
Montgomery Multiplier and Squarer in GF(2m)

Huapeng Wu

The Centre for Applied Cryptographic Research
Department of Combinatorics and Optimization

University of Waterloo, Waterloo, Canada
h3wu@cacr.math.uwaterloo.ca

Abstract. Montgomery multiplication in GF(2m) is defined by a(x)b(x)
r−1(x) mod f(x), where the field is generated by irreducible polynomial
f(x), a(x) and b(x) are two field elements in GF(2m), and r(x) is a
fixed field element in GF(2m). In this paper, first we present a general-
ized Montgomery multiplication algorithm in GF(2m). Then by choosing
r(x) according to f(x), we show that efficient architecture for bit-parallel
Montgomery multiplier and squarer can be obtained for the fields gen-
erated with irreducible trinomials. Complexities in terms of gate counts
and time propagation delay of the circuits are investigated and found to
be comparable to or better than that of polynomial basis or weakly dual
basis multiplier for the same class of fields.

1 Introduction

Finite field has applications in combinatorial designs, sequences, error-control
codes, and cryptography. Finite field arithmetic operations have been paid much
attention recently mainly because its use in cryptography, especially in elliptic
curve cryptosystems. Research in this area has been characterized by its strong
flavor of implementation both in software and in hardware. For example, fields
of characteristic two are prevailingly used because a ground field operation can
be readily implemented with a VLSI gate.1

In this paper, we first give a generalized Montgomery multiplication algo-
rithm in GF(2m). Then by choosing the fixed field element r(x) according to the
irreducible polynomial, we show that efficient multiplication and squaring archi-
tectures can be obtained using the generalized algorithm of Montgomery multi-
plication in GF(2m). The implementation complexities in terms of the number
of gates (equivalent to the number of ground field operations) and time propaga-
tion delay are lower than or as good as these of previously proposed multipliers
for the same class of fields. The main implementation results are summarized in
the two theorems.

1 A multiplication operation in GF(2) can be implemented using an AND gate, while
an addition operation in GF(2) can be implemented with an XOR gate.

Ç.K. Koç and C. Paar (Eds.): CHES 2000, LNCS 1965, pp. 264–276, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Montgomery Multiplier and Squarer in GF(2m) 265

2 Preliminaries

Montgomery multiplication was first proposed for integer modular multiplication
that can avoid trial division [2]. Later it was extended to finite field multipli-
cation in GF(2m) [1]. It was shown that the operation can be made simple if
certain type of r(x) is selected [1]. In the following, we give a brief review of the
Montgomery multiplication in GF(2m) proposed in [1].

Let f(x) be the irreducible polynomial that defines the field GF(2m) and
r(x) be a fixed element in GF(2m). Since gcd(f(x), r(x)) = 1, we can use the
extended Euclidean algorithm to determine f ′(x) and r′(x) that satisfy

r(x)r′(x) + f(x)f ′(x) = 1. (1)

Clearly r′(x) = r−1(x) is the inverse of r(x). Given two field elements a(x), b(x) ∈
GF(2m), then an analogue for Montgomery multiplication in GF(2m) can be
given by [1]

c(x) = a(x)b(x)r−1(x) mod f(x), (2)

and an algorithm to compute (2) is shown below:

Algorithm 1. Montgomery multiplication in GF(2m) [1]
Input: a(x), b(x), r(x), f ′(x)
Output: c(x) = a(x)b(x)r−1(x) mod f(x)

Step 1. t(x) ⇐ a(x)b(x)
Step 2. u(x) ⇐ t(x)f ′(x) mod r(x)
Step 3. c(x) ⇐ [t(x) + u(x)f(x)]/r(x)

The correctness of Algorithm 1 can be easily checked. Note that

deg[c(x)] 6 max{deg[t(x)], deg[u(x)] + deg[f(x)]} − deg[r(x)]
= max{2m− 2, deg[r(x)]− 1 + m} − deg[r(x)]
= max{2m− 2 − deg[r(x)], m− 1}.

