
Fast Implementation of Elliptic Curve Defined

over GF (pm) on CalmRISC with MAC2424

Coprocessor

Jae Wook Chung, Sang Gyoo Sim, and Pil Joong Lee

Dept. of Electronic and Electrical Eng., POSTECH
{jwchung,sim}@oberon.postech.ac.kr

pjl@postech.ac.kr

Abstract. In this paper, we propose fast finite field and elliptic curve
(EC) algorithms useful for embedding cryptographic functions on high
performance device such that most instructions take just one cycle. In
such case, the integer multiplications and additions have the same com-
putational cost so that the computational cost analyses that were pre-
viously done in traditional manner may be invalid and in some cases
the new algorithms should be introduced for fast computation. In our
implementation, column major method for field multiplication and BP
inversion algorithm are used for fast field arithmetic, and mixed coor-
dinates method is used for efficient EC exponentiation. We give here
analyses on various algorithms that are useful for implementing EC ex-
ponentiation on CalmRISC microcontroller with MAC2424 coprocessor,
as well as new exact analyses on BP (Bailey-Paar) inversion algorithm
and EC exponentiation. Using techniques shown in this paper, we imple-
mented EC exponentiation for various coordinate systems and the best
result took 122ms, assuming 50ns clock cycle.

1 Introduction

Since Koblitz[8] and Miller[11] first introduced elliptic curve cryptography
(ECC), many works[7,10,2] have shown that ECC can be very efficiently em-
bedded into restricted hardware such as smart cards. During the past few years,
most people believed that elliptic curve defined over GF (2m) was the only use-
ful one for hardware implementation since it can be implemented with only
simple bit operations. GF (p) and GF (pm) were popular in computer software
implementation but they were not in hardware implementation because a math
coprocessor is required for its implementation in smart cards and it significantly
increases the cost.

However ECC is not restricted to smart cards. There can be many hardware
applications that already have a fast microcontroller with math coprocessor. One
such application is a portable MP3 player, it needs a high performance micro-
controller which supports fast integer multiplication and division to decode MP3
data and it also needs cryptographic services to prevent unauthorized copy of

Ç.K. Koç and C. Paar (Eds.): CHES 2000, LNCS 1965, pp. 57–70, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

58 Jae Wook Chung, Sang Gyoo Sim, and Pil Joong Lee

MP3 files. In this case, GF (p) or GF (pm) is more likely the better than GF (2m),
since they can utilize the fast multiplication and division instructions. GF (p) and
GF (pm) both are good choices for that kind of application, but GF (pm) seems to
be a better choice because there is no need to implement complex multiple pre-
cision routines and it utilizes the full capability of the microcontroller. Not only
is it easy to implement but also more efficient, since there are no carry propaga-
tion and the inversion in GF (pm) is far more efficient than that in GF (p). Many
works [10,2,1] have shown that GF (pm) is very suitable choice for computer
software implementation.

We have implemented EC over GF (p10) in CalmRISC microcontroller with
MAC2424 coprocessor. CalmRISC is a very fast 8-bit RISC microcontroller and
MAC2424 is a high performance math coprocessor that can compute 24-bit
signed multiplication just in one cycle and that provides efficient division step
instruction. Since integer multiplication and division are the critical operations
in GF (pm), such devices provide the best platform for implementing EC defined
over GF (pm).

This paper focuses on implementing EC defined over GF (pm) in CalmRISC
microcontroller with MAC2424 math coprocessor. In particular, we have used
GF (p10), satisfying OEF (Optimal Extension Field [2]) conditions, where p =
216 − 165 = 0xff5b and the irreducible polynomial being f(x) = x10 − 2.

2 Processor Features

2.1 CalmRISC Microcontroller

CalmRISC is Samsung’s 8-bit low power RISC microcontroller that follows Har-
vard style. Both instruction and data can be fetched simultaneously without
causing a stall using separate paths for memory access. CalmRISC has a 3-stage
pipeline:

1. Instruction Fetch (IF)
2. Instruction Decode/Data Memory Access (ID/MEM)
3. Execution/Writeback (EXE/WB)

The first stage (or cycle) is IF, where the instruction pointed to by the
program counter is read into the instruction register (IR). The second stage
is ID/MEM, where the fetched instruction (stored in IR) is decoded and the
data memory access is performed, if necessary. The final stage is Execution and
Writeback stage (EXE/WB), where the required ALU operation is executed
and the result is written back into the destination registers. Since CalmRISC
instructions are pipelined, the next instruction fetch is not postponed until the
current instruction is completely finished, but it is performed immediately after
the current instruction fetch is done.

