
Software Implementation of Elliptic Curve
Cryptography over Binary Fields

Darrel Hankerson1?, Julio López Hernandez2 , and Alfred Menezes3

1 Dept. of Discrete and Statistical Sciences, Auburn University, USA
hankedr@mail.auburn.edu

2 Dept. of Computer Science, University of Valle, Colombia
jlopez@borabora.univalle.edu.co

3 Dept. of Combinatorics and Optimization, University of Waterloo, Canada
ajmeneze@uwaterloo.ca

Abstract. This paper presents an extensive and careful study of the
software implementation on workstations of the NIST-recommended el-
liptic curves over binary fields. We also present the results of our imple-
mentation in C on a Pentium II 400 MHz workstation.

1 Introduction

Elliptic curve cryptography (ECC) was proposed independently in 1985 by Neal
Koblitz [19] and Victor Miller [29]. Since then a vast amount of research has
been done on its secure and efficient implementation. In recent years, ECC has
received increased commercial acceptance as evidenced by its inclusion in stan-
dards by accredited standards organizations such as ANSI (American National
Standards Institute) [1,2], IEEE (Institute of Electrical and Electronics Engi-
neers) [13], ISO (International Standards Organization) [14,15], and NIST (Na-
tional Institute of Standards and Technology) [33].

Before implementing an ECC system, several choices have to be made. These
include selection of elliptic curve domain parameters (underlying finite field, field
representation, elliptic curve), and algorithms for field arithmetic, elliptic curve
arithmetic, and protocol arithmetic. The selections can be influenced by se-
curity considerations, application platform (software, firmware, or hardware),
constraints of the particular computing environment (e.g., processing speed,
code size (ROM), memory size (RAM), gate count, power consumption), and
constraints of the particular communications environment (e.g., bandwidth, re-
sponse time). Not surprisingly, it is difficult, if not impossible, to decide on a
single “best” set of choices—for example, the optimal choices for a PC applica-
tion can be quite different from the optimal choice for a smart card application.

Over the past 15 years, numerous papers have been written on various aspects
of ECC implementation. Most of these papers do not consider all the factors
involved in an efficient implementation. For example, many papers focus only on
finite field arithmetic, or only on elliptic curve arithmetic.
? Supported by a grant from Auburn University COSAM.

Ç.K. Koç and C. Paar (Eds.): CHES 2000, LNCS 1965, pp. 1–24, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

2 Darrel Hankerson, Julio López Hernandez, and Alfred Menezes

The contribution of this paper is an extensive and careful study of the soft-
ware implementation on workstations of the NIST-recommended elliptic curves
over binary fields. While the only significant constraint in workstation environ-
ments may be processing power, some of our work may also be applicable to other
more constrained environments (e.g., see [4] for implementations on a pager and
the Palm Pilot). We also present the results of our implementation in C (no
hand-coded assembler was used) on a Pentium II 400MHz workstation. These
results serve to validate our conclusions based primarily on theoretical consider-
ations. While some effort was made to optimize the code (e.g., loop unrolling),
it is likely that significant performance improvements can be obtained especially
if the code is tuned for a specific platform. Nonetheless, we hope that our work
will serve as a benchmark for future efforts in this area.

The remainder of this paper is organized as follows. §2 describes the NIST
curves over binary fields and presents some rationale for their selection. In §3,
we describe methods for arithmetic in binary fields. §4 and §5 consider efficient
techniques for elliptic curve arithmetic. In §6, we select the best methods for per-
forming elliptic curve operations in ECC protocols such as the ECDSA. Finally,
we draw our conclusions in §7 and discuss avenues for future work in §8.

2 NIST Curves over Binary Fields

In February 2000, FIPS 186-1 was revised by NIST to include the elliptic curve
digital signature algorithm (ECDSA) as specified in ANSI X9.62 [1] with further
recommendations for the selection of underlying finite fields and elliptic curves;
the revised standard is called FIPS 186-2 [33].

FIPS 186-2 has 10 recommended finite fields: 5 prime fields, and the binary
fields F2163 , F2233 , F2283 , F2409 , and F2571 . For each of the prime fields, one ran-
domly selected elliptic curve was recommended, while for each of the binary
fields one randomly selected elliptic curve and one Koblitz curve was selected.

The fields were selected so that the bitlengths of their orders are at least
twice the key lengths of common symmetric-key block ciphers—this is because
exhaustive key search of a k-bit block cipher is expected to take roughly the
same time as the solution of an instance of the elliptic curve discrete logarithm
problem using Pollard’s rho algorithm for an appropriately-selected elliptic curve
over a finite field whose order has bitlength 2k. The correspondence between
symmetric cipher key lengths and field sizes is given in Table 1. For binary fields
F2m , m was chosen so that there exists a Koblitz curve of almost prime order
over F2m . Since the order #E(F2l) divides #E(F2m) whenever l divides m, this
requirement imposes the condition that m be prime.

Since the NIST binary curves are all defined over fields F2m where m is prime,
our paper excludes from consideration fields such as F2176 for which efficient
techniques are known for field arithmetic [6,12]. This exclusion is not a concern
in light of recent advances in algorithms for the discrete logarithm problem for
elliptic curves over F2m when m has a small non-trivial factor [9,10].

Software Implementation of Elliptic Curve Cryptography over Binary Fields 3

Table 1. NIST-recommended field sizes for U.S. Federal Government use.

Symmetric cipher Example Bitlength of p Dimension m of
key length algorithm in prime field Fp binary field F2m

80 SKIPJACK 192 163
112 Triple-DES 224 233
128 AES Small [34] 256 283
192 AES Medium [34] 384 409
256 AES Large [34] 521 571

The remainder of this paper considers the efficient implementation of the
NIST-recommended random and Koblitz curves over the fields F2163 , F2233 , and
F2283 . The results can be extrapolated to curves over F2409 and F2571 .

Description of the NIST Curves over Binary Fields. The NIST elliptic
curves over F2163 , F2233 and F2283 are listed in Table 2. The following notation
is used. The elements of F2m are represented using a polynomial basis repre-
sentation with reduction polynomial f(x) (see §3.1). The reduction polynomi-
als for the fields F2163 , F2233 and F2283 are f(x) = x163 + x7 + x6 + x3 + 1,
f(x) = x233 + x74 + 1, and f(x) = x283 + x12 + x7 + x5 + 1, respectively. An
elliptic curve E over F2m is specified by the coefficients a, b ∈ F2m of its defining
equation y2 + xy = x3 + ax2 + b. The number of points on E defined over F2m

is nh, where n is prime, and h is called the co-factor. A random curve over F2m

is denoted by B-m, while a Koblitz curve over F2m is denoted by K-m.

3 Binary Field Arithmetic

This section presents algorithms that are suitable for performing binary field
arithmetic in software. For concreteness, we assume that the implementation
platform has a 32-bit architecture. The bits of a word W are numbered from 0
to 31, with the rightmost bit of W designated as bit 0.

3.1 Field Representation

Of the many representations of F2m , m prime, that have been studied, it appears
that a polynomial basis representation with a trinomial or pentanomial as the
reduction polynomial yields the simplest and fastest implementation in software.
We will henceforth use a polynomial basis representation.

Let f(x) = xm + r(x) be an irreducible binary polynomial of degree m. The
elements of F2m are the binary polynomials of degree at most m−1 with addition
and multiplication performed modulo f(x). A field element a(x) = am−1x

m−1 +
· · ·+a2x

2+a1x+a0 is associated with the binary vector a = (am−1, . . . , a2, a1, a0)
of length m. Let t = dm/32e, and let s = 32t−m. In software, we store a in an
array of t 32-bit words: A = (A[t− 1], . . . , A[2], A[1], A[0]), where the rightmost
bit of A[0] is a0, and the leftmost s bits of A[t− 1] are unused (always set to 0).

Addition of field elements is performed bitwise, thus requiring only t word
operations.

4 Darrel Hankerson, Julio López Hernandez, and Alfred Menezes

Table 2. NIST-recommended elliptic curves over F2163 , F2233 and F2283 .