Thus, to have deg[c(x)] 6 m−1, the degree of r(x) must be chosen not less than
m − 1. Since f(x) and f ′(x) can be considered as constants, it is noted in [1]
that efficient multiplication can be achieved if r(x) is properly chosen. In fact,
r(x) was chosen to be the monomial xm in [1] and Algorithm 1 is equivalent
to a polynomial multiplication, two constant multiplications in GF(2m) and one
addition in GF(2m).

3 Generalized Montgomery Multiplication in GF(2m)

For bit-parallel realization of Montgomery multiplication in GF(2m), we find
that efficient multiplier architecture can be obtained if r(x) is chosen according
to the irreducible polynomial f(x). For example, if the field is generated with a
trinomial f(x) = xm + xk + 1, then r(x) is selected to be the term of the second



266 Huapeng Wu

low degree in the trinomial. This choice of r(x) = xk turns out to be very helpful
in obtaining low complexity multiplier and squarer architectures. However, Al-
gorithm 1 can not directly be used for these cases since k can be less than m−1.
This leads us to consider a generalized form of Montgomery multiplication in
GF(2m). In the following, we first present a generalized Montgomery algorithm
in GF(2m), then compare it with Algorithm 1.

Algorithm 2. Generalized Montgomery multiplication in GF(2m)
Input: a(x), b(x), r(x), f(x), f ′(x)
Output: c(x) = a(x)b(x)r−1(x) mod f(x)

Step 1. t(x) ⇐ a(x)b(x)
Step 2. u(x) ⇐ t(x)f ′(x) mod r(x)
Step 3. c̃(x) ⇐ [t(x) + u(x)f(x)]/r(x)
Step 4. If deg(c̃) > m − 1, then c(x) ⇐ c̃(x) mod f(x), else c(x) ⇐ c̃(x)

The correctness check for the algorithm is similar to that of Algorithm 1.
The degree range of c̃(x) can be estimated. Since 0 6 deg[a(x)] 6 m− 1 and

0 6 deg[b(x)] 6 m− 1, it follows 0 6 deg[t(x)] 6 2m− 2. Assume deg[r(x)] = k,
then from Step 2 we have 0 6 deg[u(x)] 6 k − 1. From Step 3, we have

deg[c̃(x)] 6 max{2m− k − 2, m− 1}. (3)

When deg[r(x)] = k < m − 1, the degree of c̃(x) is 2m− k − 2 and higher than
m− 1. In this case, one more step of modulo reduction (Step 4) is needed.

Compared to Algorithm 1, Algorithm 2 extends the degree range that r(x)
can be chosen from. Algorithm 1 can be considered as a specific case of Algo-
rithm 2. For example, when r(x) is chosen such that deg r(x) > m−1, then c̃(x)
obtained at Step 3 in Algorithm 2 has a degree equal to or less than m−1. In this
case, Step 4 will not be performed and the algorithm is the same as Algorithm 1.
In fact, Algorithm 2 looks more similar to the original Montgomery algorithm [2]
than Algorithm 1. This is because Step 4 in Algorithm 2 corresponds to the final
subtraction step in the original Montgomery algorithm [2]. In Algorithm 1 this
step has been omitted provided that some condition has been applied to how to
choose r(x).

4 Montgomery Multiplier in GF(2m)

Consider the irreducible polynomial f(x) = xm + xk + 1, m
2 6 k 6 m − 1,

and the fixed field element r(x) = xk for the Montgomery multiplication in
GF(2m) (Algorithm 2). From the Extended Euclidean Algorithm, we obtain
r−1(x) = 1 + xm−k and f ′(x) = 1 that satisfy

r(x)r−1(x) + f(x)f ′(x) = 1.

To solve the coefficients of the product c(x) in terms of these of a(x) and b(x)
and thus to find efficient multiplier architectures, we proceed with each step of
Algorithm 2 as follows.