Most of CalmRISC instructions are 1-word instruction, while branch instruc-
tions such as long “call” and “jump” instructions are a 2-word instruction. Thus
the number of clocks per instruction (CPI) is 1 except for long branches, which
take 2 clock cycles per instruction.

Fast Implementation of Elliptic Curve Defined over GF (pm) 59

2.2 MAC2424 Math Coprocessor

MAC2424 is a 24-bit high performance fixed-point DSP coprocessor for Calm-
RISC microcontroller. Main datapaths are constructed to 24-bit width, but it
can also perform 16-bit data processing efficiently in 16-bit operation mode.

There are two modes of operation in MAC2424: 24-bit mode operation and
16-bit mode operation.

24-Bit Mode Operation.

– Signed fractional/integer 24 x 24-bit multiplication in single cycle
– 24 x 24-bit multiplication and 52-bit accumulation in single cycle
– 24-bit arithmetic operation
– Two 48-bit multiplier accumulator with 4-bit guard
– Two 32K x 24-bit data memory spaces

16-Bit Mode Operation.

– Four-Quadrant fractional/integer 16 x 16-bit multiplication in single cycle
– 16 x 16-bit multiplication and 40-bit accumulation in single cycle
– 16-bit arithmetic operation with 8-bit guard
– Two 32-bit multiplier accumulator with 8-bit guard
– Two 32K x 16-bit data memory spaces

2.3 Programming Environment

CalmSHINE is a C compiler for CalmRISC and MAC2424. It also supports as-
sembly language. Thus architecture specific low-level instructions (such as 24-bit
by 24-bit multiplication and accumulation) can be utilized via assembly lan-
guage. Non-architecture specific functions may be written in C language.

3 Finite Field Arithmetic

Optimization of finite field arithmetic is very critical to the overall performance of
EC operations. In this section, we describe algorithms for implementing efficient
finite field arithmetic. In our implementation, we use GF (pm) where p =0xff5b
(16 bits), m = 10 and f(x) = x10 − 2 as an irreducible polynomial. Although
CalmRISC supports 24-bit by 24-bit multiplication, it is signed multiplication
and memory access is very inefficient in 24-bit mode due to the memory align-
ment. This is why we use 16-bit p.

60 Jae Wook Chung, Sang Gyoo Sim, and Pil Joong Lee

3.1 Modular Reduction

Modular reduction is used very frequently and it is the bottleneck of the perfor-
mance of finite field arithmetic. In most computer software implementations, the
modular reduction using simple bit shifts and additions is a popular choice and
provides a very good performance when p is a pseudo-Mersenne number. This
is due to the fact that the division instruction is very slow for most hardware.
However this is not the case for MAC2424, since every operation is simple and
it takes only one cycle except long-branch operations. Thus modular reduction
using division step instruction is desirable for MAC2424. Moreover it has an
advantage that the intermediate values do not need to move around between the
registers. During the division steps in MAC2424, the dividend and divisor keep
their position until the division ends. In our implementation, the modular re-
duction by repeated division step instruction takes 39 cycles, while the modular
reduction by bit shifts and additions takes 90 cycles.

3.2 Field Multiplication and Squaring

We considered three different algorithms for finite field multiplication,Karatsuba-
Offman algorithm (KOA), column major method and row major method. First
we consider KOA. KOA works by reducing the number of multiplications while
increasing the number of cheap additions/subtractions by the recursively. In gen-
eral, it gives about 10 ∼ 20% performance enhancement for most architecture.
However the computational cost for multiplication and addition/subtraction is
exactly the same for MAC2424, so reducing the number of multiplication with
sacrificing the number of addition/subtraction does not help.

Row major method is just a schoolbook method, so we skip the description
here. Column major method is described as follows. This is not a general method
but it is for our specific case where f(x) is binomial (f(x) = xm − α), and
with this algorithm the polynomial reduction and multiplication can be done
simultaneously.

Algorithm 1 (Column Major Multiplication).