B-163: a = 1, h = 2,
b = 0x 00000002 0A601907 B8C953CA 1481EB10 512F7874 4A3205FD

n = 0x 00000004 00000000 00000000 000292FE 77E70C12 A4234C33

B-233: a = 1, h = 2,
b = 0x 00000066 647EDE6C 332C7F8C 0923BB58 213B333B 20E9CE42

81FE115F 7D8F90AD

n = 0x 00000100 00000000 00000000 00000000 0013E974 E72F8A69

22031D26 03CFE0D7

B-283: a = 1, h = 2,
b = 0x 027B680A C8B8596D A5A4AF8A 19A0303F CA97FD76 45309FA2

A581485A F6263E31 3B79A2F5

n = 0x 03FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFEF90 399660FC

938A9016 5B042A7C EFADB307

K-163: a = 1, b = 1, h = 2,
n = 0x 00000004 00000000 00000000 00020108 A2E0CC0D 99F8A5EF

K-233: a = 0, b = 1, h = 4,
n = 0x 00000080 00000000 00000000 00000000 00069D5B B915BCD4

6EFB1AD5 F173ABDF

K-283: a = 0, b = 1, h = 4,
n = 0x 01FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFE9AE 2ED07577

265DFF7F 94451E06 1E163C61

3.2 Multiplication

The shift-and-add method (Algorithm 1) for field multiplication is based on the
observation that a · b = am−1x

m−1b + · · · + a2x
2b + a1xb + a0b. Iteration i of

the algorithm computes xib mod f(x) and adds the result to the accumulator c
if ai = 1. Note that b · x mod f(x) can be easily computed by a left-shift of the
vector representation of b, followed by the addition of r(x) to b if bm = 1.

Algorithm 1. Right-to-left shift-and-add field multiplication

Input: Binary polynomials a(x) and b(x) of degree at most m− 1.
Output: c(x) = a(x) · b(x) mod f(x).

1. If a0 = 1 then c← b; else c← 0.

2. For i from 1 to m− 1 do

2.1 b← b · x mod f(x).

2.2 If ai = 1 then c← c + b.

3. Return(c).

While Algorithm 1 is well-suited for hardware where a vector shift can be
performed in one clock cycle, the large number of word shifts make it less de-
sirable for software implementation. We next consider faster methods for field
multiplication which first multiply the field elements as polynomials, and then
reduce the result modulo f(x).

Software Implementation of Elliptic Curve Cryptography over Binary Fields 5

Polynomial Multiplication. The comb method for polynomial multiplication
is based on the observation that if b(x)·xk has been computed for some k ∈ [0, 31],
then b(x) · x32j+k can be easily obtained by appending j zero words to the right
of the vector representation of b(x) · xk. Algorithm 2 considers the bits of the
words of A from right to left, while Algorithm 3 considers the bits from left
to right. The following notation is used: if C = (C[n], . . . , C[2], C[1], C[0]) is a
vector, then C{j} denotes the truncated vector (C[n], . . . , C[j + 1], C[j]).

Algorithm 2. Right-to-left comb method for polynomial multiplication

Input: Binary polynomials a(x) and b(x) of degree at most m− 1.
Output: c(x) = a(x) · b(x).

1. C←0.
2. For k from 0 to 31 do

2.1 For j from 0 to t− 1 do
If the kth bit of A[j] is 1 then add B to C{j}.

2.2 If k 6= 31 then B←B · x.
3. Return(C).

Algorithm 3. Left-to-right comb method for polynomial multiplication

Input: Binary polynomials a(x) and b(x) of degree at most m− 1.
Output: c(x) = a(x) · b(x).

1. C←0.
2. For k from 31 downto 0 do

2.1 For j from 0 to t− 1 do
If the kth bit of A[j] is 1 then add B to C{j}.

2.2 If k 6= 0 then C←C · x.
3. Return(C).

Algorithms 2 and 3 are both faster than Algorithm 1 since there are fewer
vector shifts (multiplications by x). Algorithm 2 is faster than Algorithm 3 since
the vector shifts in the former involve the t-word vector B, while the vector
shifts in the latter involve the 2t-word vector C. In [27] it was observed that
Algorithm 3 can be sped up considerably at the expense of some storage overhead
by precomputing u(x) · b(x) for all polynomials u(x) of degree less than w, where
w divides the word length, and considering the bits of the A[j]’s w at a time.
The modified method with w = 4 is presented as Algorithm 4.

Algorithm 4. Left-to-right comb method with windows of width w = 4

Input: Binary polynomials a(x) and b(x) of degree at most m− 1.
Output: c(x) = a(x) · b(x).

1. Compute Bu = u(x) · b(x) for all polynomials u(x) of degree at most 3.
2. C←0.
3. For k from 7 downto 0 do

3.1 For j from 0 to t− 1 do
Let u = (u3, u2, u1, u0), where ui is bit (4k + i) of A[j]. Add Bu to C{j}.

3.2 If k 6= 0 then C←C · x4.
4. Return(C).

6 Darrel Hankerson, Julio López Hernandez, and Alfred Menezes

The last method we consider for polynomial multiplication was first described
by Karatsuba for multiplying integers (see [18]). Suppose that m is even. To
multiply two binary polynomials a(x) and b(x) of degree at most m− 1, we first
split up a(x) and b(x) each into two polynomials of degree at most (m/2) − 1:
a(x) = A1(x)X + A0(x), b(x) = B1(x)X + B0(x), where X = xm/2. Then

a(x)b(x) = A1B1X
2 + [(A1 + A0)(B1 + B0) + A1B1 + A0B0]X + A0B0,

which can be derived from three products of polynomials of degree (m/2) − 1.
These products in turn can be computed recursively. For the case m = 163,
we first prepended a 0 bit to the field elements a and b so that their bitlength
is 164, and then used Karatsuba’s method to subdivide the multiplication of
a and b into multiplications of polynomials of degree at most 40. The latter
multiplications were performed using a variant of Algorithm 4. For the case
m = 233 (resp. m = 283), we first prepended twenty-three (five) 0 bits to a and
b, and then used Karatsuba’s method to subdivide the multiplication of a and b
into multiplications of polynomials of degree at most 63 (71).

Reduction. Let c(x) be a binary polynomial of degree at most 2m− 2. Algo-
rithm 5 reduces c(x) modulo f(x) one bit at a time, starting with the leftmost
bit. It is based on the observation that xi ≡ xi−mr(x) (mod f(x)) for i ≥ m.
The polynomials xkr(x), 0 ≤ k ≤ 31, can be precomputed. If r(x) is a low-degree
polynomial, or if f(x) is a trinomial, then the space requirements are smaller,
and also the additions involving xkr(x) are faster.

Algorithm 5. Modular reduction (one bit at a time)

Input: A binary polynomial c(x) of degree at most 2m− 2.
Output: c(x) mod f(x).

1. Precomputation. Compute uk(x) = xkr(x), 0 ≤ k ≤ 31.
2. For i from 2m− 2 downto m do

2.1 If ci = 1 then
Let j = b(i−m)/32c and k = (i−m) − 32j.
Add uk(x) to C{j}.

3. Return((C[t − 1], . . . , C[1], C[0])).

If f(x) is a trinomial, or a pentanomial with middle terms close to each
other, then reduction of c(x) modulo f(x) can be efficiently performed one word
at a time. For example, consider reducing the ninth word C[9] of c(x) modulo
f(x) = x163 + x7 + x6 + x3 + 1. Here, m = 163 and t = 6. We have

x288 ≡ x132 + x131 + x128 + x125 (mod f(x))
x289 ≡ x133 + x132 + x129 + x126 (mod f(x))

...
x319 ≡ x163 + x162 + x159 + x156 (mod f(x)).

By considering columns on the right side of the above congruences, it follows
that reduction of C[9] can be performed by adding C[9] four times to C, with

Software Implementation of Elliptic Curve Cryptography over Binary Fields 7

the rightmost bit of C[9] added to bits 132, 131, 128 and 125 of C. This leads
to Algorithm 6 for modular reduction which can be easily extended to other
reduction polynomials. For the reduction polynomials considered in this paper,
Algorithm 6 is faster than Algorithm 5 and furthermore has no storage overhead.

