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Abstract. There have been many proposals in recent years for password-
authenticated key exchange protocols. Many of these have been shown
to be insecure, and the only ones that seemed likely to be proven secure
(against active adversaries who may attempt to perform off-line dictio-
nary attacks against the password) were based on the Diffie-Hellman
problem. In fact, some protocols based on Diffie-Hellman have been re-
cently proven secure in the random-oracle model. We examine how to
design a provably-secure password-authenticated key exchange protocol
based on RSA. We first look at the OKE and protected-OKE protocols
(both RSA-based) and show that they are insecure. Then we show how
to modify the OKE protocol to obtain a password-authenticated key ex-
change protocol that can be proven secure (in the random oracle model).
The resulting protocol is very practical; in fact the basic protocol requires
about the same amount of computation as the Diffie-Hellman-based pro-
tocols or the well-known ssh protocol.

1 Introduction

Consider the following scenario: Alice and Bob share a short secret (say, a 4 digit
PIN number or a 6 character password) that they wish to use to identify and
authenticate each other over an insecure network (say, the Internet). They do
not carry any other information with them. Of course, neither wants to reveal
the secret to the other until the other has revealed his/her own knowledge of the
secret. In fact, neither wants to reveal anything that could be used to verify the
secret (such as a one-way function applied to the secret) since the secret can then
be found by anyone using a dictionary attack (by simply iterating through the
relatively small number of possible secrets, applying the one-way function to each
of them, and comparing each result to the transmitted value). So how do Alice
and Bob authenticate themselves? In general, Alice and Bob will want to not
only authenticate themselves, but set up a secure channel between themselves.
For this they need a cryptographically strong shared session key. So a variation
of the question above would be: how do Alice and Bob bootstrap a short secret
into a secure strong secret?

This problem, which we call password-authenticated key exchange, was first
proposed in Bellovin and Merritt [BM92]. In that paper, the Encrypted Key

T. Okamoto (Ed.): ASIACRYPT2000, LNCS 1976, pp. 599–613, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



600 Philip MacKenzie, Sarvar Patel, and Ram Swaminathan

Exchange (EKE) protocol was proposed as a solution. The problem has since
been studied extensively [BM93, GLNS93, Gon95, Jab96, Jab97, Luc97, STW95,
Wu98], but only two recent papers [BPR00, BMP00] present protocols along with
proofs of security, and in fact, many of the previously-proposed protocols have
been shown to be insecure [Ble99, Pat97]. Both of the protocols that were proven
secure were based on Diffie-Hellman. Specifically, [BPR00] developed a clean and
elegant protocol based on EKE and proved its security based on Computational
Diffie-Hellman (CDH), using the random oracle and ideal symmetric encryption
function assumptions. The protocol in [BMP00] is similar, but with the proof
of security based on Decisional Diffie-Hellman (DDH), using only the random
oracle assumption.

1.1 Overview of Our Results

We study password-authenticated key exchange protocols based on RSA. We first
look at the OKE (Open Key Exchange) and protected-OKE protocols of Lucks
[Luc97], since they are the first ones that were based on RSA and were claimed
to have proofs of security. We show that in fact they are insecure. Then we show
how to modify the OKE protocol to obtain a protocol that we prove to be secure.
This new protocol requires only 4 moves, and only one public-key operation (i.e.,
a modular exponentiation) per side (either encryption or decryption). Thus it is
efficient enough to be used in practice, e.g., for securing remote user access to a
server, and is roughly as efficient as the other Diffie-Hellman-based protocols or
the ssh protocol, all of which require two exponentiations per side.1

In this scenario, it is actually useful for the server to store only some verifi-
cation information for the password (such as a one-way function applied to the
password) but not the password itself. This provides resilience to server com-
promise, meaning that an adversary that compromises the server and steals the
password information is still not able to impersonate a user, unless the adversary
actually performs a dictionary attack on the verification information. We show
how to extend our protocol to provide some resilience to server compromise, but
due to space limitations, we omit the full proof of security for this extended
protocol.