Input: A(x) and B(x) ∈ GF (pm)
Output: C(x) = A(x)B(x) mod f(x) (f(x) = xm − α)
for k = 0 to m− 1 do followings

1. z ← 0, i← m− 1, j ← k + 1
2. while i > k, z ← z + aibj, i← i− 1, j ← j + 1
3. z ← z · α, j ← 0
4. while i ≥ 0, z ← z + aibj , i← i− 1, j ← j + 1
5. ck ← z mod p

Row major method and column major method both may be good choices
because the required number of operation is both equal, but the row major

Fast Implementation of Elliptic Curve Defined over GF (pm) 61

method has the disadvantage of storing full one intermediate row in a temporary
memory. Moreover column major is preferable since MAC2424 can multiply-
and-accumulate simultaneously in one cycle. So the column major method of
field multiplication is definitely a better choice for MAC2424. Algorithm 1 uses
m2 +m−1 multiplication instructions and m modular reductions with modulus
p. Algorithm 1 can be similarly applied to field squaring, so m(m+1)

2 + m − 1
multiplication instructions and m modular reductions with modulus p are needed
for field squaring. Modular reduction is performed only m times because product
of two subfield elements can be safely accumulated multiple times in MAC2424’s
accumulator and α is small enough (α = 2) that z in Algorithm 1 never overflows.
This means we don’t need to reduce the intermediate values, instead we need
to reduce just the final values. In our implementation, field multiplication takes
723 cycles and field squaring takes 717 cycles. The ratio of field squaring to field
multiplication is almost close to 0.9 in our case. This is due to the fact that the
most of the time is taken in modular reduction and that MAC2424 can multiply
very fast.

3.3 Field Inversion

There have been many research efforts on finite field inversion algorithm. Well-
known algorithms are extended Euclidean algorithm, almost inversion algorithm,
and their variants. The efficiency of a finite field inversion algorithm can be
roughly measured by counting the subfield inversion it uses since the subfield
inversion is the most time consuming job among the subfield arithmetic. Even
for MAC2424, subfield inversion could not be done fast. It takes 670 cycles in our
implementation. Among the various finite field inversion algorithms we consider
IM (Inversion with Multiplication) [10] and BP [1] algorithms since only they
require just one subfield inversion. Here we review the IM algorithm and the BP
algorithm.

Algorithm 2 (IM Inversion Algorithm). Initialize B ← 0, C ← 1, F ←
f(x), G← A(x)

1. If deg(F) = 0 then B ← B · (F−1
0 mod p), return B.

2. If deg(F) < deg(G) then exchange F, B with G, C.
3. j = deg(F)− deg(G)

(a) If j 6= 0 do the followings.
α← G2

deg(G) mod p,
β ← Fdeg(F)Gdeg(G) mod p,
γ ← Gdeg(G)Fdeg(F)−1 − Fdeg(F)Gdeg(G)−1 mod p,
{F, B} ← α{F, B} − (βxj + γxj−1){G, C}.

(b) If j = 0 do the followings.
{F, B} ← Gdeg(F){F, B} − Fdeg(F){G, C}

4. Goto step 2.

In Algorithm 2, capitalized variables represent the polynomial representation
with indeterminate x, deg(F) denotes the degree of polynomial F and Fi is the
coefficient of xi in F .

62 Jae Wook Chung, Sang Gyoo Sim, and Pil Joong Lee

The BP algorithm is exponentiation-based inversion algorithm using the fact
that Ap where A(x) = am−1x

m−1 + am−2x
m−2 + · · · + a0 ∈ GF (pm) can be

computed very efficiently only if the irreducible polynomial for GF (pm) is a
binomial of the form f(x) = xm − α. The following equation shows that only
m−1 subfield multiplications are required for p-th power of a field element. Note
that αbpi/mc mod p and pi mod m (i = 1, . . . , m− 1) should be pre-computed
beforehand.