Algorithm 6. Modular reduction (one word at a time)

Input: A binary polynomial c(x) of degree at most 324.
Output: c(x) mod f(x), where f(x) = x163 + x7 + x6 + x3 + 1.
1. For i from 10 downto 6 do {Reduce C[i] modulo f(x)}

1.1 T ←C[i].
1.2 C[i− 6]←C[i− 6] ⊕ (T � 29).
1.3 C[i− 5]←C[i− 5] ⊕ (T � 4)⊕ (T � 3) ⊕ T ⊕ (T � 3).
1.4 C[i− 4]←C[i− 4] ⊕ (T � 28)⊕ (T � 29).

2. T ←C[5] AND 0xFFFFFFF8. {Clear bits 0, 1 and 2 of C[5]}
3. C[0]←C[0]⊕ (T � 4)⊕ (T � 3) ⊕ T ⊕ (T � 3).
4. C[1]←C[1]⊕ (T � 28) ⊕ (T � 29).
5. C[5]←C[5] AND 0x00000007. {Clear the unused bits of C[5]}
6. Return((C[5], C[4],C[3], C[2], C[1],C[0])).

3.3 Squaring

Squaring a polynomial is much faster than multiplying two arbitrary polynomials
since squaring is a linear operation in F2m ; that is, if a(x) =

∑m−1
i=0 aix

i, then
a(x)2 =

∑m−1
i=0 aix

2i. The binary representation of a(x)2 is obtained by inserting
a 0 bit between consecutive bits of the binary representation of a(x). To facilitate
this process, a table of size 512 bytes can be precomputed for converting 8-bit
polynomials into their expanded 16-bit counterparts [37].

Algorithm 7. Squaring

Input: a ∈ F2m .
Output: a2 mod f(x).
1. Precomputation. For each byte v = (v7, . . . , v1, v0), compute the 16-bit quantity

T (v) = (0, v7, . . . , 0, v1, 0, v0).
2. For i from 0 to t− 1 do

2.1 Let A[i] = (u3, u2, u1, u0) where each uj is a byte.
2.2 C[2i]← (T (u1), T (u0)), C[2i + 1]← (T (u3), T (u2)).

3. Compute b(x) = c(x) mod f(x).
4. Return(b).

3.4 Inversion

Algorithm 8 computes the inverse of a non-zero field element a ∈ F2m using
a variant of the Extended Euclidean Algorithm (EEA) for polynomials. The
algorithm maintains the invariants ba + df = u and ca + ef = v for some d
and e which are not explicitly computed. At each iteration, if deg(u) ≥ deg(v),
then a partial division of u by v is performed by subtracting xjv from u, where
j = deg(u)− deg(v). In this way the degree of u is decreased by at least 1, and
on average by 2. Subtracting xjc from b preserves the invariants. The algorithm
terminates when deg(u) = 0, in which case u = 1 and ba + df = 1; hence
b = a−1 mod f(x).

8 Darrel Hankerson, Julio López Hernandez, and Alfred Menezes

Algorithm 8. Extended Euclidean Algorithm for inversion in F2m

Input: a ∈ F2m , a 6= 0.
Output: a−1 mod f(x).

1. b← 1, c← 0, u← a, v← f .
2. While deg(u) 6= 0 do

2.1 j← deg(u) − deg(v).
2.2 If j < 0 then: u↔ v, b↔ c, j← − j.
2.3 u←u + xjv, b← b + xjc.

3. Return(b).

The Almost Inverse Algorithm (AIA, Algorithm 9) is from [37]. For a ∈ F2m ,
a 6= 0, a pair (b, k) is returned where ba ≡ xk (mod f(x)). A reduction is then
applied to obtain a−1 = bx−k mod f(x). The invariants are ba + df = uxk and
ca+ef = vxk for some d and e which are not explicitly calculated. After step 2,
both u and v have a constant term of 1; after step 5, u is divisible by x and
hence the degree of u is always reduced at each iteration. The value of k is
incremented in step 2.1 to preserve the invariants. The algorithm terminates
when u = 1, giving ba+df = xk. While EEA eliminates bits of u and v from left
to right (high degree to low degree), AIA eliminates bits from right to left. In
addition, in AIA some bits are also lost on the left in the case deg(u) = deg(v)
before step 5. Consequently, AIA is expected to take fewer iterations than EEA.

The reduction step can be performed as follows. Let s = min{i ≥ 1 | fi = 1},
where f(x) = fmxm + · · ·+ f1x + f0. Let b′ be the polynomial formed by the
s rightmost bits of b. Then b′f + b is divisible by xs and b′′ = (b′f + b)/xs has
degree less than m; thus b′′ = bx−s mod f(x). This process can be repeated to
finally obtain bx−k mod f(x). The reduction polynomial is said to be suitable if
s ≥ 32, since then fewer iterations are required in the reduction step.

Algorithm 9. Almost Inverse Algorithm for inversion in F2m

Input: a ∈ F2m , a 6= 0.
Output: b ∈ F2m and k ∈ [0, 2m− 1] such that ba ≡ xk (mod f(x)).

1. b← 1, c← 0, u← a, v← f , k← 0.
2. While x divides u do:

2.1 u←u/x, c← cx, k←k + 1.
3. If u = 1 then return(b,k).
4. If deg(u) < deg(v) then: u↔ v, b↔ c.
5. u←u + v, b← b + c.
6. Goto step 2.

Algorithm 10 is a modification of Algorithm 9, producing the inverse directly.
Rather than maintaining the integer k, the algorithm performs a division of b
whenever u is divided by x. Note that if b is not divisible by x, then b is replaced
by b + f (and d by d − a) in step 2.2 before the division. On termination,
ba + df = 1, whence b = a−1 mod f(x).

Software Implementation of Elliptic Curve Cryptography over Binary Fields 9

Algorithm 10. Modified Almost Inverse Algorithm for inversion in F2m

Input: a ∈ F2m , a 6= 0.
Output: a−1 mod f(x).

1. b← 1, c← 0, u← a, v← f .

2. While x divides u do:

2.1 u←u/x.
2.2 If x divides b then b← b/x; else b← (b + f)/x.

3. If u = 1 then return(b).

4. If deg(u) < deg(v) then: u↔ v, b↔ c.

5. u←u + v, b← b + c.
6. Goto step 2.

Step 2 of AIA is simpler than that in MAIA. In addition, the b and c appearing
in these algorithms grow more slowly in AIA. Thus one can expect AIA to
outperform MAIA if the reduction polynomial is suitable, and conversely.

3.5 Timings

Table 3 presents timing results for operations in the fields F2163 , F2233 and F2283 .
The field arithmetic was implemented in C and the timings obtained on a Pen-
tium II 400MHz workstation.

Table 3. Timings (in µs) for operations in F2163 , F2233 and F2283 . The reduction
polynomials are, respectively, f(x) = x163+x7+x6+x3+1, f(x) = x233+x74+1,
and f(x) = x283 + x12 + x7 + x5 + 1.

m = 163 m = 233 m = 283

Addition 0.10 0.12 0.13
Modular reduction (Algorithm 6) 0.18 0.22 0.35

Multiplication (including reduction)
Shift-and-add (Algorithm 1) 16.36 27.14 37.95
Right-to-left comb (Algorithm 2) 6.87 12.01 14.74
Left-to-right comb (Algorithm 3) 8.40 12.93 15.81
LR comb with windows of size 4 (Algorithm 4) 3.00 5.07 6.23
Karatsuba 3.92 7.04 8.01
Squaring (Algorithm 7) 0.40 0.55 0.75
Inversion
Extended Euclidean Algorithm (Algorithm 8) 30.99 53.22 70.32
Almost Inverse Algorithm (Algorithm 9) 42.49 68.63 104.28
Modified Almost Inverse Algorithm (Algorithm 10) 40.26 73.05 96.49

As expected, addition, modular reduction, and squaring are relatively inex-
pensive compared to multiplication and inversion. The left-to-right comb method
with windows of size 4 is the fastest multiplication algorithm, however it requires
a modest amount of extra storage (e.g., 336 bytes for 14 polynomials in the case

10 Darrel Hankerson, Julio López Hernandez, and Alfred Menezes

m = 163). Our implementation of Karatsuba’s algorithm is competitive and re-
quires a similar amount of storage since the base multiplications were performed
using the left-to-right comb method with windows of size 4.