Montgomery Multiplier and Squarer in GF(2m) 267

4.1 Step 1 in Algorithm 2

Let polynomial basis representations of a(x) and b(x) be given by a(x) =∑m−1
i=0 aix

i, ai ∈ GF(2), and b(x) =
∑m−1

i=0 bix
i, bi ∈ GF(2), respectively. Then

t(x) = a(x)b(x) can be obtained as follows;

t(x) = a(x)b(x) =
2m−2∑
i=0

tix
i, (4)

where ti’s are given by

ti =




i∑
j=0

ajbi−j, 0 6 i 6 m − 1,

m−1∑
j=i−m+1

ajbi−j, m 6 i 6 2m− 2.

(5)

It can be seen that total m2 bit multiplications and (m − 1)2 bit additions in
GF(2) are required to compute ti, i = 0, 1, . . . , 2m − 2. An implementation of
(5) is straightforward, and the gate counts and time delays incurred with signals
ti, i = 0, 1, . . . , 2m − 2, are listed in Table 1. We denote the time delays of an
AND gate and an XOR gate by TA and TX , respectively.

Table 1. Complexity and Time Delay Involved in Implementing t(x).

Signal # AND gates # XOR gates Time delay

t0 = a0b0 1 0 TA

t1 = a0b1 + a1b0 2 1 TA + TX

t2 = a0b2 + a1b1 + a2b0 3 2 TA + 2TX

t3 = a0b3 + a1b2 + a2b1 + a3b0 4 3 TA + 2TX

... =
...

...
...

...

tm−2 = a0bm−2 + · · · + am−2b0 m − 1 m − 2 TA + dlog2(m − 1)e TX

tm−1 = a0bm−1 + · · · + am−1b0 m m − 1 TA + dlog2 meTX

tm = a1bm−1 + · · · + am−1b1 m − 1 m − 2 TA + dlog2(m − 1)e TX

... =
...

...
...

...

t2m−3= am−2bm−1 + am−1bm−2 2 1 TA + TX

t2m−2= am−1bm−1 1 0 TA

Total: m2 (m − 1)2 TA + dlog2 meTX

In the following, we will solve the rest three steps of Algorithm 2 and show
that they can be realized at one single implementation step.



268 Huapeng Wu

4.2 Step 2 in Algorithm 2

Substitute t(x) in this step using (4)

u(x) = t(x)f ′(x) mod r(x)
= t0 + t1x + t2x

2 + · · ·+ t2m−2x
2m−2 mod xk

= t0 + t1x + t2x
2 + · · ·+ tk−1x

k−1. (6)

Clearly, the degree of u(x) is not higher than that of r(x). If r(x) is chosen to
have a low degree then we have a simple u(x).

4.3 Step 3 in Algorithm 2

Define

tL(x)
4
= t0 + t1x + t2x

2 + · · ·+ tk−1x
k−1, (7)

and

tH(x) 4= tk + tk+1x + · · ·+ t2m−2x
2m−k−2. (8)

From (4) (7) and (8), it can be seen that

t(x) = tL(x) + xktH(x), (9)

and from (6) and (7) it follows

u(x) = tL(x). (10)

Substitute t(x) and u(x) in Step 3 with (9) and (10), respectively, and note that
f(x) = xm + xk + 1, we have

c̃(x) = [t(x) + u(x)f(x)]/r(x)
= [tL(x) + xktH(x) + tL(x)(xm + xk + 1)]/xk

= [xktH(x) + xk(xm−k + 1)tL(x)]/xk

= tH(x) + xm−ktL(x) + tL(x). (11)

When k = m − 1, from (3) we have deg c̃(x) 6 m − 1. Clearly, in this case
the degree of c̃(x) has already been reduced to the proper range and Step 4 in
Algorithm 2 is not necessary.