A(x)p = am−1x
p(m−1) + am−2x

p(m−2) + · · ·+ a0

=
m−1∑
i=0

aiα
bpi/mcxpi mod m

(1)

One might have noticed that the p-th power repeated by i times can be
collapsed to one pi-th power which have the same computational cost with p-th
power. Now we have all apparatus for BP algorithm:

Algorithm 3 (BP Inversion Algorithm). Computes A(x)−1 as follows.
A(x)−1 = (A(x)r)−1A(x)r−1 mod f(x) where r = pm−1

p−1 = 1+p+p2 + · · ·+pm−1

In Algorithm 3, (A(x)r)−1 is always a subfield inversion. In this algorithm,
computing A(x)r−1 is very critical to the performance of finite field inversion.
Since r − 1 is in a special form we can compute A(x)r−1 efficiently by addition
chain and pi-th power. The efficient method was already shown in [1], but we
want to show that the analysis shown in [1] and [10] is incorrect.

Table 1. Example of Computing Ar−1 for r = p + p2 + · · ·+ p5, m = 6

Computing Ar−1 where r = p + p2 + · · · + p5

Our method Bailey & Paar’s method

B ← Ap = A(10) B ← Ap = A(10)

T1 ← AB = A(11) T1 ← BA = A(11)

T2 ← Tp2

1 = A(1100) B ← Tp2

1 = A(1100)

T2 ← T1T2 = A(1111) B ← BT1 = A(1111)

T2 ← Tp2

2 = A(111100) B ← Bp = A(11110)

B ← T2B = A(111110) B ← BA = A(11111)

B ← Bp = A(111110)

The required number of pi-th power in BP algorithm is not always blog2(m−
1)c+HW (m−1) where HW (·) is Hamming weight. Instead, the number of pi-th
power is at least one less than this when m is even except for m = 2. Table 1
shows that one pi-th power can be reduced for m = 6 considering this fact. In
general, if m is even, the exact number of pi-th power is:

Fast Implementation of Elliptic Curve Defined over GF (pm) 63

#pi-th power =

{
blog2(m− 1)c+ 1 if m is 2’s power
blog2(m− 1)c+ HW (m) − 1 if 2|m , not 2’s power

(2)

Table 2. Computational Cost Analysis for BP and IM Inversion Algorithm

Algorithm #Multiplication #Reduction #Inv

IM (f(x) = xm − w) 3m2 −m − 7 m2 + 4m − 8 1

Original analysis t1(m) · (m2 + 2m− 2) + 3m− 1 t1(m) · (3m− 2) + 2m 1
BP New analysis t1(m) · (m2 + m − 1) t1(m) · (2m− 1)

+t2(m) · (m− 1) + 2m + 1 +t2(m) · (m− 1) + m + 2
1

special case t1(m) ·m
”

+t2(m) · (m− 1) + m + 1
1

t1(m) = blog2(m − 1)c+ HW (m− 1) − 1

t2(m) =

(
Eqn.(2) if m is even

t1(m) + 1 if m is odd

Table 2 shows the new exact analyses of BP algorithm and it is compared with
IM algorithm. Note that we corrected minor counting errors that were shown
in previous works[1,10]. We also show analyses for the ‘special case’ when the
product of two subfield elements can be accumulated without overflow, and when
α is small, that is our case. In that case, we can save m− 1 modular reduction
in field multiplication and 1 modular reduction in final field multiplication that
only computes the constant term of A(x)r from A(x)r−1 and A(x).

In Table 2, the term “multiplication” means general multiplication performed
by the processor, not the field or subfield multiplication. According to Table 2,
the complexity of BP looks greater than that of IM. However if m is not too large,
BP can provide better performance. When m = 10, that is the specific case for
our implementation, IM requires 283 multiplication and 132 modular reduction,
and BP requires 493 multiplication and 87 modular reduction (note that one
less number of pi-th power is required for m = 10 than the analysis shown in
Table 2). Recall that, for MAC2424 the number of modular reduction is more
significant (costs much more) than that of multiplication.Hence we conclude that
BP algorithm will perform much better in our case (283+132×39 = 5431(IM) >
493 + 87 × 39 = 3886(BP)). In addition, not only does the BP algorithm take
fewer cycles but also it is simple to implement as looping or branching is not
needed. More improvement is possible for BP algorithm when m has a factor of
2. In our specific case, pi-th power is computed as follows.

