. 2 we describe architecture, design
specification and basic features of the AMDB system. Then we conclude with
some notes and experiences drawn from this work.

2 Airport Management Database System

The information stored in the airport management database can be structured
to groups according to the importance and complexity. In the SEEDS airport
model architecture [1] the following navigation data have been considered for
inclusion to the external world model. (1) Meteo information, (2) FDL and (3)
SID, STAR, ICP and IAC charts. These information groups are implemented
in the AMDB module through relational database model, APS and clients. The
relational database stores the information about the navigation data in the struc-
tured way and APS is responsible for all non-relational model aspects. There are
three main clients in the system.

1. Meteo client responsible for meteo information rendering and changes.
2. Flight data list client responsible for the FDL processing.
3. Image viewer client responsible for SID, STAR, ICP, IAC charts previewing

and processing.

The synchronization, authentication and all other aspects of AMDB allow arbi-
trary number of clients (limited only by system resources) of each type running
at the same time.

2.1 Architecture

Today’s computing environment enforces definitively a server/client architec-
ture. The main reasons are flexibility, scalability and reusability. Moreover, the
AMDB module architecture is Java (network computing) oriented and has a



SEEDS: Airport Management Database System 863

SQL relational database in the background to meet the design goals. The client
Java classes communicate with the SQL database engine through JDBC layer
and driver [8].

However, an architecture conforming to the above mentioned points can be
designed in various ways. Let us consider first the architecture in Fig. 1 but
without the third quadrant containing AS. With respect to the relation between
SQL database and clients this can be called two level architecture because there
are two levels: 1.clients and 2.SQL servers. The advantage of such architecture
is simplicity, a disadvantage is limited modeling strength and flexibility.

With modeling strength and flexibility we mean the following concept. Any
software system can be considered as a model of some process. If we consider a
two level architecture as above, we can efficiently construct a model for a process
which can be well represented in terms of relational database. However, if the
modeled process does not fit well in this class we have to add software modules
which represent its non-relational structures. If a two level architecture is used
these modules must be split between the SQL server (as embedded procedures)
and the clients. Such splitting can be very inefficient from the software design
point of view as well as from the final system efficiency point of view. As a
solution to the above problem a concept of three level architecture can be used.
The three level architecture has: 1. clients, 2. application servers, 3. SQL servers.

Following the ideas above, all non-relational aspects of the model are located
in the APS. It is also responsible for managing and forwarding the database
queries of clients to the SQL server. In the SEEDS project an absolute necessity
of APS comes from the fact that any change of the database state must be
transmitted to the rest of the system in form of events, so that all modules can
change their behavior according to the new state of the external world. The
final three level architecture used for AMDB is shown in Fig. 1 where APS is
designed in Java and is called from the clients through Java Remote Method
Invocation (RMI). Another advantage of this architecture is that design of such
system contains also a task of application protocol development. Moreover, in the
case of very heavy server computation related to some non-relational modeling
aspects, the server class can call C or C++ libraries through JNI (Java Native
Interface).

The airport management database architecture and its relation to the pro-
cessing of events in SEEDS is illustrated in Fig. 2 on an example of the meteo
data processing subsystem. AMDB calls a meteo event server written in C/C++
with a CORBA interface, which is a part of core SEEDS system. The SEEDS
modules register to the meteo event server for a particular class of events. The
major events with respect to the external world model are changes in the model
database state.

For example an operator wants to change the visibility at some airport ob-
ject. He starts a master mode of client module, which allows him to change the
database state. The request is forwarded through RMI to AS, which generates
a SQL operation to the SQL server and a notification event to the meteo event



864 Tomáš Hrúz, Martin Bečka, and Antonello Pasquarelli

SERVER

SERVER

PAGE

CLASS

FACE

CATION
SERVER

APPLI-

��
��
��

��
��
��

DATABASE SERVER

��
��
��

��
��
��

��
��
��

��
��
��1 2

34
��
��
��

��
��
��

APPLI-

DRI-
VER

CATION

CLIENT

WEB

SQL
JDBC

WEB BROWSER

VIRTUAL MACHINE

RMI
REGISTRY

VIRTUAL MACHINE HOST

VIRTUAL MACHINE

RELATIONAL SQL

DOWNLOAD

WEB

JDBC
DRIVER

RMI

DOWNLOAD

JAVA
CLASS

CLIENT
JAVA
CLASS

SERVER
X11

INTER-
C

Fig. 1. The Java client/server 3 level architecture for Airport Management
Database

server. APS notifies also all registered external world clients about the change
so that all other operators see the change on the external world client screen.

Because the event server has been notified all SEEDS modules registered for
this event class will obtain a notification about the event. Then they can ask
through a CORBA interface of the application server about the new values of
AMDB and they can change the behavior according the new data. For example
the scenario generation module can change the picture on appropriate operator
and pilot screens etc.