We found the Extended Euclidean Algorithm to be faster than the Almost
Inverse Algorithm and the Modified Almost Inverse Algorithm, contrary to the
findings of [37] and [7]. This discrepancy is partially explained by the unsuitable
form of the reduction polynomial for m = 163 and m = 283 (see [7]). Also, we
found that AIA and MAIA were more difficult to optimize than EEA without
resorting to hand-coded assembler. In any case, the ratio of the fastest inversion
method to the fastest multiplication method was found to be roughly 10 to 1,
again contrary to the roughly 3 to 1 ratio reported in [37], [6] and [7]. This
discrepancy could be attributed to a considerably faster implementation of mul-
tiplication in our work. As a result, we chose to represent elliptic curve points in
projective coordinates instead of affine coordinates as was done in [37] and [7]
(see §4).

4 Elliptic Curve Point Representation

Affine Coordinates. Let E be an elliptic curve over F2m given by the (affine)
equation y2 + xy = x3 + ax2 + b, where a ∈ {0, 1}. Let P1 = (x1, y1) and
P2 = (x2, y2) be two points on E with P1 6= −P2. Then the coordinates of
P3 = P1 + P2 = (x3, y3) can be computed as follows:

x3 = λ2 + λ + x1 + x2 + a, y3 = (x1 + x3)λ + x3 + y1, where

λ =
y1 + y2

x1 + x2
if P1 6= P2, and λ =

y1

x1
+ x1 if P1 = P2. (1)

In either case, when P1 6= P2 (general addition) and P1 = P2 (doubling), the
formulas for computing P3 require 1 field inversion and 2 field multiplications—
as justified in §3.5, we can ignore the cost of field additions and squarings.

Projective Coordinates. In situations where inversion in F2m is expensive
relative to multiplication, it may be advantageous to represent points using
projective coordinates of which several types have been proposed. In standard
projective coordinates, the projective point (X : Y : Z), Z 6= 0, corresponds
to the affine point (X/Z, Y/Z). The projective equation of the elliptic curve is
Y 2Z+XY Z = X3+aX2Z+bZ3 . In Jacobian projective coordinates [5], the pro-
jective point (X : Y : Z), Z 6= 0, corresponds to the affine point (X/Z2, Y/Z3)
and the projective equation of the curve is Y 2 + XY Z = X3 + aX2Z2 + bZ6.
In [25], a new set of projective coordinates was introduced. Here, a projective
point (X : Y : Z), Z 6= 0, corresponds to the affine point (X/Z, Y/Z2), and the
projective equation of the curve is

Y 2 + XY Z = X3Z + aX2Z2 + bZ4. (2)

Formulas which do not require inversions for adding and doubling points in
projective coordinates can be derived by first converting the points to affine

Software Implementation of Elliptic Curve Cryptography over Binary Fields 11

coordinates, then using the formulas (1) to add the affine points, and finally
clearing denominators. Also of use in left-to-right point multiplication methods
(see §5.1) is the addition of two points using mixed coordinates—one point given
in affine coordinates and the other in projective coordinates. Doubling formulas
for the projective equation (2) are: 2(X1 : Y1 : Z1) = (X3 : Y3 : Z3), where

Z3 = X2
1 · Z2

1 , X3 = X4
1 + b · Z4

1 , Y3 = bZ4
1 ·Z3 + X3 · (aZ3 + Y 2

1 + bZ4
1). (3)

Formulas for addition in mixed coordinates are: (X1 : Y1 : Z1) + (X2 : Y2 : 1) =
(X3 : Y3 : Z3), where

A = Y2 · Z2
1 + Y1, B = X2 ·Z1 + X1, C = Z1 · B, D = B2 · (C + aZ2

1),

Z3 = C2, E = A · C, X3 = A2 + D + E, F = X3 + X2 · Z3,

G = X3 + Y2 ·Z3, Y3 = E · F + Z3 ·G. (4)

The field operation counts for point addition and doubling in the various
coordinate systems are listed in Table 4. Since our implementation of inversion
is at least 10 times as expensive as multiplication (see §3.5), unless otherwise
stated, all our elliptic curve operations will use projective coordinates.

Table 4. Operation counts for point addition and doubling.

Coordinate system General addition General addition Doubling
(mixed coordinates)

Affine 1I , 2M — 1I , 2M
Standard projective (X/Z,Y/Z) 13M 12M 7M
Jacobian projective (X/Z2, Y/Z3) 14M 10M 5M
Projective (X/Z,Y/Z2) 14M 9M 4M

5 Point Multiplication

This section considers methods for computing kP , where k is an integer and P
is an elliptic curve point. This operation is called point multiplication or scalar
multiplication, and dominates the execution time of elliptic curve cryptographic
schemes. We will assume that #E(F2m) = nh where n is prime and h is small (so
n ≈ 2m), P has order n, and k ∈R [1, n−1]. In §5.1 we consider techniques which
do not exploit any special structure of the curve. In §5.2 we study techniques for
Koblitz curves which use the Frobenius endomorphism. In both cases, one can
take advantage of the situation where P is a fixed point (e.g., the base point in
elliptic curve domain parameters) by precomputing some data which depends
only on P . For surveys of exponentiation methods, see [11] and [28].

5.1 Random Curves

Algorithm 11 is the additive version of the basic repeated-square-and-multiply
method for exponentiation.

12 Darrel Hankerson, Julio López Hernandez, and Alfred Menezes

Algorithm 11. (Left-to-right) binary method for point multiplication

Input: k = (kt−1, . . . , k1, k0)2, P ∈ E(F2m).
Output: kP .

1. Q←O.
2. For i from t− 1 downto 0 do

2.1 Q← 2Q.
2.2 If ki = 1 then Q←Q + P .

3. Return(Q).

The expected number of ones in the binary representation of k is t/2 ≈ m/2,
whence the expected running time of Algorithm 11 is approximately m/2 point
additions and m point doublings, denoted 0.5mA + mD. If affine coordinates
(see §4) are used, then the running time expressed in terms of field operations is
3mM +1.5mI, where I denotes an inversion and M a field multiplication. If pro-
jective coordinates (see §4) are used, then Q is stored in projective coordinates,
while P can be stored in affine coordinates. Thus the doubling in step 2.1 can be
performed using (3), and the addition in step 2.2 can be performed using (4). The
field operation count of Algorithm 11 is then 8.5mM + (2M + 1I) (1 inversion
and 2 multiplications are required to convert back to affine coordinates).

If P = (x, y) ∈ E(F2m) then −P = (x, x + y). Thus subtraction of points
on an elliptic curve over a binary field is just as efficient as addition. This mo-
tivates using a signed digit representation k =

∑l−1
i=0 ki2i, where ki ∈ {0,±1}. A

particularly useful signed digit representation is the non-adjacent form (NAF)
which has the property that no two consecutive coefficients ki are nonzero. Every
positive integer k has a unique NAF, denoted NAF(k). Moreover, NAF(k) has
the fewest non-zero coefficients of any signed digit representation of k. NAF(k)
can be efficiently computed using Algorithm 12 [38].

Algorithm 12. Computing the NAF of a positive integer

Input: A positive integer k.
Output: NAF(k).

1. i←0.
2. While k ≥ 1 do

2.1 If k is odd then: ki← 2− (k mod 4), k← k − ki;
2.2 Else: ki← 0.
2.3 k← k/2, i← i + 1.

3. Return((ki−1, ki−2, . . . , k1, k0)).

Algorithm 13 modifies Algorithm 11 by using NAF(k) instead of the binary
representation of k. It is known that the length of NAF(k) is at most one longer
than the binary representation of k. Also, the average density of non-zero coeffi-
cients among all NAFs of length l is approximately 1/3 [32]. It follows that the
expected running time of Algorithm 13 is approximately (m/3)A + mD.

Software Implementation of Elliptic Curve Cryptography over Binary Fields 13

Algorithm 13. Binary NAF method for point multiplication

Input: NAF(k) =
Pl−1

i=0 ki2
i, P ∈ E(F2m).

Output: kP .

1. Q←O.
2. For i from l− 1 downto 0 do

2.1 Q← 2Q.
2.2 If ki = 1 then Q←Q + P .
2.3 If ki = −1 then Q←Q− P .

3. Return(Q).

If some extra memory is available, the running time of Algorithm 13 can be
decreased by using a window method which processes w digits of k at a time.
One approach we did not implement is to first compute NAF(k) or some other
signed digit representation of k (e.g., [23] or [30]), and then process the digits
using a sliding window of width w. Algorithm 14 from [38], described next, is
another window method.