64 Jae Wook Chung, Sang Gyoo Sim, and Pil Joong Lee

Algorithm 4 (p-th Power Algorithm for Our Specific Case). B(x) =
A(x)p

1. Array X is pre-computed as
X = {1, 0x5AC3, 0x7B13, 0x9EEF, 0x7E9E, 0xFF5A(= -1),
0xA498, 0x8448, 0x606C, 0x80BD}

2. For i = 0 to 9
Bi = B

(ip mod m)
= Ai ·Xi mod 0xff5b

Algorithm 4 requires 8 multiplications, 8 modular reductions and 1 subtrac-
tion. Note that multiplying −1 is equal to subtracting from p. The following is
the pre-computed value X for p2-th power and p4-th power algorithm for our
specific case, respectively. To compute p2-th or p4-th power we only need to
substitute the X in Algorithm 4 with the following Xs.

For p2-th power: X = {1, 0x7B13, 0x7E9E, 0xA498, 0x606C, 1,
0x7B13, 0x7E9E, 0xA498,0x606C}

For p4-th power: X = {1, 0x7e9e, 0x606c, 0x7b13, 0xa498, 1,
0x7e9e, 0x606c, 0x7b98, 0xa498}

The above each pre-computed array X has two 1s, so only 8 multiplications
and 8 modular reductions are needed to compute p2-th or p4-th power. And even
more, X[1−4] is identical to X[6−9], thus the memory can be saved.

Now we are ready to construct the most efficient method to compute A(x)r−1

for our specific case, which leads to the least number of field multiplications
and fully utilizes the above facts. The following algorithm efficiently computes
A(x)r−1 and we used this in our actual implementation.

T1 ← Ap (T1 = Ap) (exp)
T2 ← Ap ·A (T2 = A1+p) (mul)

T3 ← Tp2

2 (T3 = Ap2+p3
) (exp)

T3 ← T3 · T2 (T3 = A1+p+p2+p3
) (mul)

T4 ← Tp4

3 (T4 = Ap4+p5+p6+p7
) (exp)

T3 ← T3 · T4 (T3 = A1+p+p2+p3+p4+p5+p6+p7
) (mul)

T3 ← Tp2

3 (T3 = Ap2+p3+p4+p5+p6+p7+p8+p9
) (exp)

T2 ← T3 · T1 (T2 = Ap+p2+p3+p4+p5+p6+p7+p8+p9
) (mul)

As shown above A(x)r−1 is done by 4 field multiplications and 4 pi-th powers.
As it can be seen, since m is even, the number of field multiplication is equal to
that of pi-th power.

3.4 Performance of Field Arithmetic

Table 3 shows our finite field GF (p10) implementation results. The cycles for
each functions were measured using Samsung’s CalmSHINE compiler and all

Fast Implementation of Elliptic Curve Defined over GF (pm) 65

finite field functions were written in assembly. All cycles include the functional
overhead such as parameter loading and data movements when entering and
leaving the functions. In Table 3, ‘I/M’ is the ratio of field inversion to the field
multiplication and ‘S/M’ is the ratio of field squaring to the field multiplication.

Table 3. Finite Field Implementation Result

Operation Required Cycles

Add 187

Sub 141

Mult 723

Square 667

Sub Inv 670

Mod 39

Inversion 5378

I/M 7.4

S/M 0.9

4 Elliptic Curve Arithmetic

In this section we discuss the method of optimizing EC exponentiation using
mixed coordinate system. We optimize the EC exponentiation by combining
mixed coordinate system from [5] and the Lim-Hwang’s method [10].

4.1 Signed Window Algorithm for EC Exponentiation

Signed window method is known to be the most efficient method for computing
EC exponentiation (EC scalar multiplication) excluding the fixed base exponen-
tiation algorithms. Let k be a positive integer, and suppose we want to compute
kP where P is an arbitrary point on an elliptic curve. Then k can be expressed
as follows.

k = 2k0(2k1(· · ·2kv−1(W [v] + W [v − 1]) + W [v − 2] · · ·) + W [0]) (3)

where W [i] is odd, −2w + 1 ≤ W [i] ≤ 2w − 1 and w ≤ ki. To compute EC
exponentiation with signed window method, first pre-compute Pi = iP (i =
±1,±3, · · · ,±(2w − 1)) and then evaluate the following equation using the pre-
computed values.

kP = 2k0(2k1(· · · 2kv−1(2kvPW [v] + PW [v−1]) + PW [v−2] · · ·) + PW [0]) (4)

66 Jae Wook Chung, Sang Gyoo Sim, and Pil Joong Lee

However pre-computation is not needed for −2w + 1 ≤ W [i] ≤ −1 since
negating EC point can be done easily, that is computing PW [i] = −P−W [i] takes
negligible time. It is also possible to implement an EC subtraction function to
get rid of the redundant EC negating time using a small portion of additional
program memory.