Extend each of the three terms at the right hand side of (11) for the case of
k = m− 1, and from (7) and (8) we have

tH(x) = tm−1 + tmx + · · ·+ t2m−2x
m−1,

xtL(x) = t0x + t1x
2 + · · ·+ tm−2x

m−1,

tL(x) = t0 + t1x + · · ·+ tm−2x
m−2. (12)



Montgomery Multiplier and Squarer in GF(2m) 269

Then by comparing (12) with (11), and note c̃(x) = c(x) =
m−1∑
i=0

cix
i, we can

write ci as follows

c0 = t0 + tm−1,

c1 = t0 + t1 + tm,

c2 = t1 + t2 + tm+1,

...
cm−2 = tm−3 + tm−2 + t2m−3,

cm−1 = tm−2 + t2m−2.

Rewrite the above expressions as

ci =




t0 + tm−1, i = 0,
ti−1 + ti + tm−1+i, i = 1, 2, . . . , m− 2,
tm−2 + t2m−2, i = m− 1.

(13)

It can be seen from (13) that each ci can be obtained with 2 bit additions in
GF(2), except that c0 and cm−1 require one bit operation each. Thus, a bit-
parallel realization of (13) needs 2m− 2 XOR gates. Since the maximal number
of terms on the right hand side of each equation in (13) is three, the maximal
time propagation delay is 2TX .

When m
2 6 k < m − 1, from (3) we have deg c̃(x) > m − 1. In this case, a

step of modulo reduction is still needed.

4.4 Step 4 in Algorithm 2

From (8) we divide tH(x) into two parts: tH(x) = t
(1)
H (x) + t

(2)
H (x), where

t
(1)
H (x)

4
= tk + tk+1x + · · ·+ tk+m−1x

m−1, (14)

and

t
(2)
H (x) 4= tk+mxm + tk+m+1x

m+1 + · · ·+ t2m−2x
2m−k−2. (15)

Substitute tH(x) in (11) with t
(1)
H (x) + t

(2)
H (x) and note that c(x) = c̃(x) mod

f(x), we have

c(x) = c̃(x) mod f(x)

= [t(1)
H (x) + t

(2)
H (x) + xm−ktL(x) + tL(x)] mod f(x)

= t
(1)
H (x) + xm−ktL(x) + tL(x) + [t(2)

H (x)] mod f(x). (16)



270 Huapeng Wu

Apply the modulo operation to each term on the right hand side of (15), it
follows

tk+mxm mod f(x) = tk+m(1 + xk),
tk+m+1x

m+1 mod f(x) = tk+m+1(x + xk+1),
...

t2m−2x
2m−k−2 mod f(x) = t2m−2(xm−k−2 + xm−2).

Adding the above m − k − 1 equations together, we obtain

t
(2)
H (x) mod f(x) =

m−k−2∑
i=0

tm+k+ix
i +

m−2∑
i=k

tm+ix
i.

Split t
(2)
H (x) into two parts:

t
(2,1)
H (x) mod f(x) 4=

m−k−2∑
i=0

tm+k+ix
i, (17)

t
(2,2)
H (x) mod f(x) 4=

m−2∑
i=k

tm+ix
i. (18)

Substitute t
(2)
H (x) with t

(2,1)
H (x)+ t

(2,2)
H (x) in (16) and note that c(x) =

m−1∑
i=0

cix
i,

it follows

m−1∑
i=0

cix
i = tL(x) + xm−ktL(x) + t

(1)
H (x) + t

(2,1)
H (x) + t

(2,2)
H (x). (19)

Rewrite the equations (7), (14), (17), (18) and extend the term xm−ktL(x) using
(7), we have the following five equations for the five terms on the right hand side
of (19), respectively:

(a) tL(x) = t0 + t1x + t2x
2 + · · ·+ tk−1x

k−1 [0, k − 1]
(b) xm−ktL(x) = t0x

m−k + t1x
m−k+1 + · · ·+ tk−1x

m−1 [m− k, m− 1]
(c) t

(1)
H (x) = tk + tk+1x + · · ·+ tk+m−1x

m−1 [0, m− 1]
(d) t

(2,1)
H (x) = tm+k + tm+k+1x + · · ·+ t2m−2x

m−k−2 [0, m− k − 2]
(e) t

(2,2)
H (x) = tm+kxk + tm+k+1x

k+1 + · · ·+ t2m−2x
m−2 [k, m− 2]

(20)

The last column in the above array is the degree range of the terms on the
right-hand side of each equation. Now we are ready to solve the coefficients ci

by comparing (19) with (20).