A width-w NAF of an integer k is an expression k =
∑l−1

i=0 ki2i, where each
non-zero coefficient ki is odd, |ki| < 2w−1, and at most one of any w con-
secutive coefficients is nonzero. Every positive integer has a unique width-w
NAF, denoted NAFw(k). Note that NAF2(k) = NAF(k). NAFw(k) can be ef-
ficiently computed using Algorithm 12 modified as follows: in step 2.1 replace
“ki← 2−(k mod 4)” by “ki←k mods 2w”, where k mods 2w denotes the integer
u satisfying u ≡ k (mod 2w) and −2w−1 ≤ u < 2w−1. It is known that the length
of NAFw(k) is at most one longer than the binary representation of k. Also, the
average density of non-zero coefficients among all width-w NAFs of length l is
approximately 1/(w + 1) [38]. It follows that the expected running time of Al-
gorithm 14 is approximately (1D + (2w−2 − 1)A) + (m/(w + 1)A + mD). When
using projective coordinates, the running time in the case m = 163 is minimized
when w = 4. For the cases m = 233 and m = 283, the minimum is attained
when w = 5; however, since the running times are only slightly greater when
w = 4, we selected w = 4 for our implementation.

Algorithm 14. Window NAF method for point multiplication

Input: Window width w, NAFw(k) =
Pl−1

i=0 ki2
i, P ∈ E(F2m).

Output: kP .

1. Compute Pi = iP , for i ∈ {1, 3, 5, . . . , 2w−1 − 1}.
2. Q←O.
3. For i from l− 1 downto 0 do

3.1 Q← 2Q.
3.2 If ki 6= 0 then:

If ki > 0 then Q←Q + Pki ;
Else Q←Q− Pki .

4. Return(Q).

14 Darrel Hankerson, Julio López Hernandez, and Alfred Menezes

Algorithm 15 is from [26] and is based on an idea of Montgomery [31]. Let
Q1 = (x1, y1), Q2 = (x2, y2) with Q1 6= ±Q2. Let Q1 + Q2 = (x3, y3) and
Q1−Q2 = (x4, y4). Then using the addition formulas (1), it can be verified that

x3 = x4 +
x1

x1 + x2
+

(
x1

x1 + x2

)2

. (5)

Thus, the x-coordinate of Q1 + Q2 can be computed from the x-coordinates of
Q1, Q2 and Q1 −Q2. Iteration j of Algorithm 15 for determining kP computes
Tj = (lP, (l+1)P), where l is the integer given by the j leftmost bits of k. Then
Tj+1 = (2lP, (2l+1)P) or ((2l+1)P, (2l+2)P) if the (j+1)st leftmost bit of k is
0 or 1, respectively. Each iteration requires one doubling and one addition using
(5). After the last iteration, having computed the x-coordinates of kP = (x1, y1)
and (k + 1)P = (x2, y2), the y-coordinate of kP can be recovered as:

y1 = x−1(x1 + x)[(x1 + x)(x2 + x) + x2 + y] + y. (6)

Equation (6) is derived using the addition formula (1) for computing the x-
coordinate x2 of (k + 1)P from kP = (x1, y1) and P = (x, y). Algorithm 15
is presented using standard projective coordinates (see §4). The approximate
running time is 6mM + (1I + 10M). One advantage of Algorithm 15 is that it
does not have any extra storage requirements.

Algorithm 15. Montgomery point multiplication

Input: k = (kt−1, . . . , k1, k0)2 with kt−1 = 1, P = (x, y) ∈ E(F2m).
Output: kP .

1. X1←x, Z1← 1, X2← x4 + b, Z2← x2. {Compute (P, 2P)}
2. For i from t− 2 downto 0 do

2.1 If ki = 1 then
T ←Z1, Z1← (X1Z2 + X2Z1)

2, X1← xZ1 + X1X2TZ2 .
T ←X2, X2←X4

2 + bZ4
2 , Z2←T 2Z2

2 .
2.2 Else

T ←Z2, Z2← (X1Z2 + X2Z1)
2, X2← xZ2 + X1X2Z1T .

T ←X1, X1←X4
1 + bZ4

1 , Z1←T 2Z2
1 .

3. x3←X1/Z1.
4. y3← (x + X1/Z1)[(X1 + xZ1)(X2 + xZ2) + (x2 + y)(Z1Z2)](xZ1Z2)

−1 + y.
5. Return((x3, y3)).

If the point P is fixed and some storage is available, then point multiplication
can be sped up by precomputing some data which depends only on P . For
example, if the points 2P, 22P, . . . , 2t−1P are precomputed, then the right-to-left
binary method has expected running time (m/2)A (all doublings are eliminated).
In [3], a refinement of this idea was proposed. Let (kd−1, . . . , k1, k0)2w be the
2w-ary representation of k, where d = dt/we, and let Qj =

∑
i:ki=j 2wiP . Then

kP =
d−1∑
i=0

ki(2wiP) =
2w−1∑
j=1

(
j

∑
i:ki=j

2wiP

)
=

2w−1∑
j=1

jQj

= Q2w−1 + (Q2w−1 + Q2w−2) + · · ·+ (Q2w−1 + Q2w−2 + · · ·+ Q1). (7)

Software Implementation of Elliptic Curve Cryptography over Binary Fields 15

Algorithm 16 is based on this observation. Its expected running time is approxi-
mately ((d(2w − 1)/2w− 1)+ (2w− 2))A. Note that if projective coordinates are
used, then only the additions in step 3.1 are in mixed coordinates.

Algorithm 16. Fixed-base windowing method

Input: Window width w, d = dt/we, k = (kd−1, . . . , k1, k0)2w , P ∈ E(F2m).
Output: kP .

1. Precomputation. Compute Pi = 2wiP , 0 ≤ i ≤ d− 1.
2. A←O, B←O.
3. For j from 2w − 1 downto 1 do

3.1 For each i for which ki = j do: B←B + Pi. {Add Qj to B}
3.2 A←A + B.

4. Return(A).

In the comb method, proposed in [24], the binary representation of k is
written in w rows, and the columns of the resulting rectangle are processed one
column at a time. We define [aw−1, . . . , a2, a1, a0]P = aw−12(w−1)dP + · · · +
+a222dP + a12dP + a0P , where d = dt/we and ai ∈ Z2. The expected running
time of Algorithm 17 is ((d− 1)(2w − 1)/2w)A + (d− 1)D.

Algorithm 17. Fixed-base comb method

Input: Window width w, d = dt/we, k = (kt−1, . . . , k1, k0)2, P ∈ E(F2m).
Output: kP .

1. Precomputation. Compute [aw−1, . . . , a1, a0]P ∀(aw−1, . . . , a1, a0) ∈Zw
2 .

2. By padding k on the left with 0’s if necessary, write k = Kw−1‖ · · · ‖K1‖K0, where
each Kj is a bit string of length d. Let Kj

i denote the ith bit of Kj .
3. Q←O.
4. For i from d− 1 downto 0 do

4.1 Q← 2Q.
4.2 Q←Q + [Kw−1

i , . . . , K1
i , K0

i]P .
5. Return(Q).

From Table 5 we see that the fixed-base comb method is expected to out-
perform the fixed-base window method for similar amounts of storage. For our
implementation, we chose w = 4 for the fixed-base comb method.

Table 5. Comparison of fixed-base window and fixed-base comb methods. w is
the window width, S denotes the number of points stored in the precomputation
phase, and T denotes the number of field operations. Affine coordinates were used
for fixed-base window, and projective coordinates were used for fixed-base comb.

w = 2 w = 3 w = 4 w = 5 w = 6 w = 7 w = 8
Method S T S T S T S T S T S T S T

Fixed-base window 81 756 54 648 40 624 32 732 27 1068 23 1788 20 3288
Fixed-base comb 2 885 6 660 14 514 30 419 62 363 126 311 254 272

16 Darrel Hankerson, Julio López Hernandez, and Alfred Menezes

5.2 Koblitz Curves

Koblitz curves are elliptic curves defined over F2, and were first proposed for
cryptographic use in [20]. The primary advantage of Koblitz curves is that point
multiplication algorithms can be devised that do not use any point doublings.
All the algorithms and facts stated in this section are due to Solinas [38].