The first kv doublings, in case W [v] < 2w−1, can be more efficiently computed
[5]. There have been an analysis on this in [5], however it is incorrect and we
want to correct it here.

First we need to consider the probability that the bit size of W [v] equals j.
This can be easily computed and the following equation shows it.

Pr(|W [v]| = j) =

{
1

2w−1 if j = 1
1

2w−j+1 if 2 ≤ j ≤ w
(5)

Use the fact that the above modification reduces w + 1 − j doublings and
increases 1 addition, and that we do not apply the above modification when
j = w. Then can be easily verified that the average number of doublings reduced
is 3

2 − 1
2w−1 and the average number of addition increased is 1

2 . Note that the
average value of kv is w + 2, so w + 2 doublings are needed in an average case if
we don’t use the above modification.

4.2 Mixed Coordinates System

We use mixed coordinates system to speed up computation of EC exponentia-
tions. For a given rational integer k and an elliptic curve point P , we can evaluate
the EC exponentiation kP by the following steps.

T0 = PW [v]

Ti+1 = 2kv−iTi + PW [v−i−1] for i = 0, 1, . . . , v − 1 (6)

kP = 2k0Tv

The EC exponentiation kP is computed by repeating basic step Ti+1 =
2kv−iTi + PW [v−i−1], which is equal to Ti+1 = 2T ′ + PW [v−i−1] where T ′ =
2kv−i−1Ti. If we represent the elliptic curve points (Ti, 2T ′, PW [v−i−1]) as coor-
dinates (C1, C2, C3), the computational cost for a basic step is

(kv−i − 1) · t(2C1) + t(2C1 = C2) + t(C2 + C3 = C1).

In this paper, we denote affine coordinate as A [6,12], projective coordinate
P [9,6], Jacobian coordinate J [3], modified Jacobian coordinate Jm [10] and
Chudnovsky-Jacobian coordinate JC [3]. Note that we use a different Modified
Jacobian coordinate system. The Modified Jacobian coordinate shown in [10] is
better because it reduces one field addition/subtraction in EC addition.

Fast Implementation of Elliptic Curve Defined over GF (pm) 67

Let us now discuss suitable coordinate systems for C1, C2 and C3. Since
doublings in C1 are repeated most frequently, we should choose C1 such that
t(2C1) is the smallest, thus we select Jm as C1.

Since pre-computation PW [i] is done during online time in signed window
method, i.e. the resulting values are not saved in auxiliary memory for another
exponentiation, the pre-computation time is included in total elapsed time. Thus
we should select coordinate C3 suitable to compute the values Pw[i]. Cohen et
al.[5] proposed to use either affine coordinate or Chudnovsky-Jacobian coordi-
nate as C3 and to select one by comparing t(JC + JC) and t(A + A). However,
since the ratio I/M is relatively small, we chose C3 = A. Then there are two pre-
computation methods. First, we can compute P i = iP (i = 1, 3, 5, . . . , 2w − 1)
in affine coordinate by simple method by repeating Pi+2 = Pi + P ′ for i =
1, 3, 5, . . . , 2w− 3 where P1 = P and P ′ = P +P . Here, the total computational
cost is t(2A)+(2w−1−1) · t(A+A) = 2w−1I+2wM+(2w−1 +1)S. To reduce the
number of inversion in F (pm), we can apply ‘Montgomery trick of simultaneous
inversion [4]’ with sacrificing the number of multiplications and squares. The
total cost in that case is wI + (5 · 2w−1 + 2w − 10)M + (2w−1 + 2w− 3)S. Table
4 shows the expected computational cost for these two methods. In Table 4, the
computational costs for pre-computation in case of C3 = Jc were also shown for
comparison.

Table 4. Computational Cost for Various Pre-computation Methods

Method Computational cost

Affine(simple) 8I + 16M+9S = 83.3M

Affine(Mont. trick) 4I + 38M + 13S = 79.3M

Chudnovsky-Jacobian 1 77M + 26S = 100.4M

Chudnovsky-Jacobian 2 I + 55M + 23S = 83.1M

In Table 4, Montgomery’s trick is shown to be the best choice. However we
didn’t use the Montgomery trick, since online pre-computation time is just a very
small part of EC exponentiation, and it does not significantly improves the EC
exponentiation time. In addition, the Montgomery’s method requires much more
program memory than the simple method without giving much improvement in
performance. We chose to use simple method in online pre-computation.