The proposals presented in this paper have been presented in informal set-
tings under the names SNAPI (Secure Network Authentication with Password
Information) and SNAPI-X. To avoid confusion, we will continue to use those
names here.

1.2 Security Model and Definitions

What does it mean for a password-authenticated key exchange protocol to be
secure? Informally, it means that the probability that an adversary can success-
fully authenticate itself is at most negligibly more than that of an adversary
1 It is difficult to do more than rough comparisons, since modulus size and exponent

size may vary among the different protocols.
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who runs a trivial attack of simply iteratively guessing passwords and running
the authentication protocol (i.e., attempting to login). In SNAPI, we specifically
show that if the adversary can do non-negligibly better than this trivial attack,
then one can break RSA [RSA78]. We use the random-oracle model [BR93a] for
our proofs. While a protocol having a security proof in the random-oracle model
is certainly less desirable than a protocol having a proof in the standard model
(using standard cryptographic assumptions) [CGH98], it is certainly preferable
over a protocol which lacks any proof. Other techniques proven secure in the
random-oracle model include Optimal Asymmetric Encryption Padding [BR94]
(used in PKCS #1 v. 2 [Not99]) and Provably Secure Signatures [BR96].

For our proofs we use the security model for password-authenticated key ex-
change from [BMP00], in which the adversary totally controls the network, a
la [BR93b], and which is based on the multi-party simulatability paradigm as
described in [Bea91, BCK98, Sho99]. In this paradigm, security is defined us-
ing an ideal system, which describes the service (of key exchange) that is to be
provided, and a real system, which describes the world in which the protocol
participants and adversaries work. The ideal system should be defined such that
an “ideal world adversary” cannot (by definition) break the security. Then, in-
tuitively, a proof of security would show that anything an adversary can do in
the real system can also be done in the ideal system, and thus it would follow
that the protocol is secure in the real system.

Although it is not a password-only protocol, we do point out that the (one-
way) authentication protocol given in Halevi and Krawczyk [HK98] is the first
password-based authentication protocol to be formally proven secure, with stan-
dard security assumptions. The proof methods in this paper are significantly
influenced by their techniques. Boyarsky [Boy99] has recently discussed enhance-
ments to the protocol of Halevi and Krawczyk to make it secure in the multi-user
scenario.

We note that basic shared-secret authentication protocols (e.g., [BR93b]) are
not secure when the parties share short secrets. However, there is a similarity
between basic authentication and password-based authentication: both seem to
be very difficult to get correct, and many protocols have been published for
both, which have subsequently been broken. This is precisely the reason why we
emphasize provable security in this paper.

2 Attack on the RSA Open Key Exchange Protocol

Interest in developing RSA-based password-authenticated key exchange proto-
cols has been strong [Luc97, RCW98] ever since Bellovin and Merritt first de-
scribed the RSA-EKE protocol [BM92], their RSA version of the Encrypted
Key Exchange protocol. However, the use of RSA in password-only protocols
has proven to be quite tricky. Many of the RSA-based password-authenticated
key exchange protocols have been shown to be insecure [Ble99, Pat97]. A differ-
ent approach from the EKE protocols was used by Lucks [Luc97] to propose an
RSA-based protocol which has so far resisted attacks. In this section, we present
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an efficient attack against this RSA-based protocol. In later sections, we modify
the basic protocol in [Luc97] to obtain an RSA-based password-authenticated
key exchange protocol that can be proven secure.

Lucks presented two protocols: the Open Key Exchange (OKE) protocol and
the protected-OKE protocol, both described in terms of generic encryption func-
tions with certain properties. When instantiated with RSA, the OKE protocol
has a problem, as noted by Lucks, which can allow an attacker to recover the
password. Hence, Lucks modified the basic OKE protocol to create the protected-
OKE protocol that was supposed to be secure when the encryption function was
instantiated with RSA. We present the basic steps of the RSA versions of the
OKE and protected-OKE protocols along with our attack. Details of OKE and
protected-OKE can be found in [Luc97]. We first describe OKE:

Step A Alice and Bob agree on a common secret π. Alice in advance generates
an RSA key pair ((e,N), (d,N)).