There are two Koblitz curves: E0 : y2 + xy = x3 + 1 and E1 : y2 + xy =
x3 + x2 + 1. Let µ = (−1)1−a. We have #Ea(F2) = 3 − µ. We assume that
#Ea(F2m) is almost prime, i.e., #Ea(F2m) = hn, where n is prime and h = 3−µ.
The number of points is given by #Ea(F2m) = 2m + 1− Vm, where {Vk} is the
Lucas sequence defined by V0 = 2, V1 = µ, Vk+1 = µVk − 2Vk−1 for k ≥ 1.

Since Ea is defined over F2m , the Frobenius map τ : Ea(F2m) → Ea(F2m)
defined by τ (O) = O, τ ((x, y)) = (x2, y2) is well-defined. Moreover, it can be
efficiently computed since squaring in F2m is relatively inexpensive (see §3.5).
It is known that (τ2 + 2)P = µτP for all P ∈ Ea(F2m). Hence the Frobenius
map can be regarded as the complex number τ satisfying τ2 + 2 = µτ , i.e.,
τ = (µ+

√−7)/2. It now makes sense to multiply points in Ea(F2m) by elements
of the ring Z[τ]: if ul−1τ

l−1 + · · ·+ u1τ + u0 ∈ Z[τ] and P ∈ Ea(F2m), then

(ul−1τ
l−1 + · · ·+ u1τ + u0)P = ul−1τ

l−1(P) + · · ·+ u1τ (P) + u0P. (8)

The strategy for developing an efficient point multiplication algorithm is find a
“nice” expression for k of the form k =

∑l−1
i=0 uiτ

i, and then use (8) to compute
kP . Here, “nice” means that l is relatively small and the non-zero coefficients ui

are small (e.g., ±1) and sparse.
Since τ2 + 2 = µτ , every element in Z[τ] can be expressed in canonical form

r0 + r1τ , where r0, r1 ∈ Z. Z[τ] is a Euclidean domain, and hence also a unique
factorization domain, with respect to the norm function N(r0 + r1τ) = r2

0 +
µr0r1 +2r2

1 . The norm function is multiplicative. We have N(τ) = 2, N(τ−1) =
h, N(τm − 1) = #Ea(F2m), and N(δ) = n where δ = (τm − 1)/(τ − 1).

A τ -adic NAF or TNAF of an element κ ∈ Z[τ] is an expression κ =∑l−1
i=0 uiτ

i where ui ∈ {0,±1}, and no two consecutive coefficients ui are nonzero.
Every κ ∈ Z[τ] has a unique TNAF, denoted TNAF(κ), which can be efficiently
computed using Algorithm 18.

Algorithm 18. Computing the TNAF of an element in Z[τ]

Input: κ = r0 + r1τ ∈Z[τ].
Output: TNAF(κ).

1. i←0.
2. While r0 6= 0 or r1 6= 0 do

2.1 If r0 is odd then: ui←2− (r0 − 2r1 mod 4), r0← r0 − ui;
2.2 Else: ui← 0.
2.3 t← r0, r0← r1 + µr0/2, r1←−t/2, i← i + 1.

3. Return((ui−1, ui−2, . . . , u1, u0)).

To compute kP , one can find TNAF(k) using Algorithm 18, and then use
(8). Now, the length l(α) of TNAF(α) satisfies log2(N(α)) − 0.55 < l(α) <

Software Implementation of Elliptic Curve Cryptography over Binary Fields 17

log2(N(α)) + 3.52 when l ≥ 30. It follows that l(k) ≈ 2 log2 k, which is twice
as long as the length of NAF(k). To circumvent the problem of a long TNAF,
notice that if ρ = k mod δ then kP = ρP for all points P of order n (because
δP = O). Since N(ρ) < N(δ) = n, it follows that l(ρ) ≈ m, which suggests that
TNAF(ρ) should be used instead of TNAF(k) for computing kP . Algorithm 19
is an efficient method for computing an element ρ′ ∈ Z[τ] such that ρ′ ≡ k
(mod δ); we write ρ′ = k partmod δ. The parameter C ensures that TNAF(ρ′)
is not much longer than TNAF(ρ). In fact, l(ρ) ≤ m + a, and if C ≥ 2 then
l(ρ′) ≤m + a + 3. Also, the probability that ρ′ 6= ρ is less than 2−(C−5).

Algorithm 19. Partial reduction modulo δ

Input: k ∈ [1, n− 1], C ≥ 2, s0 = d0 + µd1, s1 = −d1, where δ = d0 + d1τ .
Output: ρ′ = k partmod δ.

1. k′←bk/2a−C+(m−9)/2c.
2. For i from 0 to 1 do

2.1 g′← si · k′, j′←Vm · bg′/2mc, λi←b(g′ + j′)/2(m+5)/2 + 1
2c/2C .

2.2 fi←bλi + 1
2
c, ηi←λi − fi, hi← 0.

3. η← 2η0 + µη1.
4. If η ≥ 1 then

4.1 If η0 − 3µη1 < −1 then h1←µ; else h0←1.
Else
4.2 If η0 + 4µη1 ≥ 2 then h1←µ.

5. If η < −1 then
5.1 If η0 − 3µη1 ≥ 1 then h1←−µ; else h0←−1.
Else
5.2 If η0 + 4µη1 < −2 then h1←−µ.

6. q0← f0 + h0, q1← f1 + h1, r0← k − (s0 + µs1)q0 − 2s1q1, r1← s1q0 − s0q1.
7. Return(r0 + r1τ).

The average density of non-zero coefficients among all TNAFs of length l is
approximately 1/3. Hence Algorithm 20 which uses TNAF(ρ′) for computing kP
has an expected running time of approximately (m/3)A.

Algorithm 20. TNAF method for point multiplication

Input: TNAF(ρ′) =
Pl−1

i=0 uiτ
i where ρ′ = k partmod δ, P ∈ Ea(F2m).

Output: kP .

1. Q←O.
2. For i from l− 1 downto 0 do

2.1 Q← τQ.
2.2 If ui = 1 then Q←Q + P .
2.3 If ui = −1 then Q←Q− P .

3. Return(Q).

We now extend Algorithm 20 to a window method analogous to Algorithm 14.
Let tw = 2Uw−1U

−1
w mod 2w, where {Uk} is the Lucas sequence defined by

U0 = 0, U1 = 1, Uk+1 = µUk − 2Uk−1 for k ≥ 1. Then the map φw : Z[τ]→ Z2w

induced by τ 7→ tw is a surjective ring homomorphism with kernel {α ∈ Z[τ] :
τw|α}. It follows that a set of distinct representatives of the congruence classes

18 Darrel Hankerson, Julio López Hernandez, and Alfred Menezes

modulo τw whose elements are not divisible by τ is {±1,±3, . . . ,±(2w−1 −
1)}. Define αi = i mod τw for i ∈ {1, 3, . . . , 2w−1 − 1}. A width-w TNAF of
κ ∈ Z[τ], denoted TNAFw(κ), is an expression κ =

∑l−1
i=0 uiτ

i, where ui ∈
{0,±α1,±α3, . . . ,±α2w−1−1}, and at most one of any w consecutive coefficients
is nonzero. Algorithm 21 is an efficient method for computing TNAFw(κ).

Algorithm 21. Computing a width-w TNAF of an element in Z[τ]

Input: w, tw, αu = βu + γuτ for u ∈ {1, 3, . . . , 2w−1 − 1}, ρ = r0 + r1τ ∈Z[τ].
Output: TNAFw(ρ).

1. i←0.

2. While r0 6= 0 or r1 6= 0 do

2.1 If r0 is odd then

u← r0 + r1tw mods 2w.
If u > 0 then s←1; else s←−1, u←−u.
r0← r0 − sβu, r1← r1 − sγu, ui← sαu.

2.2 Else: ui← 0.

2.3 t← r0, r0← r1 + µr0/2, r1←−t/2, i← i + 1.

3. Return((ui−1, ui−2, . . . , u1, u0)).

The average density of non-zero coefficients among all TNAFws of length l
is approximately 1/(w + 1). Since the length of TNAFw(ρ′) is approximately
l(ρ′), it follows that Algorithm 22 which uses TNAF(ρ′) for computing kP has
an expected running time of approximately (2w−2 − 1 + m/(w + 1))A.