Let us discuss suitable coordinate for C2. Since we selected modified Jacobian
coordinate and affine coordinate for C1 and C3 respectively, coordinate for C2

should minimize (kv−i − 1) · t(2Jm) + t(2Jm = C2) + t(C2 + A = Jm), that
is, it should minimize t(2Jm = C2) + t(C2 + A = Jm). Although there are 5
candidates for C2, Table 5 shows computational amounts to compute a basic
step (Eqn. 6) using 3 candidates of least cost. In Table 5, we assumed window
size w = 4.

In Table 5, the 1-bit gap between the two neighboring diminished windows is
considered to be the worst case (i.e. ki = w +1 for i = 1, 2, . . . , v), and the 2-bit

68 Jae Wook Chung, Sang Gyoo Sim, and Pil Joong Lee

Table 5. Candidates for Best Mixed Coordinates System and their Analyses

Coordinate Cost Worst case (kv−1 = 5) Average case (kv−1 = 6)

(Jm, J, A) (7.6kv−1 + 12.5)M 50.5M 58.1M

(Jm, Jc, A) (7.6kv−1 + 12.5)M 50.5M 58.1M

(Jm, Jm, A) (7.6kv−1 + 13.5)M 51.5M 59.1M

gap is considered to be the average case (i.e. ki = w + 2 for i = 1, 2, . . . , v). Ac-
cording to Table 5, we can select either Jacobian coordinate(J) or Chudnovsky-
Jacobian coordinate(Jc) for C2. Since Chudnovsky-Jacobian coordinate uses
2 more finite field F (pm) elements than Jacobian, it is inefficient in storage.
Thus we select Jacobian coordinate for C2. Consequently, for (C1, C2, C3) =
(Jm, J, A), w = 4 and |k| = 160, we can compute an EC exponentiation kP
with following computational cost in average.

t(2A) + (2w−1 − 1) · t(A + A) +
1
2
· t(A + A = Jm)

+ (w +
1

2w−1
− 1

2
) · t(2Jm) + t(J + A = Jm)

+ { |k| − w + 1− (1
2)w−1)

w + 2
− 1} ·

{
(w + 1) · t(2Jm)
+t(2Jm = J) + t(J + A = Jm)

}
≈ 8I + 849.7M + 763.7S ≈ 1596M (7)

In worst case, we can compute kP with the following cost.

t(2A)+ (2w−1− 1) · t(A +A)+ t(A+A = Jm)+ t(2Jm = J) + t(J +A = Jm)

+ { |k| − 1
w + 1

− 1} · {w · t(2Jm) + t(2Jm = J) + t(J + A = Jm)}
≈ 8I + 895.4M + 792S ≈ 1667M (8)

5 Implementation Results

We implemented elliptic curve exponentiation in CalmRISC with MAC2424 co-
processor using all algorithms shown in previous sections. All finite field functions
were written in assembly language since time critical low-level instructions can-
not be programmed in high-level language, and all elliptic curve functions were
written in C language on top of the finite field functions. Table 6 shows our
implementation of elliptic curve exponentiation in various coordinate systems.
Note that the result shown in Table 6 was measured using CalmSHINE C com-
piler. CalmSHINE compiler measures the clock cycle for each function exactly,
however it can be done only in ‘debug build mode’ and CalmSHINE compiler

Fast Implementation of Elliptic Curve Defined over GF (pm) 69

does very poor code optimization in ‘debug build mode’. This is why the result
shown in Table 6 is slower than what is expected. In real implementation with
optimized codes, it will perform much better. Referring to Table 6, mixed coordi-
nates is the best with almost 10% of improvement over fastest single coordinate
system (Modified Jacobian).