Montgomery Multiplier and Squarer in GF(2m) 271

In the following, we consider three cases:

Case 1: If m + 1
2 < k < m − 1. We have m − k − 2 < m − k < k − 1 < k. By

comparing (19) with (20), we can solve ci’s (the coefficient of the term xi

in c(x)). When 0 6 i 6 m − k − 2, it can be seen from (20) that ci takes
on the terms from equations (a), (c) and (d). When i = m − k − 1, cm−k−1

has only two terms, one is from equation (a) and the other from (c). When
i runs through from m − k to k − 1, ci picks up the terms from equations
(a), (b) and (c). When k 6 i 6 m− 2, ci has three terms: one from equation
(b), one from (c) and the other from (e). Finally, cm−1 has two terms from
equations (b) and (c), respectively. We can write ci’s as follows

(a) (b) (c) (d) (e)
c0 = t0 +tk +tk+m

c1 = t1 +tk+1 +tk+m+1

...
...

...
...

cm−k−2 = tm−k−2 +tm−2 +t2m−2

cm−k−1 = tm−k−1 +tm−1

cm−k = tm−k +t0 +tm
...

...
...

...
ck−1 = tk−1 +t2k−m−1 +t2k−1

ck = +t2k−m +t2k +tk+m

...
...

...
...

cm−2 = +tk−2 +tm+k−2 +t2m−2

cm−1 = +tk−1 +tm+k−1

(21)

where all the terms at the column (a), (b), . . . are from the equations (a), (b),
. . . in (20), respectively. Now we can estimate the complexity to obtain the
coefficients of the product from ti’s. From (21), it can be seen that 2m−2 bit
addition in GF(2) are used to solve ci’s. The longest time delay to generate
ci from ti is 2TX .

Case 2. If k = m + 1
2 . We have m− k − 2 < m− k = k − 1 < k. By comparing

(19) to (20) the coefficients of c(x) can be written as follows

(a) (b) (c) (d) (e)
c0 = t0 +tk +tk+m

c1 = t1 +tk+1 +tk+m+1

...
...

...
...

cm−k−2 = tk−3 +t2k−3 +t2m−2

cm−k−1 = tk−2 +t2k−2

cm−k = tk−1 +t0 +t2k−1

ck = +t1 +t2k tk+m

...
...

...
...

cm−2 = +tk−2 +tm+k−2 +t2m−2

cm−1 = +tk−1 +tm+k−1

(22)



272 Huapeng Wu

It can be seen that a realization of the above expressions requires 2m − 2
ground field operations. Since the most terms to sum up for each ci is three,
the maximal time delay is 2TX .

Case 3. If k = m
2 . We have m − k − 2 = k − 2 < k − 1 < m − k = k. The

coefficients of the Montgomery product can be obtained from (19) and (20)
as follows:

(c) (a) (d) (b) (e)
c0 = tk +(t0 +tk+m)
c1 = tk+1 +(t1 +tk+m+1)

...
...

...
...

ck−2 = tm−2 +(tk−2 +t2m−2)
ck−1 = tm−1 +tk−1

ck = tm +(t0 +tk+m)
ck+1 = tm+1 +(t1 +tk+m+1)

...
...