Algorithm 22. Window TNAF method for point multiplication

Input: TNAFw(ρ′) =
Pl−1

i=0 uiτ
i, where ρ′ = k partmod δ, P ∈ Ea(F2m).

Output: kP .

1. Compute Pu = αuP , for u ∈ {1, 3, 5, . . . , 2w−1 − 1}.
2. Q←O.

3. For i from l− 1 downto 0 do

3.1 Q← τQ.

3.2 If ui 6= 0 then:

Let u be such that αu = ui or α−u = −ui.
If u > 0 then Q←Q + Pu;
Else Q←Q− P−u.

4. Return(Q).

If the point P is fixed, then the points Pu in step 1 of Algorithm 22 can be
precomputed. The resulting method, which we call fixed-base window TNAF (or
Algorithm 23), has an expected running time of (m/(w + 1))A.

Table 6 lists the expected number of elliptic curve additions for point mul-
tiplication using the window TNAF and fixed-base window TNAF methods for
the fields F2163 , F2233 and F2283 . In our implementations, we chose window width
w = 5 for the window TNAF method and w = 6 for the fixed-base window
TNAF method.

Software Implementation of Elliptic Curve Cryptography over Binary Fields 19

Table 6. Estimates for window TNAF and fixed-base window TNAF costs at
various window widths.

Number of Number of elliptic curve additions
Window precomputed Fixed-base window TNAF Window TNAF
width w points m = 163 m = 233 m = 283 m = 163 m = 233 m = 283

2 0 54 78 94 54 78 94
3 1 41 58 71 42 59 72
4 3 33 47 57 36 50 60
5 7 27 39 47 34 46 54
6 15 23 33 40 38 48 55
7 31 20 29 35 51 64 66

5.3 Timings

In Table 7 we present rough estimates of costs in terms of both elliptic curve
operations and field operations for the various point multiplication methods in
the case m = 163. These estimates serve as a guideline for comparing point mul-
tiplication algorithms without concern for platform or implementation specifics.

Table 8 presents timing results for the NIST curves B-163, B-233, B-283,
K-163, K-233 and K-283. The implementation was done in C and the timings
were obtained on a Pentium II 400MHz workstation. The big number library in
OpenSSL [35] was used to perform multiprecision integer arithmetic.

The timings in Table 8 are consistent with the estimates in Table 7. In gen-
eral, point multiplication on Koblitz curves is significantly faster than on random
curves. The difference is especially pronounced in the case where P is not known
a priori (Montgomery vs. window TNAF). For the window TNAF method with
w = 5 and m = 163, the timings for the three components were 50 µs for
partial reduction (Algorithm 19), 126µs for width-w TNAF computation (Algo-
rithm 21), and 1266µs for elliptic curve operations (Algorithm 22).

6 ECDSA Elliptic Curve Operations

The execution times of elliptic curve cryptographic schemes such as the ECDSA
[16,21] are typically dominated by point multiplications. In ECDSA, there are
two types of point multiplications, kP where P is fixed (signature generation),
and kP +lQ where P is fixed and Q is not known a priori (signature verification).
One method to speed the computation of kP +lQ is simultaneous multiple point
multiplication (Algorithm 24), also known as Shamir’s trick [8]. Algorithm 24
has an expected running time of (22w−3)A+((d−1)(22w−1)/22wA+(d−1)wD),
and requires storage for 22w points.

20 Darrel Hankerson, Julio López Hernandez, and Alfred Menezes

Table 7. Rough estimates of point multiplication costs for m = 163.

Points EC operations Field operations
Method Coordinates w stored A D M I Totala

Binary affine — 0 82 163 490 245 2940
(Algorithm 11) projective — 0 82 163 1390 1 1400
Binary NAF affine — 0 54 163 434 217 2604
(Algorithm 13) projective — 0 54 163 1140 1 1150

Window NAF affine 4 3 36 164 400 200 2400
(Algorithm 14) projective 4 3 3b+33 164 955 5 1005
Montgomery affine — 0 163c 163 329 327 3600
(Algorithm 15) projective — 0 163c 163 988 1 998
Fixed-base window affine 6 27 89 0 178 89 1068
(Algorithm 16) projective 6 27 27+62d 0 1113 1 1123

Fixed-base comb affine 4 14 38 40 156 78 936
(Algorithm 17) projective 4 14 38 40 504 1 514

TNAF affine — 0 54 0 108 54 648
(Algorithm 20) projective — 0 54 0 488 1 498
Window TNAF affine 5 7 34 0 68 34 408

(Algorithm 22) projective 5 7 7b+27 0 261 8 341
Fixed-base window TNAF affine 6 15 23 0 46 23 276
(Algorithm 23) projective 6 15 23 0 209 1 219

a Total cost in field multiplications assuming 1I = 10M .
b Additions are in affine coordinates
c Additions using formula (5).
d Additions are not in mixed coordinates.

Table 8. Timings (in µs) for point multiplication on random and Koblitz curves
over F2163 , F2233 and F2283 . Unless otherwise stated, projective coordinates were
used.

m = 163 m = 233 m = 283

Random curves
Binary (Alg 11, affine coordinates) 9178 21891 34845
Binary (Alg 11) 4716 10775 16123
Binary NAF (Alg 13) 4002 9303 13896
Window NAF with w = 4 (Alg 14) 3440 7971 11997
Montgomery (Alg 15) 3240 7697 11602
Fixed-base comb with w = 4 (Alg 17) 1683 3966 5919

Koblitz curves
TNAF (Alg 20) 1946 4349 6612
Window TNAF with w = 5 (Alg 22) 1442 2965 4351
Fixed-base window TNAF with w = 6 (Alg 23) 1176 2243 3330

Software Implementation of Elliptic Curve Cryptography over Binary Fields 21

Algorithm 24. Simultaneous multiple point multiplication

Input: Window width w, k = (kt−1, . . . , k1, k0)2, l = (lt−1, . . . , l1, l0)2, P, Q.
Output: kP + lQ.

1. Compute iP + jQ for all i, j ∈ [0, 2w − 1].

2. Write k = (kd−1, . . . , k1, k0) and l = (ld−1, . . . , l1, l0) where each ki and li is a
bitstring of length w, and d = dt/we.

3. R←O.

4. For i from d− 1 downto 0 do

4.1 R← 2wR.

4.2 R←R + (kiP + liQ).

5. Return(R).

Table 9 lists the most efficient methods for computing kP , P fixed, for random
curves and Koblitz curves. For each type of curve, two cases are distinguished—
when there is no extra memory available and when memory is not heavily con-
strained. Table 10 does the same for computing kP + lQ where P is fixed and
Q is not known a priori.

Table 9. Timings (in µs) of the fastest methods for point multiplication kP , P
fixed, in ECDSA signature generation.

Curve Memory Fastest
type constrained? method m=163 m=233 m=283

Random No Fixed-base comb (w = 4) 1683 3966 5919
Yes Montgomery 3240 7697 11602

Koblitz No Fixed-base window TNAF (w=6) 1176 2243 3330
Yes TNAF 1946 4349 6612

Table 10. Timings (in µs) of the fastest methods for point multiplications kP +
lQ, P fixed and Q not known a priori, in ECDSA signature verification.

Curve Memory Fastest
type constrained? method m=163 m=233 m=283

Random No Montgomery + 5005 11798 17659
Fixed-base comb (w = 4)

No Simultaneous (w = 2) 4969 11332 16868
Yes Montgomery 6564 15531 23346

Koblitz No Window TNAF (w = 5) + 2702 5348 7826
Fixed-base window TNAF (w=6)

Yes TNAF 3971 8832 13374

22 Darrel Hankerson, Julio López Hernandez, and Alfred Menezes

7 Conclusions

We found that significant performance improvements can be achieved by the
use of projective coordinates over affine coordinates due to the high inversion to
multiplication ratio observed in our implementation.

Implementing the specialized algorithms for Koblitz curves is straightfor-
ward. Point multiplication for Koblitz curves is considerably faster than on
random curves, yielding faster implementations of elliptic curve cryptographic
schemes. For both random and Koblitz curves, substantial performance improve-
ments can be obtained with only a modest commitment of memory for storage
of tables and precomputed data.