To summarize the architecture, the AMDB system consists of the following
subsystems: (a) SQL server. The SQL server used is PostgreSQL [7], which is
running on most UNIX platforms. (b) SQL relational database. The AMDB
use a database maintained by SQL server. The relational database consists in a
set of tables, which provide a relational model of AMDB subsystems like airports,
meteo data, navigation procedures etc. (c) Web server and web pages. The
client applets are stored and transmitted through the Apache web server. (d)
The clients. The code of clients is stored in signed archives on the web server.
Clients are downloaded from the web server to the browsers where they are run
on browser virtual machine. (e) The application server. APS is running as a
Java application under JVM.

In the prototype configuration the application server, the web server and the
SQL server are running on Alpha station with Digital 64bit UNIX.



SEEDS: Airport Management Database System 865

VIRTUAL MACHINE

APPLICATION
SERVER

SQL
SERVER

METEO
EVENT

SERVER
APPLICATIONS

CLIENT3

AMDB SERVER SIDE

JDBC

RMI

EVENTS

1CLIENT

2CLIENT

SEEDS WORLD

WAN

CORBA
CORBA

CORBA

Fig. 2. External World Model Architecture and Communication. The communica-
tion pattern between application server, SQL server and clients in the AMDB module
is shown as the emphasized triangle structure

2.2 Data Transmission Rules

The SEEDS system is highly heterogeneous and contains more platforms (e.g.
Microsoft NT on Intel, UNIX on Silicon Graphics, UNIX on Alpha, Java etc.)
therefore it is necessary to establish communication rules which allow robust
and efficient communication between the modules and platforms. For the AMDB
module design we have identified the following rules:

(1) All aspects of the system, which can be modeled by relational database
are modeled by the database structure and are centered in SQL server.

(2) If a client is interested in data which are stored in the database and do
not require non-relational processing they read the data directly from the SQL
server as is illustrated in Fig. 2 with an emphasized triangle pattern.

(3) The only agent allowed to write the data to the SQL database is the
application server.

(4) All non-relational modeling and processing is centered in application
server. In the case of the AMDB module this means for example notification
and data transmission between the AMDB module and the rest of SEEDS.

(5) Because of the heterogeneous character of SEEDS it is preferable to con-
vert most of the data which will be transmitted over the network to integer
formats. This is an obligatory rule for primary key data. It means that all in-
formation entities are coded as integers and only these codes are sent over the
network. The clients are responsible for transformation between the integer rep-
resentation and other forms of representation like strings etc. For this purpose
the clients call directly the SQL server.



866 Tomáš Hrúz, Martin Bečka, and Antonello Pasquarelli

2.3 Communication with SQL Server

Following our open software strategy we have used the PostgreSQL [7] database
system. The resulting experience is very positive. The system is robust, stable
and efficient. Moreover, it defines a very rich set of database types. On the other
hand, the main disadvantage of this system, when compared with commercial
systems like Oracle SQL servers is a certain lack of preprocessing, postprocessing
and visual tools. However, the minimal price (only the maintenance cost) and the
open character of this system have far outweighted its disadvantages especially
in a research and development project as is SEEDS.

The clients and APS communicate with the SQL server using JDBC layer
defined by Java system [8] which in turn calls JDBC driver which is provided by
SQL server manufacturer, in our case by PostgreSQL system.

2.4 Security Model

The AMDB module is designed as a network computing structure therefore the
security aspects are very important.

The PostgreSQL server is well equipped with security options ranging from a
simple password authentication to KERBEROS and data channels encryption.
To choose the appropriate option is a matter of configuration depending on the
actual AMDB usage.

APS is written in Java as a Java application. One of the specification and
design problems here is related to the fact that Java version 1.1, which is still not
widely accepted by the browser industry does not contain interface to CORBA.
This is provided in a new generation of Java, version 1.2. Therefore, we have
adopted the following security design rules illustrated in Fig. 3.

– The application server is written as a Java application.
– The server code is conformant to the Java 1.1 standard.
– The server is compiled and running in the Java 1.2 system. The security re-

strictions are defined with a special security manager written for the AMDB
module.

– The clients are written as Java applets.
– The code of clients is conformant to the Java 1.1 standard.
– The clients are compiled and running in the Java 1.1 system. The security

restrictions are handled according to the Java 1.1 system. This means that
we generate signed archives stored on a web server.