Step B Alice chooses a random m and sends (e,N) and m to Bob.
Step C Bob chooses a random µ and then a random a from Z

∗
N, computes

p = H(e|N |m|µ|π) and q = E(a) � p and sends µ and q to Alice. H is a
random function with range Z∗

N, E is the RSA encryption function and � is
the RSA multiplication operation.

Step D Alice computes p like Bob, and recovers a by performing an RSA de-
cryption of q � p−1.

The remaining authentication and key generation steps are omitted because
they are not needed for the attack. Lucks noted that there is a problem with this
scheme because when an attacker can choose (e,N) such that function E may not
be invertible, E(a) would not be uniformly distributed. Hence some information
about p will be leaked which would be useful in ruling out candidate values for
p and π. This lead Lucks to propose protected OKE which changes step C to
step C′ below:

Step C′ Bob chooses a ∈R Z∗
N , but instead of µ, Bob chooses 2 values µ−1,

µ0 ∈R Z
∗
N. Bob uses µi = E(µi−2�H ′(µi−1)) to compute µ1, µ2, ..., µK where

H ′ is another random function mapping to Z∗
N. The value p = H(e|n|m|µ−1|

µ0|π) is computed, and q = E(a) � p is sent to Alice along with the last two
values µK−1 and µK .

Lucks reasoned that if E is not invertible then there are at least two choices
for µK−2, and then for every choice of µK−2 there are two choices for µK−3

and so on. Thus we expect 2K choices for µ−1. For suitably large values of K,
say 80, it would be infeasible for the adversary to evaluate all possible p; so the
information leaked about p from q = E(a) � p is of no use to the adversary.
Unfortunately, RSA protected OKE has a weakness and we present an example
attack:

Step 1 The attacker picks e and N such that e is 3, N is a large prime, and
3|N − 1 and then sends m and (e,N) to Bob.
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Step 2 Unwittingly, Bob calculates p = H(e|N |m|µ−1|µ0|π) and sends out q,
µK−1 and µK .

Step 3 We will now uniquely recover values up to µ2 and µ1 using some basic
results from number theory by showing how to recover µi−2 from µi−1 and
µi. We make a note that we can efficiently find dth roots if d|N − 1 [BS96].
We thus decrypt µi = E(µi−2 � H ′(µi−1)) by solving for the three cubic
roots of µi. Then we multiply each root with (H ′(µi−1))−1 to get three
possible solutions for µi−2. Of the three possible solutions, only one will
be a cubic residue. We know apriori that the correct value for µi−2 will
be a cubic residue because µi−2 was formed by encrypting (i.e., cubing):
µi−2 = E(µi−4 �H ′(µi−3)). Of the three possible values, we can identify the
cubic residue because µi−2

N−1
3 ≡ 1 mod N . We continue to recover the rest

of the µi values until µ1.
Step 4 µ0 and µ−1 are random values and thus cannot be uniquely recovered

using Step 3. There will be three possible values for µ0 and for each µ0 value
there will be three possible values for µ−1. Hence there are nine possible (µ0,
µ−1) pairs. We will now try to eliminate some candidate passwords from the
list of possible password for Bob. If the password is guessed correctly and the
(µ0, µ−1) pair is correct then solving for E(a) from q = E(a) � p will result
in an E(a) which is a cubic residue. Conversely, if the solved E(a) is not a
cubic residue, assuming (µ0, µ−1) pair is correct, then we know the password
guess is incorrect. We do not know the correct (µ0, µ−1) pair, however, if for
all 9 pairs the 9 possible solutions for E(a) turn out not to be cubic residues
then we can eliminate this password guess.
This will happen with a significant probability and thus we can eliminate
a significant portion of the possible passwords. The probability for a given
password that a (µ0, µ−1) pair will be such that the result will be non-cubic
residue is equivalent to a random number being a non-cubic residue which
is 2

3 . The probability that all 9 (µ0, µ−1) pairs result in non-cubic residues
is (2

3 )
9 which is about 2.5%.

