The Multi-architecture Performance of the
Parallel Functional Language GPH

Philip W. Trinder!, Hans-Wolfgang Loidl', Ed. Barry Jr.f, M. Kei Davis?,
Kevin Hammond?, Ulrike Klusik?, Simon L. Peyton Jones®, and
Alvaro J. Rebén Portillo3

! Heriot-Watt University, Edinburgh, U.K;
{trinder,hwloidl}@cee.hw.ac.uk

2 Los Alamos National Laboratory, U.S.A;

kei@lanl.gov
3 University of St. Andrews, U.K;
{kh,alvaro}@dcs.st-and.ac.uk
4 Philipps-University Marburg, Germany;
klusik@mathematik.uni-marburg.de
5 Microsoft Research Ltd, Cambridge, U.K;
simonpj@microsoft.com

Abstract. In principle, functional languages promise straightforward
architecture-independent parallelism, because of their high level descrip-
tion of parallelism, dynamic management of parallelism and deterministic
semantics. However, these language features come at the expense of a so-
phisticated compiler and/or runtime-system. The problem we address is
whether such an elaborate system can deliver acceptable performance on
a variety of parallel architectures. In particular we report performance
measurements for the GUM runtime-system on eight parallel architec-
tures, including massively parallel, distributed-memory, shared-memory
and workstation networks.

1 Introduction

Parallel functional languages have several features that should, in theory, enable
good performance on a range of platforms. They are typically only semi-ezxplicit
about parallelism, containing limited explicit control of parallel behaviour. In-
stead the compiler and runtime-system extract and exploit parallelism, with the
programmer controlling a few key aspects of the parallelism explicitly. Purely
functional languages also have deterministic parallelism: the value computed
by a program is not dependent on its parallel behaviour, thereby avoiding the
complications of race conditions and deadlocks. Many pure functional language
implementations support dynamic resource allocation: the resources of the paral-
lel machine are allocated during program execution. Dynamic resource allocation

¥ This paper is dedicated to the memory of Ed Barry Jr., who died an untimely death
in May 1999.

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 739-7Z3] 2000.
© Springer-Verlag Berlin Heidelberg 2000

740 Philip W. Trinder et al.

relieves the programmer from architecture dependent tasks such as specifying
exactly what computations are to be executed where.

The cost of high-level, dynamically-managed parallelism is a complex com-
piler and /or runtime-system. Can such a sophisticated system deliver acceptable
performance on very different parallel architectures? We tackle this question in
the context of our GUM implementation of Glasgow Parallel Haskell (GPH),
a non-strict functional language. GUM performs parallel graph reduction, and
many aspects of the parallelism are determined dynamically e.g. threads are dy-
namically created and allocated to processors. GUM is designed to be portable,
and uses a message-passing model (Sect.[2)). Performance is measured for a sim-
ple test program with good parallel behaviour (Sect. [3)) as well as for one larger
application with irregular parallelism and complex data structures (Sect. M.
This complements our earlier research on parallelising substantial Haskell appli-
cations [1] and developing a suite of simulation and profiling tools.

2 The GUM Runtime System

GUM is the runtime-system for GPH [7], a parallel variant of the Haskell lazy
functional language. Being a parallel graph reduction machine [3], GUM repre-
sents an architecture-independent abstract machine-model appropriate to both
shared- and distributed-memory architectures. In this model both data and pro-
gram are represented via graph structures. Executing a program means rewriting
a graph with its result. Semi-explicit parallelism in GPH requires the program-
mer to annotate expressions that can be evaluated in parallel. The runtime-
system then dynamically distributes data and work among the available proces-
sors. Potential parallelism may be subsumed [3] by existing threads in a similar
way as in the lazy task creation mechanism [2], thereby dynamically increasing
thread granularity. This dynamic granularity control, together with overlapping
computation with communication (latency hiding), is crucial for achieving high
performance on very different parallel architectures. Communication between
threads is realised via a shared heap with implicit synchronisation on graph
structures shared between several threads (implemented via message-passing on
top of PVM or MPI). For efficient and portable compilation we use the Glasgow
Haskell Compiler [4] (GHC), a state-of-the-art optimising compiler for Haskell.
The design and implementation of GUM are discussed in detail in [7].

