
The Security of Chaffing and Winnowing

Mihir Bellare and Alexandra Boldyreva

Dept. of Computer Science & Engineering, University of California at San Diego,
9500 Gilman Drive, La Jolla, California 92093, USA.

{mihir, aboldyre}@cs.ucsd.edu
www-cse.ucsd.edu/users/{mihir, aboldyre}

Abstract. This paper takes a closer look at Rivest’s chaffing-and-winnowing
paradigm for data privacy. We begin with a definition which enables one to clearly
determine whether a given scheme qualifies as “chaffing-and-winnowing.” We
then analyze Rivest’s schemes to see what quality of data privacy they provide.
His bit-by-bit scheme is easily proven secure but is inefficient. His more efficient
scheme —based on all-or-nothing transforms (AONTs)— can be attacked under
Rivest’s definition of security of an AONT, and even under stronger notions does
not appear provable. However we show that by using OAEP as the AONT one
can prove security, and also present a different scheme, still using AONTs, that is
equally efficient and easily proven secure even under a relatively weak notion of
security of AONTs.

1 Introduction

Rivest presents a number of methods to achieve data privacy based on a paradigm he
calls “chaffing and winnowing” [11]. In this paper we provide adefinition of chaffing
and winnowing; assess whether the schemes of [11] can beproven to meet standard
data-privacy goals, and, if so, under what kinds ofassumptions on the underlying prim-
itives; and suggest more efficient schemes and analyze their security. Let us first provide
some background and motivation, and see what are the basic questions. Then we discuss
our contributions in more detail.

1.1 Background, Motivation, and Questions

Chaffing and winnowing uses a message authentication code (MAC) to provide pri-
vacy. However Rivest notes that in order to have privacy the MAC must be a pseudo-
random function. (Any PRF is a good MAC [9,3] but not vice-versa.) Of course, there
are many well-known ways to use a PRF to provide privacy; the interest of chaffing
and winnowing arises from the particular manner in which the MAC is used, which
is roughly the following. Each data block is authenticated so that one has a sequence
of data-MAC pairs. Then “chaff” is interspaced, this consisting of pairs, each being a
block with a random tag. The receiver can discard blocks with invalid tags —this is
called “winnowing”— thereby recovering the data. (Within this framework, many spe-
cific methods are possible.) Privacy requires that it be computationally infeasible for an
adversary to tell valid MACs from random tags. (But is also very sensitive to the manner
in which chaff is interspaced.) Rivest argues that the use of the MAC here stays within

T. Okamoto (Ed.): ASIACRYPT 2000, LNCS 1976, pp. 517–530, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

518 Mihir Bellare and Alexandra Boldyreva

its functionality as an authentication mechanism, and thereby makes moot a policy that
restricts “encryption” while allowing authentication.

Chaffing-and-winnowinghas received a lot of attention on the political front, but lit-
tle on the technical front barring that in the initial paper. It merits more serious attention
from cryptographers. One is that a better technical understanding leads to a better un-
derstanding of the implications for the debate on cryptographic policy. Another reason
is foundational. As Rivest notes in introducing his idea, there are very few paradigms
for cryptography’s main goal, namely data privacy. A new paradigm such as the one he
presents should be explored in order to assess its potential.

The description and examples in [11] suffice to get the gist of the idea, but as we
consider more complex mechanisms it is sometimes difficult to decide whether they
obey the “rules of the game.” A definition is needed to settle such questions, and also
for rigorous security analysis. Accordingly, we begin there.

Chaffing and winnowing purports to provide data-privacy. A basic question is about
the quality of privacy that it can provide. Specifically we want to know how it compares
to standard mechanisms such as modes of operation of a block cipher, which have been
proven to meet strong, well-defined notions of privacy under appropriate assumptions
[2]. Can chaffing-and-winnowingbased schemes provide the same level of privacy, and,
if so, can this be proven, and under what assumptions?

1.2 Defining Chaffing and Winnowing

The security goal of a chaffing-and-winnowing scheme is to provide privacy in a sym-
metric setting. Accordingly, from the security point of view, it is —in fact, must be—
treated simply as a symmetric encryption scheme. There is some “encryption” process
that takes a message and creates a “ciphertext”, and some “decryption” process that
takes the ciphertext and recovers the message, both operating under a common secret
key. (This is the key for the MAC.) These processes are not implemented in “usual”
ways, but, abstractly, they must exist, else it is moot to talk of achieving privacy. Once
this is understood, security can be measured using any of several well-known notions in
the literature. (We adopt the simplest, namely the “find-then-guess” notion of [2], which
is the most direct extension to the symmetric case of the notion of indistinguishability
of [10].)

Thus what defines chaffing and winnowing as a “notion” is not some novel secu-
rity property but rather a novel set of restrictions on the processes (namely encryption
and decryption) directed at achieving a standard security property (namely data pri-
vacy). The crux of the definition is to pin down these restrictions. We view a chaffing-
and-winnowing based encryption scheme as arising by the use of anauthentication to
privacy transform (ATPT) over aMAC-based authentication channel.

The channel captures the manner in which the parties have access to the MAC func-
tion MAC(K, ·). An application on the sender side can pass data down to be MACed,
thereby creating a packet (data-MAC pair) which is transmitted over the channel. (The
application has no direct access to theMAC(K, ·) function let alone to the underlying
key K.) At the receiving end, packets with invalid MACs are dropped and the data
from valid packets is passed up to the receiving application. (The latter sees no MACs

The Security of Chaffing and Winnowing 519

and does not even know of the existence of the dropped packets.) See Figure 1 and
Definition 4.