Step 5 We repeat the above procedure (Step 1 - Step 4) eliminating a constant
fraction of the remaining passwords in each run, until only one password
remains.

It may be tempting to propose blocking this attack by checking for primality
of N and rejecting the session if N is prime. Although we have described the
example attack using a prime N to keep the presentation simple, we could have
done the same steps using a composite N = pq and using the chinese remainder
theorem where necessary; we omit the details. The above attack can efficiently
discover a user’s password after a small number of sessions. One can also try to
reduce the probability of the attack’s success by requiring e to have only large
factors. However, this may still allow some leakage and does not rule out other
attacks. Ad hoc countermeasures are not very satisfactory in password-based
protocols because every avenue of information leakage has to be blocked. Details
matter.
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3 Model

For our proofs, we use the model defined in [BMP00], which extends the formal
notion of security for key exchange protocols from Shoup [Sho99] to password-
authenticated key exchange. We assume the adversary totally controls the net-
work, a la [BR93b].

Briefly, this model is defined using an ideal key exchange system, and a real
system in which the protocol participants and adversaries work. The ideal system
will be secure by definition, and the idea is to show that anything an adversary
can do to our protocol in the real system can also be done in the ideal system,
and thus it would follow that the protocol is secure in the real system.

3.1 Ideal System

We assume there is a set of (honest) users, indexed i = 1, 2, . . .. Each user i may
have several instances j = 1, 2, . . .. Then (i, j) refers to a given user instance. A
user instance (i, j) is told the identity of its partner, i.e., the user it is supposed
to connect to (or receive a connection from). An instance is also told its role in
the session, i.e., whether it is going to open itself for connection, or whether it
is going to connect to another instance.

There is also an adversary that may perform certain operations, and a ring
master that handles these operations by generating certain random variables
and enforcing certain global consistency constraints. Some operations result in
a record being placed in a transcript.

The ring master keeps track of session keys {Kij} that are set up among
user instances (as will be explained below, the key of an instance is set when
that instance starts a session). In addition, the ring master has access to a
random bit string R of some agreed-upon length (this string is not revealed
to the adversary). We will refer to R as the environment. The purpose of the
environment is to model information shared by users in higher-level protocols.

We will denote a password shared between users A and B as π[A,B].
The adversary may perform the following operations: (1) initialize user op-

eration with a new user number i and a new identifier IDi as parameters; (2)
set password with a new user number i, a new identifier ID′, and a password π
as parameters (modeling the adversary creating his own account); (3) initialize
user instance with parameters including a user instance (i, j), its role, and a user
identifier denoting the partner with whom it wants to connect; (4) terminate user
instance with a user instance (i, j) as a parameter; (5) test instance password
with a user instance (i, j) and a password guess π as parameters (this query can
only be asked once per instance and models the adversary guessing a password
and attempting to authenticate herself); (6) start session with a user instance
(i, j) as a parameter (modeling the user instance successfully connecting to its
partner and establishing a random session key; (7) application with a function f
as parameter, and returning the function f applied to the environment and any
session keys that have been established (modeling leakage of session key infor-
mation in a real protocol through the use of the key in, for example, encryptions
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of messages); (8) implementation, with a comment as parameter (modeling real
world queries that are not needed in the ideal world).

For an adversary A∗, IdealWorld(A∗) is the random variable denoting the
transcript of the adversary’s operations.

For a detailed description of the syntax and semantics of the above opera-
tions, see [BMP00].