...
...

cm−2 = tm+k−2 +(tk−2 +t2m−2)
cm−1 = tm+k−1 +tk−1

(23)

Note that the resued partial sums are put in the brackets. Then it can be
seen from (23) that 2m − 2 − (k − 1) = 3

2m − 1 bit additions in GF(2)
are required to compute c0, . . . , cm−1 from t0, . . . , t2m−2. The time delay
incurred here is still 2TX .

4.5 Bit-Parallel Multiplier Architecture

From the above discussion, it can be seen that a bit-parallel Montgomery multi-
plication in GF(2m) is decided by (5) and one of the expressions (21), (22) and
(23). A diagram for the bit-parallel multiplier architecture is shown in Fig. 1.
The upper two modules (one all-AND-gate circuits and one all-XOR-gate cir-
cuits) are used to perform polynomial multiplication (Step 1 in Algorithm 2),
while the module at the bottom (all-XOR-gate circuits) corresponds to the im-
plementation of Steps 2 to 4 in Algorithm 2.

It can be seen from Table 1 that m2 AND agtes and (m−1)2 XOR gates are
required for generating ti. Then the coefficients of c(x) can be generated from ti
using one of (21), (22) and (23). Obviously, the total number of gates required
are

m2 AND gates,
m2 − 1 XOR gates,

if the irreducible trinomial is f(x) = xm + xk + 1, m
2 < k 6 m − 1.

When f(x) = xm + x
m
2 + 1, the complexity is only

m2 AND gates,
m2 − m

2 XOR gates.



Montgomery Multiplier and Squarer in GF(2m) 273

XOR network

AND network

XOR networkSteps 2-4

Step 1

t0 : : : t2m�2

a0 : : :am�1 b0 : : : bm�1

c0 : : : cm�1

Fig. 1. Bit-Parallel Montgomery Multiplier Architecture when f(x) = xm+xk +
1 and r(x) = xk.

Total time delay of the multiplier is not greater than TA +(dlog2 me + 2)TX .
In many cases the total propagation delay is less than the above bound. Note
from the Table 1 that the time delay incurred with different ti is different. In
fact, circuits for generating ti has a time delay dlog2(i+1)eTX if i 6 m− 1, and
dlog2(2m − i − 1)eTX if i > m. From (13), (21), (22) and (23), it can be seen
that most ci’s is a sum of three terms. Write them as ci = ti1 + ti2 + ti3, where
we assume that the time delays for generating ti1, ti2, and ti3 are d1, d2, and d3,
respectively. If d1 6 d2 6 d3, then it can be seen that the propagation delay for
generating ci depends on d2 and d3 if the circuit is designed using

ci = (ti1 ⊕ ti2) ⊕ ti3.

The time delay incurred with the above logic equation for generating ci is

Tci = max{d2 + 2, d3 + 1}.
Using this method, we search and find the maximal time delays incurred with
the expressions (13), (21), (22) and (23).

4.6 Complexity Results and Example

We summarize the implementation results on Montgomery multiplier in GF(2m)
as follows:

Theorem 1. Let the finite field GF(2m) be defined by irreducible trinomial
f(x) = xm +xk +1, m

2 6 k 6 m−1. Then a bit-parallel Montgomery multiplier
in GF(2m) can be constructed from the expression (5), and one of the expres-
sions (13), (21), (22) and (23). The complexity and time propagation delay are
given as follows.



274 Huapeng Wu

1. The complexity is m2 AND gates and m2 − 1 XOR gates. The incurred time
delay is TA + (dlog2(m− 2)e + 2)TX , if k = m − 1.

2. The complexity is m2 AND gates and m2 − 1 XOR gates. The incurred time
delay is TA + (dlog2(m− k

2 )e + 2)TX, if m + 1
2 6 k 6 m− 1.

3. The complexity is m2 AND gates and m2 − 1 XOR gates. The incurred time
delay is TA + (dlog2 ke+ 2)TX, if k = m + 1

2 .
4. The complexity is m2 AND gates and m2 − m

2 XOR gates. The incurred
time delay is TA + (dlog2(m − 1) + 1)TX , if k = m

2 .