3 Measurement Setup

In our measurements we have used eight machine configurations: one MPP, a 97-
processor Connection Machine CM-5 with the native CMMD communications
library; one DMP, a 16-processor IBM SP/2 with MPI; one SMP, a 6-processor
Sun SparcServer with PVM; a 56-node Beowulf cluster with 450MHz Intel Pen-
tium II processors, 384MB RAM and 8GB local disk; and four networks of
workstation (NOWSs) all with PVM. The Beowulf uses a 100Mb/s fast Ethernet
switch, the NOWs use standard Ethernet on the same subnet.

The Multi-architecture Performance of GPH 741

Table 1. Single-processor efficiency of blackspots

Class and Sequential |Efficiency||Class and Sequential |Efficiency

Architecture |Runtime (s) Architecture Runtime (s)

SMP ‘Workstation-net

Sun-SMP PVM 135.2 77%||Digital Alpha PVM 378.6 63%
Sun-4/15 PVM 815.4 84%
Sun-10 PVM 289.1 96%
Pentium PVM 109.4 96%
Beowulf PVM 19.8 90%

In order to assess the overhead of the GUM runtime-system we have mea-
sured parfact, a simple binary divide-and-conquer program computing the sum
of a given interval with little communication and no software bound for the
achievable parallelism. The parfact program and additional details and mea-
surements are available in [5]. The CM-5 achieves the best relative speedup of
74.1 on 97 processors, without approaching a parallelism bound imposed by
either the hardware or the GUM runtime-system. These speedups are signifi-
cantly better than the PVM and MPI versions, 5.82 and 6.53 on 8 processors,
respectively, indicating the high costs of the portable communication libraries.
Furthermore the MPI version on the IBM SP/2 suffers from a slow (sequen-
tial) startup. The Beowulf achieves a relative speedup of 33.1 on 56 processors.
However, its parallel efficiency (33.1/56 = 59%) is not as good as the CM-5’s
(54.0/63 = 86%).

4 Accident Blackspots: A Larger GPH Program

The Accident Blackspots program determines locations where two or more traffic
accidents have occurred, based on a set of police accident records as input. A
number of criteria can be used to determine whether two accident reports are for
the same location, and each criteria partitions the set. The problem amounts to
combining several partitions of a set into a single partition, or union find. The
program comprises 1,500 lines of Haskell code and additional details are available
in [I]. The parallel (GPH) version of the algorithm uses a geometric partitioning
of the input data into 32 small and 8 large tiles. Evaluation strategies [6] are
used to define the parallel evaluation over these tiles.

The best sequential efficiency (see Table[l) is obtained for machines based on
SPARC and Pentium processors, since these architectures are best supported by
the GHC compiler itself. The simpler parfact program has higher efficiency in
most cases [3]. In GUM sequential efficiency is dominated by the costs for man-
aging potential parallelism (essentially adding a pointer to an array of possible
tasks) and for locking graph structures representing work. The former, although
cheap in itself, prohibits optimisations because it requires the graph structures
to exist in the heap. The latter requires several instructions and, without the
help of sharing analysis, increases with program size.

742 Philip W. Trinder et al.

Blackspots (Absolute Speedup)

Beowulf PVM —+—

Pentium PVM --->---- ‘

12 | Alpha PVM ----x--- / i
Sun-4 PVM &

Sun-SMP PVM --=--
|l Sun-10 PVM --o--,
10 Linear e -

4+ i
2 L ,
0 Il Il Il Il Il Il
0 5 10 15 20 25 30
Processors

Fig. 1. Absolute speedups for blackspots

Fig. [M shows that the small amount of communication required by the ge-
ometric partitioning enables good speedups even on the NOWs: 11.94 relative,
10.00 absolute on 16 Suns and 9.46 relative, 5.96 absolute on 12 Alphas. The
Beowulf cluster profits from its high efficiency and its scalability. As a result
it delivers the highest absolute speedup for this application: 11.39 (with larger
input data 18.69) on 32 processors. Occasional drops in performance reveal that
the dynamic scheduling is not always effective for this rather coarse-grained ap-
plication. The overall poorer performance for the Pentium, Alpha and Sun-10
PVM NOWs is due to the higher ratio of communication costs to processor
speed, exacerbated by the unusually low efficiency of the Digital Alpha. In this
configuration the available parallelism is not sufficient to effectively hide commu-
nications latency. In the Beowulf cluster, with lower communications costs, this
effect is less pronounced. In order to obtain good performance on machines with
such characteristics we could perform architecture-dependent tuning, e.g. split-
ting the data into more, smaller tiles. The Sun-10 NOW exhibits a super-linear
speedup for 3 processors. We believe this is due to reduced garbage collection
costs in a parallel setting (with n processors we have n times the sequential heap
available). The rather low speedup on the Sun SMP (2.82 relative, 2.16 absolute)
is partly due to the higher overall performance of the processors and partly due
to the competition with other user processes when performing the measurements.
Our implementation would also profit from direct support of shared-memory —
currently we use PVM or MPI even on SMPs.