3.2 Real System

In the real system, users and user instances are denoted as in the ideal system.
User instances are defined as state machines with implicit access to the user’s
ID, PID, and password (i.e., user instance (i, j) is given access to π[IDi,PIDij ]).
User instances also have access to private random inputs (i.e., they may be
randomized). A user instance starts in some initial state, and may transform
its state only when it receives a message. At that point it updates its state,
generates a response message, and reports its status, either continue, accept, or
reject, with the following meanings:

– continue: the user instance is prepared to receive another message.
– accept : the user instance (say (i, j)) is finished and has generated a session

key Kij .
– reject : the user instance is finished, but has not generated a session key.

The adversary may perform the following types of operations: (1) initialize
user operation as in the ideal system; (2) set password operation as in the ideal
system; (3) initialize user instance as in the ideal system; (4) deliver message
with an input message m and a user instance (i, j) as parameters, and returning
the message output from (i, j) upon receiving m; (5) random oracle with the
random oracle index i and input value x as parameters, and returning the result
of applying random oracle Hi to x; (6) application as in the ideal system.

For an adversary A, RealWorld(A) denotes the transcript of the adversary’s
operations.

Again, details of these operations can be found in [BMP00].

3.3 Definition of Security

Our definition of security is the same as the one in [Sho99] for key exchange. It
requires

1. completeness: for any real world adversary that faithfully delivers messages
between two user instances with complimentary roles and identities, both
user instances accept; and

2. simulatability: for every efficient real world adversary A, there exists an ef-
ficient ideal world adversaryA∗ such that RealWorld(A) and IdealWorld(A∗)
are computationally indistinguishable.
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4 SNAPI

In this section we will start by presenting the definition of RSA and giving a
standard and well-accepted version of the RSA security assumption.2 Then we
will present the SNAPI and SNAPI-X protocols.

First we give some preliminary definitions. Let k and � denote our security
parameters, where k is the “main” security parameter and can be thought of
as a general security parameter for hash functions and secret keys (say 128 or
160 bits), and � > k can be thought of as a security parameter for RSA or
discrete-log-type public keys (say 1024 bits). Let {0, 1}∗ denote the set of finite
binary strings and {0, 1}n the set of binary strings of length n. Let “|” denote the
concatenation of bit strings in {0, 1}∗. A real-valued function ε(n) is negligible if
for every c > 0, there exists a nc > 0 such that ε(n) < 1/nc for all n > nc.

The RSA encryption scheme is generally defined as follows: Let key generator
GE define a family of RSA functions to be (e, d,N) ← GE(1�) such that N =
PQ, where P and Q are prime numbers. Then, the public key is the pair (e,N)
where gcd(e, φ(N)) = 1 and the order of the group φ(N) = (P − 1) · (Q − 1).
The encryption function E : Z∗

N → Z
∗
N is defined by E(x) ≡ xe mod N and

the decryption function D : Z∗
N → Z

∗
N is D(x) ≡ xd mod N , where the secret

exponent d is chosen such that ed ≡ 1 mod φ(N).
The choice of P , Q, and e is generally left to the implementation, although

it is recommended that P and Q be random large primes with about the same
bit length (about �/2 for security parameter �) [IEE98], and for efficiency e is
often chosen to be a small prime and with a small number of ones in its binary
representation, such as 3, 17, or 65537.

For the security of SNAPI, we make explicit requirements on the generation
of P , Q, and e, which are well within the scope of the general RSA security rec-
ommendations. Specifically, we require that GE(1�) chooses two random primes
P and Q from the range {2�/2−1, . . . , 2�/2} (for convenience, we assume � is a
multiple of 2). This implies that 2�−2 ≤ N ≤ 2�. We also require that e be a prime
in the range {2�+1, . . . , 2�+1}. Note that this guarantees that gcd(e, φ(N)) = 1.
For efficiency in our protocol, a standard value of e for a given security parameter
� could be chosen beforehand. This would eliminate the need for a primality test
by Bob. (An alternative requirement on e would be that e is a prime, e ≥ √N
and (N mod e) � |N , since this can be checked in (probabilistic) polynomial time,
and also implies that gcd(e, φ(N)) = 1 [Len84].)