4.7 Montgomery Squarer in GF(2m)

When Algorithm 2 is used for squaring operation, only the first step needs to be
changed. We rewrite Algorithm 2 for Montgomery squaring in GF(2m) as follows

Algorithm 3. Generalized Montgomery squaring in GF(2m)
Input: a(x), r(x), f(x), f ′(x)
Output: c(x) = a2(x)r−1(x) mod f(x)

Step 1. t(x) ⇐ a2(x)
Step 2. u(x) ⇐ t(x)f ′(x) mod r(x)
Step 3. c̃(x) ⇐ [t(x) + u(x)f(x)]/r(x)
Step 4. If deg(c̃) > m − 1, then c(x) ⇐ c̃(x) mod f(x), else c(x) ⇐ c̃(x)

With the same selection of the field f(x) = xm +xk +1 and the fixed element
r(x) = xk, we proceed with Algorithm 3 step by step.

Step 1. From t(x) = a2(x), we have

m−1∑
i=0

aix
2i =

2m−2∑
i=0

tix
i.

It can be seen from the above expression

ti =
{

a i
2
, i = 0, 2, . . . , 2m− 2;

0, i = 1, 3, . . . , 2m− 3.
(24)

Not like multiplication, there is no bit operations needed here to obtain ti.
Step 2-4. These three steps are very similar to these in Algorithm 2, and many

intermediate results obtained in the last section can also be used here.
In the following we only consider the case that k = m − 1 and m is even.
For the other cases the deduction is similar. From (12) and (24), we have

(a) tL(x) = a0 + a1x
2 + a2x

4 + · · ·+ am−2
2

xm−2 [0, m− 2]
(b) xtL(x) = a0x + a1x

3 + · · ·+ am−2
2

xm−1 [1, m− 1]
(c) tH(x) = am

2
x + am+2

2
x3 + · · ·+ am−1x

m−1 [1, m− 1]
(25)



Montgomery Multiplier and Squarer in GF(2m) 275

Note that the expression (a) in (25) has only even power terms and (b) and
(c) have only odd power terms. Comparing (25) to (11) and note c(x) = c̃(x)
when k = m− 1, the coefficients ci can be obtained as follows

ci =

{
a i

2
, i = 0, 2, . . . , m − 2;

a i−1
2

+ am+i−1
2

, i = 1, 3, . . . , m − 1.
(26)

It can be seen that m
2 bit additions in GF(2) are required to compute ci using

(26). Then we know that to implement a bit-parallel Montgomery squarer
needs only m

2 XOR gates. The time delay for this Montgomery squarer is
equivalent to the delay of one XOR gate TX .

The implementation results can be summarized as follows:

Theorem 2. Let the finite field GF(2m) be defined by irreducible trinomial
f(x) = xm +xk +1, m

2 6 k 6 m−1. Then a bit-parallel Montgomery squarer in

GF(2m) can be built with
⌈
m − 1

2

⌉
XOR gates and the time propagation delay

is TX .

5 Comparison

Table 2. Comparison of Bit-Parallel Multipliers.