While some effort was made to optimize the code, it is likely that considerable
performance enhancements can be obtained especially if the code is tuned for a
specific platform. For example, the times for the AIA and MAIA methods (see
§3.5) compared with inversion using EEA require some explanation. Even with
optimization efforts (but in C only) and a suitable reduction trinomial in the
m = 233 case, we found that the EEA implementation was significantly faster
on the Pentium II. Non-optimal register allocation may have contributed to the
relatively poor showing of AIA and MAIA, suggesting that a few hand-coded
assembly sections may be desirable. Even with the same source code, compiler
and hardware differences are apparent. On a Sun Ultra, for example, we found
that EEA required roughly 9 times as long as multiplication using the same code
as on the Pentium II, and AIA and MAIA required approximately the same time
as inversion using the EEA.

Despite the limitations of our analysis and implementation, we nonetheless
hope that our work will serve as a benchmark for future efforts in this area.

8 Future Work

We did not implement the variant of Montgomery integer multiplication for F2m

presented in [22]. We also did not implement the point multiplication method of
[17,36] which uses point halvings instead of doublings since this method appears
to be advantageous only when affine coordinates are employed.

We are currently investigating the software implementation of ECC over the
NIST-recommended prime fields, and a comparison with the NIST-recommended
binary fields. A careful and extensive study of ECC implementation in software
for constrained devices such as smart cards, and in hardware, would be beneficial
to practitioners. Also needed is a thorough comparison of the implementation
of ECC, RSA, and discrete logarithm systems on various platforms, continuing
the work reported in [7].

Acknowledgements

The authors would like to thank Mike Brown, Donny Cheung, Eric Fung, and
Mike Kirkup for numerous fruitful discussions and for help with the implemen-
tation and timings.

Software Implementation of Elliptic Curve Cryptography over Binary Fields 23

References

1. ANSI X9.62, Public Key Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA), 1999.

2. ANSI X9.63, Public Key Cryptography for the Financial Services Industry: Elliptic
Curve Key Agreement and Key Transport Protocols, working draft, August 1999.

3. E. Brickell, D. Gordon, K. McCurley and D. Wilson, “Fast exponentiation with
precomputation”, Advances in Cryptology – Eurocrypt ’92, LNCS 658, 1993, 200-
207.

4. M. Brown, D. Cheung, D. Hankerson, J. Hernandez, M. Kirkup and A. Menezes,
“PGP in constrained wireless devices”, Proceedings of the Ninth USENIX Security
Symposium, 2000.

5. D. Chudnovsky and G. Chudnovsky, “Sequences of numbers generated by addition
in formal groups and new primality and factoring tests”, Advances in Applied
Mathematics, 7 (1987), 385-434.

6. E. De Win, A. Bosselaers, S. Vandenberghe, P. De Gersem and J. Vandewalle, “A
fast software implementation for arithmetic operations in GF (2n)”, Advances in
Cryptology – Asiacrypt ’96, LNCS 1163, 1996, 65-76.

7. E. De Win, S. Mister, B. Preneel and M. Wiener, “On the performance of signature
schemes based on elliptic curves”, Algorithmic Number Theory, Proceedings Third
Intern. Symp., ANTS-III, LNCS 1423, 1998, 252-266.

8. T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms”, IEEE Transactions on Information Theory, 31 (1985), 469-472.

9. S. Galbraith and N. Smart, “A cryptographic application of Weil descent”, Codes
and Cryptography, LNCS 1746, 1999, 191-200.

10. P. Gaudry, F. Hess and N. Smart, “Constructive and destructive facets of Weil
descent on elliptic curves”, preprint, January 2000.

11. D. Gordon, “A survey of fast exponentiation methods”, Journal of Algorithms, 27
(1998), 129-146.

12. J. Guajardo and C. Paar, “Efficient algorithms for elliptic curve cryptosystems”,
Advances in Cryptology – Crypto’97, LNCS 1294, 1997, 342-356.

13. IEEE P1363, Standard Specifications for Public-Key Cryptography, 2000.
14. ISO/IEC 14888-3, Information Technology – Security Techniques – Digital Signa-

tures with Appendix – Part 3: Certificate Based-Mechanisms, 1998.
15. ISO/IEC 15946, Information Technology – Security Techniques – Cryptographic

Techniques Based on Elliptic Curves, Committee Draft (CD), 1999.
16. D. Johnson and A. Menezes, “The elliptic curve digital signature algorithm

(ECDSA)”, Technical report CORR 99-34, Dept. of C&O, University of Water-
loo, 1999.

17. E. Knudsen, “Elliptic scalar multiplication using point halving”, Advances in Cryp-
tology – Asiacrypt ’99, LNCS 1716, 1999, 135-149.

18. D. Knuth, The Art of Computer Programming – Seminumerical Algorithms,
Addison-Wesley, 3rd edition, 1998.

19. N. Koblitz, “Elliptic curve cryptosystems”, Mathematics of Computation, 48
(1987), 203-209.

20. N. Koblitz, “CM-curves with good cryptographic properties”, Advances in Cryp-
tology – Crypto’91, LNCS 576, 1992, 279-287.

21. N. Koblitz, A. Menezes and S. Vanstone, “The state of elliptic curve cryptography”,
Designs, Codes and Cryptography, 19 (2000), 173-193.

22. Ç. K. Koç and T. Acar, “Montgomery multiplication in GF (2k)”, Designs, Codes
and Cryptography, 14 (1998), 57-69.

24 Darrel Hankerson, Julio López Hernandez, and Alfred Menezes

23. K. Koyama and Y. Tsuruoka, “Speeding up elliptic cryptosystems by using a signed
binary window method”, Advances in Cryptology – Crypto’92, LNCS 740, 1993,
345-357.

24. C. Lim and P. Lee, “More flexible exponentiation with precomputation”, Advances
in Cryptology – Crypto’94, LNCS 839, 1994, 95-107.

25. J. López and R. Dahab, “Improved algorithms for elliptic curve arithmetic in
GF (2n)”, Selected Areas in Cryptography – SAC ’98, LNCS 1556, 1999, 201-212.

26. J. López and R. Dahab, “Fast multiplication on elliptic curves over GF (2n) without
precomputation”, Cryptographic Hardware and Embedded Systems – CHES ’99,
LNCS 1717, 1999, 316-327.

27. J. López and R. Dahab, “High-speed software multiplication in F2m”, preprint,
2000.

28. A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1997.

29. V. Miller, “Uses of elliptic curves in cryptography”, Advances in Cryptology –
Crypto’85, LNCS 218, 1986, 417-426.

30. A. Miyaji, T. Ono and H. Cohen, “Efficient elliptic curve exponentiation”, Pro-
ceedings of ICICS ’97, LNCS 1334, 1997, 282-290.

31. P. Montgomery, “Speeding up the Pollard and elliptic curve methods of factoriza-
tion”, Mathematics of Computation, 48 (1987), 243-264.

32. F. Morain and J. Olivos, “Speeding up the computations on an elliptic curve using
addition-subtraction chains”, Informatique théorique et Applications, 24 (1990),
531-544.

33. National Institute of Standards and Technology, Digital Signature Standard, FIPS
Publication 186-2, February 2000.

34. National Institute of Standards and Technology, Advanced Encryption Standard,
work in progress.

35. OpenSSL, http://www.openssl.org
36. R. Schroeppel, “Elliptic curve point halving wins big”, preprint, 2000.
37. R. Schroeppel, H. Orman, S. O’Malley and O. Spatscheck, “Fast key exchange with

elliptic curve systems”, Advances in Cryptology – Crypto’95, LNCS 963, 1995, 43-
56.

38. J. Solinas, “Efficient arithmetic on Koblitz curves”, Designs, Codes and Cryptog-
raphy, 19 (2000), 195-249.

	Introduction
	NIST Curves over Binary Fields
	Binary Field Arithmetic
	Field Representation
	Multiplication
	Squaring
	Inversion
	Timings

	Elliptic Curve Point Representation
	Point Multiplication
	Random Curves
	Koblitz Curves
	Timings

	ECDSA Elliptic Curve Operations
	Conclusions
	Future Work