Given these requirements on GE, we use the following assumption on RSA:

RSA Security Assumption: Let � be the security parameter. Let key gener-
ator GE define a family of RSA functions (i.e., (e, d,N)← GE(1�)). For any
probabilistic polynomial-time algorithm A, Pr[ue ≡ w mod N : (e, d,N) ←
GE(1�);w ∈R {0, 1}�;u← A(1�, w, e,N)] is negligible.

2 The security of the SNAPI protocol can actually be proven under a slightly more
general security assumption. Details are omitted.
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4.1 The Protocol

Before the SNAPI protocol starts, two players agree on a common password
π ∈ P . Let A and B be the identities of the two players, with A playing the role
of Alice, and B playing the role of Bob. From this point on, we will refer to A
as Alice and B as Bob, except when we must explicitly use their identities.

We assume that Alice has chosen an RSA key pair ((e,N), (d,N)). In gen-
eral, Alice would most likely use the same key pair in many sessions, although
for perfect forward secrecy, Alice would need to choose a new pair in each ses-
sion. That is, if Adv discovers the decryption key then Adv can determine all
session keys obtained in sessions using that key pair. Obviously, some tradeoffs
of security versus efficiency could be performed. Alternatively, the two parties
could obtain perfect forward secrecy by computing the session key with a Diffie-
Hellman key exchange [DH76] using, for instance, the m and µ values. This,
however, would require the Diffie-Hellman assumption for security, along with
the RSA assumption. For simplicity, we will assume Alice uses the same encryp-
tion/decryption pair for each session, although if Adv impersonates Alice, Adv
could use a different one.

Define hash functions h, h′, h′′ : {0, 1}∗ → {0, 1}k and H : {0, 1}∗ → {0, 1}η
(where η ≥ �+k). We will assume that h, h′, h′′, and H are independent random
functions. Let SN = {p : p ≤ 2η − (2η mod N) and gcd(p,N) = 1}.

The protocol is shown in Figure 1. Alice and Bob exchange random values,
and Alice also gives her public key to Bob. They both compute hashes of all of
these values, plus the password. Then Bob encrypts a random value a, multiplies
it by the hash, and sends it to Alice. Alice can divide the received value by the
hash and decrypt the result (using her private key) to obtain a. This value a can
be used as a “long” secret for authentication. The idea of why this works is that
even if Bob computes hashes corresponding to other passwords, Bob cannot find
another value a′ whose encryption times the other hash would equal the value
sent to Alice, since Bob does not have the private key.3

Theorem 1 The SNAPI protocol is a secure password-authenticated key ex-
change protocol under the RSA assumption and the random oracle model.

Proof in appendix.

5 SNAPI-X

We now present a protocol for password-only authentication that is “weakly”
resilient to server compromise.4

Let g be a generator of a cyclic group Ω of size ω superpolynomial in k in
which the Diffie-Hellman problem is hard. In the SNAPI-X protocol, we assume
3 Naturally, proving that this is the case is much more difficult.
4 By “weakly,” we mean that our protocol can be proven secure assuming that once

the adversary has corrupted the server it does not actually impersonate the server
to a real client, perhaps because it is unable to do network address spoofing.
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Alice (A) Step 1: Choose m ∈R {0, 1}k, and send (A,m, (N, e)) to Bob.
Bob (B) Step 2: If m �∈ {0, 1}k, N �∈ [2�−2, 2�], e �∈ (2�, 2�+1],

or e is not prime, then reject,
Else
1. Choose µ ∈R {0, 1}k and a ∈R Z

∗
N.

2. Compute p = H(N |e|m|µ|A|B|π).
3. If p �∈ SN then set q = a,

Else set q ≡ pae mod N .
4. Send (µ, q) to Alice.

Alice (A) Step 3: If µ �∈ {0, 1}k or gcd(q, N) �= 1, then reject,
Else
1. Compute p = H(N |e|m|µ|A|B|π).
2. If p �∈ SN then reject,

Else, set a ≡ (q/p)d mod N and
send r = h(N |e|m|µ|A|B|q|a) to Bob.