Table 6. Implementation Result of Elliptic Curve Exponentiation

EC Exponentiation Result

Coordinate Cycles Time

(Jm, J, A) 2448265 122ms

(A,A, A) 3632657 182ms

(Jm, Jm, Jm) 2711543 135ms

6 Conclusions

In this paper, we proposed optimized algorithms for implementing EC in Calm-
RISC with MAC2424 math coprocessor, in which all instructions take just one
clock cycle, and we showed implementation results and full analyses on their per-
formances. We also gave new exact alalyses on BP inversion algorithm and EC
exponentiation. In our implementation, we used column major method for field
multiplication and slightly improved BP algorithm for field inversion. Mixed
coordinates using Lim-Hwang’s Modified Jacobian coordinate was applied for
for efficient EC exponentiation. Our implementation of EC exponentiation took
about 122ms (assuming one cycle takes 50ns), which is about 10% of improve-
ment over single coordinate system. This result can be much better in real imple-
mentation with CalmSHINE’s optimized compile mode. Although the algorithms
shown in this paper is focused on our specific case, it can be easily applied to
other environments where all basic arithmetic instructions have the same com-
putational cost.

Acknowledgement

This project was supported mainly by Samsung Electronics Co. Ltd., and par-
tially by Brain Korea 21 and Com2MaC-KOSEF.

70 Jae Wook Chung, Sang Gyoo Sim, and Pil Joong Lee

References

1. Bailey, D., Paar, C.: Efficient Arithmetic in Finite Field Extensions with Ap-
plication in Elliptic Curve Cryptography, To appear in Journal of Cryptology
(Available at http://ece.wpi.edu/People/faculty/cxp.html)

2. Bailey, D. V. and Paar, C.: Optimal extension field for fast arithmetic in public
key algorithms, Advances in Cryptology-Crypto’98, Lecture Notes in Computer
Science, Vol 1462. Springer-Verlag, (1998), 472-485.

3. Chudnovsky, D. V. and Chudnovsky, G. V.: Sequences of numbers generated by
addition in formal groups and new primality and factorization tests, Advances in
Applied Math., Vol. 7. (1986), 385-434.

4. Cohen, H.: A course in computational algebraic number theory, Graduate Texts
in Math., Vol. 138. Springer-Verlag, (1993).

5. Cohen, H., Miyaji, A. and Ono, T.: Efficient Elliptic Curve Exponentiation Us-
ing Mixed Coordinates, Advances in Cryptology-Asiacrypt’98, Lecture Notes in
Computer Science, Vol. 1514. Springer-Verlag, (1998), 50-65.

6. IEEE P1363: Standard Specifications for Public Key Cryptography, Working
Draft 12, Nov. (1999).

7. Itoh, K., Takenaka, M., Torll, N., Temma, S. and Kurihara, Y.: Fast Implementa-
tion of Public-Key Cryptography on a DSP TMS320C6201, Cryptographic Hard-
ware and Embedded Systems‘99, Lecture Notes in Computer Science, Vol. 1717.
Springer Verlag, (1999), 61-72.

8. Koblitz, N.:, Elliptic Curve Cryptosystems, Math. Comp., Vol. 48. pp. (1987),
203-209.

9. Koyama, K. and Tsuruoka, Y.: Speeding up elliptic cryptosystems by using a
signed binary window method, Advances in Cryptology-Proceedings of Crypto’92,
Lecture Notes in Computer Science, Vol. 740. Springer-Verlag, (1993), 345-357.

10. Lim, C. H. and Hwang, H. S.: Fast Implementation of Elliptic Curve Arithmetic
in GF (pn), Public Key Cryptography, Lecture Notes in Computer Science, Vol.
1751. Springer-Verlag, (2000), 405-421.

11. Miller, V. S.: Use of Elliptic Curves in Cryptography, Advances in Cryptology-
Proceedings of Crypto’85, Lecture Notes in Computer Science, Vol. 218. Springer-
Verlag, (1986), 417-426.

12. Silverman, J. H.: The Arithmetic of Elliptic Curves, GTM 106. Springer-Verlag,
New York (1986).

http://ece.wpi.edu/People/faculty/cxp.html

	Introduction
	Processor Features
	CalmRISC Microcontroller
	MAC2424 Math Coprocessor
	Programming Environment

	Finite Field Arithmetic
	Modular Reduction
	Field Multiplication and Squaring
	Field Inversion
	Performance of Field Arithmetic

	Elliptic Curve Arithmetic
	Signed Window Algorithm for EC Exponentiation
	Mixed Coordinates System

	Implementation Results
	Conclusions