Proposals # AND # XOR Time delay

f(x) = xm + x + 1

Wu, Hasan and Blake [6] m2 m2 − 1 TA + (dlog2 me + 1)TX

Sunar and Koc [3] m2 m2 − 1 TA + (dlog2 me + 1)TX

Wu [5] m2 m2 − 1 TA + (dlog2(m − 2)e + 2)TX

Presented here m2 m2 − 1 TA + (dlog2(m − 2)e + 2)TX

f(x) = xm + xk + 1, 1 < k < m
2

Wu, Hasan and Blake [6] m2 m2 − 1 TA +
�l

log2

l
m + k − 1

2

mm
+ 2

�
TX

Sunar and Koc [3] m2 m2 − 1 TA + (dlog2 me + 2)TX

Wu [5] m2 m2 − 1 TA + (dlog2(m − 1)e + 2)TX

Presented here m2 m2 − 1 TA + (dlog2(m − k
2
)e + 2)TX

f(x) = xm + x
m
2 + 1

Wu, Hasan and Blake [6] m2 m2 − m
2 TA +

l
log2

�
m + 2

l
m
4

m�m
TX

Sunar and Koc [3] m2 m2 − m
2 TA + (dlog2 me + 1)TX

Wu [5] m2 m2 − m
2 TA + (dlog2(m − 1)e + 1)TX

Presented here m2 m2 − m
2 TA + (dlog2(m − 1)e + 1)TX

Table 2 gives a comparison of four different implementations of bit-parallel
multiplier in the same class of fields. Note that we consider the fields generated



276 Huapeng Wu

with two irreducible reciprocal trinomials are the same. The bit-parallel multi-
plier proposed by Wu, Hasan and Blake uses weakly dual basis (WDB) [6].2

Sunar and Koc presented all trinomial Mastrovito multiplier using polynomial
basis. The polynomial basis multiplier proposed in [5] has a different architecture
from the Mastrovito multiplier.

It can be seen that all the multipliers achieve the same complexity in terms
of the numbers of AND and XOR gates. The time propagation delay incurred
with the multiplier presented here comparable to that of the previously proposed
multipliers.

Table 3. Comparison of Polynomial Basis Bit-Parallel Squarers.

Proposals # XOR Time delay

f(x) = xm + xk + 1, where m + k odd.

Wu [5] m + k − 1
2 2TX

Presented here
l

m − 1
2

m
TX

f(x) = xm + xk + 1, where both m and k are odd.

Wu [5] m − 1
2 TX

Presented here m − 1
2 TX

It can be seen from Table 3 that Montgomery squarer has both lower com-
plexity and lower time propagation delay for the case that m+k is odd, compared
to the regular polynomial basis squarer presented in [5].

References

1. C. K. Koc and T. Acar. Montgomery multiplication in GF(2k). Designs, Codes and
Cryptography, 14:57–69, 1998.

2. P. L. Montgomery. Modular multiplication without trial division. Mathematics of
Computation, 44:519–521, 1985.

3. B. Sunar and C. K. Koc. Mastrovito multiplier for all trinomials. IEEE Trans.
Comput., 48(5):522–527, 1999.

4. M. Wang and I. F. Blake. Bit serial multiplication in finite fields. SIAM Discrete
Mathematics, 3(1):140–148, 1990.

5. H. Wu. Low-complexity arithmetic in finite field using polynomial basis. In
CHES’99, pages 357–371. Springer-Verlag, 1999.

6. H. Wu, M. A. Hasan, and I. F. Blake. Low complexity weakly dual basis bit-parallel
multiplier over finite fields. IEEE Trans. Comput., 47(11):1223–1234, November
1998.

2 A PB bit-parallel multiplier can be readily made by adding a basis conversion module
to both the input and the output ends. By a theorem proposed in [4], when the field
is generated with an irreducible trinomial, the coefficients of a field element in WDB
is nothing but a permutation of the coefficients of the element in PB. Thus a weakly
dual basis bit-parallel multiplier proposed in [4] can be used as a polynomial basis
bit-parallel multiplier without additional gates and time delay.


	Introduction
	Preliminaries
	Generalized Montgomery Multiplication in GF$(2^m)$
	Montgomery Multiplier in GF$(2^m)$
	Stepnobreakspace {}1 in Algorithmnobreakspace {}ref {alg02}
	Stepnobreakspace {}2 in Algorithmnobreakspace {}ref {alg02}
	Stepnobreakspace {}3 in Algorithmnobreakspace {}ref {alg02}
	Stepnobreakspace {}4 in Algorithmnobreakspace {}ref {alg02}
	Bit-Parallel Multiplier Architecture
	Complexity Results and Example
	Montgomery Squarer in GF$(2^m)$

	Comparison