5 Conclusion

In this paper we have assessed the architecture-independent performance of the
GUM runtime-system for GPH by taking measurements on eight platforms,

The Multi-architecture Performance of GPH 743

ranging from MPPs to networks of workstations. From the parfact results we
conclude that, for a program with little communication and no software bound
on the parallelism, GUM is efficient on all platforms (at least 83%), capable
of delivering acceptable speedups on all architectures, and also capable of mas-
sive parallelism (a relative speedup of 74 on a 97-processor CM-5). From the
blackspots results we conclude that GUM can achieve absolute speedups (up
to 18.69 on 32 processors) for symbolic programs with irregular parallelism. We
consider GPH to be best suited for such symbolic applications, obtaining mod-
erate speedups with only minimal code changes.

Our measurements suggest several improvements of GUM, which are cur-
rently being examined in the new implementation of the runtime-system. The
implicit work and data distribution could be improved, e.g. by refining the work-
stealing algorithm, by constructing clusters of data to avoid excessive communi-
cation or by supporting the migration of running threads. Furthermore, better
interaction between granularity control and the generation of parallelism could
be achieved via a low-watermark scheme maintaining a minimal amount of par-
allelism despite thread subsumption.

References

1. H-W. Loidl, P.W. Trinder, K. Hammond, S.B. Junaidu, R.G. Morgan, and S.L.
Peyton Jones. Engineering Parallel Symbolic Programs in GPH. Concurrency —
Practice and Ezperience, 11(12):701-752, Oct. 1999. Available from [g].

2. E. Mohr, D.A. Kranz, and R.H. Halstead Jr. Lazy Task Creation: a
Technique for Increasing the Granularity of Parallel Programs. IEEE
Transactions on Parallel and Distributed Systems, 2(3):264-280, Jul. 1991.
<URL:ftp://crl.dec.com/pub/DEC/CRL/tech-reports/90.7.ps.Z>

3. S.L. Peyton Jones, C. Clack, and J. Salkild. High Performance Parallel Graph
Reduction. In Parallel Architectures and Languages Europe (PARLE’89), LNCS
365, pp. 193-206, Eindhoven, The Netherlands, Jun. 1989. Springer-Verlag.

4. S.L. Peyton Jones, C.V. Hall, K. Hammond, W.D. Partain, P.L.. Wadler. The Glas-
gow Haskell Compiler: a Technical Overview. In Joint Framework for Information
Technology Technical Conference, pp. 249-257, Keele, U.K, Mar. 1993. See also
<URL:http://www.haskell.org/ghc>

5. P.W. Trinder, Ed. Barry Jr., M.K. Davis, K. Hammond, S.B. Junaidu, U. Klusik,
H-W. Loidl, S.L. Peyton Jones. Low Level Architecture-Independence of Glasgow
Parallel Haskell (GPH). In Glasgow Functional Programming Workshop, draft pro-
ceedings, Pitlochry, Scotland, Sep. 1998. Available from [g].

6. P.W. Trinder, K. Hammond, H-W. Loidl, and S.L. Peyton Jones. Algorithm +
Strategy = Parallelism. Journal of Functional Programming, 8(1):23-60, Jan. 1998.
Available from [8].

7. PW. Trinder, K. Hammond, J.S. Mattson Jr., A.S. Partridge, and S.L. Peyton
Jones. GUM: a Portable Parallel Implementation of Haskell. In Programming Lan-
guage Design and Implementation (PLDI’96), pp. 79-88, Philadelphia, PA, May
1996. Available from [g].

8. GPH Web Pages. <URL:http://www.cee.hw.ac.uk/~dsg/gph>

	Introduction
	The {sc GUM} Runtime System
	Measurement Setup
	Accident Blackspots: A Larger {sc GpH} Program
	Conclusion