Bob (B) Step 4: If p �∈ SN or r �= h(N |e|m|µ|A|B|q|a), then reject,
Else, send t = h′(N |e|m|µ|A|B|q|a) to Alice,

set K = h′′(N |e|m|µ|A|B|q|a), and accept.
Alice (A) Step 5: If t �= h′(N |e|m|µ|A|B|q|a), then reject,

Else set K = h′′(N |e|m|µ|A|B|q|a) and accept.

Fig. 1. SNAPI Protocol

there is an initialization in which a client with identity B (whom we will refer
to as Bob) chooses a password π ∈ P , computes x = H ′(A|B|π) (where A
is the identity of the server, whom we will refer to as Alice) and sends Alice
X = gx, which we call the password verifier. Alice generates an RSA key pair
((e,N), (d,N)). After the initialization Bob only needs to remember π. As in
SNAPI, we assume that Alice has chosen an RSA key pair ((e,N), (d,N)).

Define hash functions h, h′, h′′ : {0, 1}∗ → {0, 1}k and H,H ′ : {0, 1}∗ →
{0, 1}η (where η ≥ �+k). We will assume that h, h′, h′′, H , and H ′ are indepen-
dent random functions. Let SN = {p : p ≤ 2η−(2η mod N) and gcd(p,N) = 1}.

The protocol is shown in Figure 2. Alice and Bob exchange random values,
and Alice also gives her public key to Bob. They both compute hashes of all
of these values, plus the password verifier. Then Bob encrypts a random value
a, multiplies it by the hash, and sends it to Alice. Alice can divide the received
value by the hash and decrypt the result (using her private key) to obtain a. This
value a can be used as a “long” secret for authentication. Also, to verify that
Bob knows the password and not just the password verifier, a type of “Diffie-
Hellman” exchange is used. Alice generates her Diffie-Hellman values randomly,
and Bob uses the password verifier along with its discrete log as his value. The
secret Diffie-Hellman value can thus be computed by both parties and included
in the authentication value sent by Bob. Due to space restrictions, we omit the
discussion of the security model and proof, and simply state our theorem.
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Bob (B) Step 0: Send B to Alice.
Alice (A) Step 1: Retrieve X from password file for B.

Choose m ∈R {0, 1}k, and send (A,m, (N, e)) to Bob.
Bob (B) Step 2: If m �∈ {0, 1}k, N �∈ [2�−2, 2�], e �∈ (2�, 2�+1],

or e is not prime, then reject,
Else
1. Set x = H ′(A|B|π).
2. Choose µ ∈R {0, 1}k and a ∈R Z

∗
N.

3. Compute p = H(N |e|m|µ|A|B|gx).
4. If p �∈ SN then set q = a, Else set q ≡ pae mod N .
5. Send (µ, q) to Alice.

Alice (A) Step 3: If µ �∈ {0, 1}k or gcd(q, N) �= 1, then reject, Else
1. Compute p = H(N |e|m|µ|A|B|X).
2. If p �∈ SN then reject, Else,

(a) Set a ≡ (q/p)d mod N
(b) Choose γ ∈ Zω.
(c) Set r = h(N |e|m|µ|A|B|q|a) and y = gγ .
(d) Send (r, y) to Bob.

Bob (B) Step 4: If p �∈ SN or r �= h(N |e|m|µ|A|B|q|a), then reject,
Else,
1. Send t = h′(N |e|m|µ|A|B|q|a|yx) to Alice.
2. Set K = h′′(N |e|m|µ|A|B|q|a), and accept.

Alice (A) Step 5: If t �= h′(N |e|m|µ|A|B|q|a|Xγ ), then reject,
Else set K = h′′(N |e|m|µ|A|B|q|a) and accept.