2.5 Application Server and Clients

APS is responsible for all non-relational modeling aspects. After successful recon-
struction of the initial state an object for the SQL communication is constructed,
which opens a channel to SQL database server used for data processing. This
SQL channel is used to read and write the data from the database during the



SEEDS: Airport Management Database System 867

WEB BROWSER

VIRTUAL MACHINE

CLIENT
JAVA
CLASS

VIRTUAL MACHINE

APPLI-
CATION
SERVER

VIRTUAL MACHINE HOST

WEB PAGE

JDK

CLIENT

JAVA
CLASS

DOWNLOAD

GENERATE THE CERTIFIIED

ARCHIVE

WEB SERVER

DOWNLOAD
SIGNED ARCHIVE

ON THE PLATFORM
IDENTITY DEFINED

IDENTITY
CHECK

Fig. 3. Illustration of the client security model

whole life period of APS. All other agents are allowed (even sometimes obliged)
to read directly from SQL server but not to write.

Clients connect to APS through well defined ”channels” which are defined
as two sets of remote procedures. One set for each direction. RMI connection
of a client is initialized through a well known remote object. The reference to
the remote object is obtained through the RMI naming services. Then a private
channel is constructed which contains private remote references to the procedures
above. APS maintains a list of channels which is periodically checked for dead
clients. The channels for dead clients are deleted so that there is no resource
deficit during a long server runs. The channel maintenance subsystem use a watch
dog mechanism where in regular intervals each client must call the following time
synchronization procedure:

Timestamp watchDog(Timestamp clientSimulationTime)
through which the client sends its value of the simulation time and obtains back
the server value of the simulation time. If they differ in larger value, the client is
obliged to synchronize with APS. At the same time, when APS obtains such call
it updates the watch dog structure. This mechanism provides a means how to
detect dead channels as well as synchronize simulation time between the clients
and APS.

We have implemented three main AMDB clients, which are connected to the
database through JDBC. During the client run it is necessary to load informa-
tion from the database concerning the user identity tests, simulations, airports,
aircraft types, airport objects and its sites, predefined meteo values, airport map
images, etc. Some of these data are loaded once and cashed in the application,
other ones are dynamically loaded when they are needed.

We have introduced a concept of two edit modes of the client, a slave mode
and a master mode. In the slave mode a user can only view all information the
client offers. In the master mode the user can change the data. The slave mode is



868 Tomáš Hrúz, Martin Bečka, and Antonello Pasquarelli

default, for switching to the master mode the user’s identification and password
is required. User is notified about the number of masters working on the same
configuration, however users can concurently write to the database.

3 Conclusions

Concerning the software engineering point of view there are three main con-
clusions (experiences) from the SEEDS project. One concerns CORBA and the
other two Java and open software systems.

CORBA together with Internet proved to be extremely efficient in devel-
opment and integration of large systems which contain different platforms and
geographically distant development teams. The introduction of new platform
(Java) into the project has stressed the necessity to stick very closely to CORBA
standards, otherwise the reusability of the software modules can be decreased.

We used Java extensively in AMDB design to test its reliability and efficiency.
Concerning its complexity, Java is surprisingly matured even for industrial ap-
plications. We where running the application server on different platforms (Sun,
Alpha) with very good results concerning speed and reliability.

The results with open software tools are very positive and the possibility to
inspect the source code in some situations has far outweighed the disadvantage
of not having a strong visual development tools. This do not indicate that they
are not needed in current software development industry but it might indicate
that their role is little bit overestimated and that the complexity level on which
they are really inevitable lies higher as is usually considered.

In some situations it was necessary to change or correct the source code of
systems which we used and this was far more efficient solution as to circumvent
the problems with other means.

References

1. Bottalico, S., de Stefani, F., Ludwig, T., Rackl, G. : SEEDS – Simulation Envi-
ronment for the Evaluation of Distributed Traffic Control Systems. In: Lengauer,
Ch., Griebl, M., Gorlatch (eds.): Euro-Par ’97, Parallel Processing, LNCS 1300,
Springer-Verlag, Berlin Heidelberg New York (1997), 1357–1362

2. Bottalico, S. : SEEDS (Simulation Environment for the Evaluation of Distributed
Traffic Control Systems). A Simulation Prototype of A-SMGCS. In: Proceedings
of the International Symposium on Advanced Surface Movement Guidance and
Control System, Stuttgart, Germany, 21-24 June 1999

3. Hrúz, T., Bečka, M. : Airport Management Database. SEEDS Internal Documen-
tation SEEDS/MISAS-WP4-D4.6A-REV1-SW, 1999

4. Lewis, G., Barber, S., Siegel,E. : Programming with Java IDL. John Wiley & Sons,
1998

5. Flanagan, D. : Java in a Nutshell. O’Reilly, 1997
6. SEEDS official home page, http://www.lti.alenia.it/EP/seeds.html
7. http://www.postgresql.org, 1998–1999
8. http://www.javasoft.com, 1998–1999


	Introduction
	 Airport Management Database System
	Architecture
	Data Transmission Rules
	Communication with SQL Server
	Security Model
	Application Server and Clients

	Conclusions