Fig. 2. SNAPI-X Protocol

Theorem 2 The SNAPI-X protocol is a secure password-only authentication
and key exchange protocol with weak resilience to server compromise, in the
random oracle model under the RSA assumption and assuming the hardness of
Decision Diffie-Hellman.
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A Security of the SNAPI Protocol

The completeness requirement follows directly by inspection. Here we prove that
the simulatability requirement holds. The basic technique is essentially that of
Shoup [Sho99]. The idea is to create an ideal world adversary A∗ by running the
real world adversary A against a simulated real system, which is built on top of
the underlying ideal system. In particular, A∗ (i.e., the simulator combined with
A) will behave in the ideal world just like A behaves in the real world, except
that idealized session keys will be used in the real world simulation instead of
the actual session keys computed in the real system.

Thus our proof consists of constructing a simulator (that is built on top
of an ideal system) for a real system so that the transcript of an adversary
attacking the simulator is computationally indistinguishable from the transcript
of an adversary attacking the real system. Due to space restrictions we are
only able to sketch the simulation. Details may be found in the full version of
the paper [MPS]. The difficult part of the simulation is to answer queries to
user instances and random oracles that are consistent with the ideal world, but
without a priori knowing the passwords.

First we deal with the random oracle queries. Note that the user IDs and
nonces allow the simulator to know which conversations they correspond to.
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The simulator always answers an H query with the encryption of a known
value, which helps in the later simulation.

For an h query, the simulator is able to test whether this corresponds to
a password test by encrypting the a value in the query, and then for each H
query corresponding to the same conversation, multiplying the encryption of a
by the result of that query and testing if the result equals the q value sent in the
conversation. If for any H query this test is positive, the simulator must make
a test instance password query to the ringmaster in the ideal world. Naturally
we must show that the simulator never makes a test instance password query
unless the adversary is actively involved in the conversation, and in that case the
simulator makes at most one test instance password query. (We sketch the proofs
of those below.) If there is no password being tested, or if there is a password
being tested and it is incorrect, the simulator simply responds with a random
bit string. Otherwise, the simulator responds with a bit string consistent with
previous values of the protocol.

For h′ and h′′ queries, the simulator simply responds with random bit strings,
and these will be indistinguishable (details omitted).

Now we deal with user instance queries. In general, they are handled as in
the actual protocol, except that the q value is set to a random encryption (not
multiplied by the result of an H query, since the password is not known to the
simulator), and the authentication values r and t are generated randomly, except
when a password test by the adversary is detected (by examing the random oracle
queries). If necessary, the simulator makes a test instance password query to
the ideal world ringmaster, and responds accordingly. If the simulator detects a
matching conversation, i.e., an incoming authentication value was sent by a valid
partner using the same nonces, then the simulator accepts the authentication
value (even though it cannot actually check it since the simulator does not know
the password).

To prove that the adversary never forces the simulator to make a test instance
password query for a matching conversation, we assume that the adversary does
and break the RSA assumption as follows. We take a challenge RSA key and
ciphertext and guess the user A involved in the offending conversation. The
simulator sends the challenge RSA key when simulating user A, and for any
user instance in a conversation with A sends q equal to a random encryption
multiplied by the challenge ciphertext. Then for any random oracle query that
tests a password, one can compute the decryption of the ciphertext (using the
fact that the output of the H oracle is a value whose decryption is known to the
simulator).

To prove that the adversary never forces the simulator to make two test
instance password queries for a non-matched conversation with an “Alice” user
instance, we assume that the adversary does and break the RSA assumption
as follows. We take a challenge RSA key and ciphertext and guess the user A
involved in the offending conversation. The simulator sends the challenge RSA
key when simulating user A, and for any H query involving user A, flips a coin
to decide whether to set the output to the encryption of a known value, or the
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encryption of a known value multiplied by the challenge ciphertext. If two h or
h′ queries are made along with two H queries such that two password tests must
be performed, then these correspond to the same q value sent to user A and thus
can be related by an equation which allows one to solve for the decryption of
the challenge ciphertext, as long as exactly one of the H query outputs included
the challenge ciphertext. This happens with probability 1

2 .
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