The ATPT consists of three algorithms whose important feature is that they are all
entirelykeyless. The sending application applies aMakeWheat algorithm to the plain-
text to turn it into a sequence of data blocks to be passed to the authentication channel.
An AddChaff procedure is responsible for interspacing chaff packets into the stream
of valid packets output by the authentication channel. Finally the receiving application
applies aRecover algorithm to the received data blocks to get back the plaintext. See
Definition 5.

We stress again that the algorithms in the ATPT are keyless, so that on their own they
cannot be used to provide privacy. The chaff and winnow based encryption scheme is
realized by coupling these algorithms with the authentication channel. This is illustrated
in Figure 2.

The definition (provided in Section 3) can help clarify the contribution of chaffing
and winnowing to the debate on cryptographic policy by providing a means to evaluate
whether a particular method qualifies as “legal encryption based on authentication.” If
one scheme meeting the definition qualifies, so do the rest, even if their implementation
is more complex.

1.3 Security of Rivest’s Schemes

Rivest notes that his first few examples will not provide a high level of privacy. (In
particular they will not meet a notion of privacy such as find-then-guess.) The first
serious candidate is the bit-by-bit scheme.

BIT-BY-BIT SCHEME. Here theMakeWheat procedure splits the plaintext into bits and
appends a counter or nonce to each bit. These data blocks are MACed. TheAddChaff
procedure inserts, for every valid packet, an invalid packet with the opposite bit value
and an appended nonce, together with a random value for the tag. We prove that this
scheme provides privacy in the find-then-guess sense assuming theMAC is a pseudo-
random function. The concrete security analysis is provided in Theorem 1.

This indicates that chaffing and winnowing can provide privacy of as high a quality
as standard encryption schemes, and furthermore with provable guarantees based on the
same assumption —namely a pseudorandom function— used to prove the security of
popular block cipher modes of operation [2]. There is however a high cost in bandwidth:
two nonces and two tags are needed per bit of plaintext.

SCATTERING SCHEMES. In order to reduce the bandwidth, Rivest suggests an alter-
native paradigm. First apply an all-or-nothing transform (AONT) [12] to the plaintext.
(This is a keyless, invertible transform with the property that inversion is hard if any
block of the output is missing.) Each block of the output of the AONT is MACed, re-
sulting in a stream of valid packets. Thens′ chaff packets are inserted into random
positions in this stream. Intuitively, an adversary must guess the positions of alls′ chaff
packets in order to decipher. (Accordingly it is suggested that security will be provided
for a value ofs′ that does not depend on the length of the plaintext, eg.s′ = 128, so
this method is cost-effective for long plaintexts.) Upon closer examination, however,
the security provided by this paradigm is unclear. We note first that under the original

520 Mihir Bellare and Alexandra Boldyreva

definition of an AONT provided in [12] the scheme is insecure. (We show that there are
example AONTs that meet the definition of [12] but for which there are attacks com-
promising the privacy of the chaffing-and-winnowing scheme.) It is natural to then try
to use Boyko’s stronger definition of security for an AONT [6]. In that case the anal-
ysis is inconclusive: the stronger property of an AONT still does not appear to suffice
to prove security of the chaffing-and -winnowing scheme, but neither do we exhibit a
counter-example that confirms this. We would prefer a provably-secure scheme.

SCATTERING WITH OAEP. The above-mentioned analyses indicate that in general an
AONT seems neither necessary nor sufficient as the initial transform to provide privacy
of the scattering based chaffing-and-winnowing scheme. We show however that if the
OAEP transform of [5] is used as the AONT, then privacy can be proved. (This, like all
security proofs involving OAEP, is in a random oracle model [4]). The concrete security
analysis provided in Theorem 2 supports the intuition regarding the scattering scheme
provided in [11]— the probability of breaking the scheme is inversely proportional to(
s+s′

s

)
wheres is the number of blocks in the output of OAEP ands′ is the number of

chaff blocks.
Note that OAEP has been shown to be a secure AONT [6], but given the above we

cannot exploit this here. Instead, our proof is direct, based on techniques from [5,6]. It
is an open question whether other specific constructions of AONTs such as that of [7]
suffice to prove security of the scheme.

1.4 New Schemes

We point out that there is an alternative to the scattering scheme that is simpler, can
be proven secure, and is equally cost-effective. It too makes use of AONTs and can
be proven secure for any AONT meeting a notion of security that is actually weaker
than that of [6]. (In particular one can use OAEP or use the construct of [7] and avoid
random oracles but there may be other more efficient instantiations.) The construction
applies the AONT to the plaintext as before. Rather than scattering chaff into the output
blocks, however, it simply treats a prefix of this output as the plaintext for the bit-by-bit
chaffing-and-winnowing scheme and applies the latter. Theorem 3 provides a concrete
security analysis of the final chaffing-and-winnowing scheme.

1.5 Is Chaffing and Winnowing “Encryption”?

We view chaffing-and-winnowing schemes as (special kinds of) symmetric encryption
schemes, the key for encryption and decryption being that of the MAC function. This
might at first seem to contradict Rivest’s view [11]. He says that the process of chaffing
and winnowing is “not encryption” and that there is no “decryption key.” These views
are not at odds with each other; the difference is purely in terminology. We are using
the technical terminology of cryptographers which is more suited to security analysis,
while Rivest uses the terminology of cryptographic policy discussion. (The convention
in modern cryptography, which we are following here, is to use the term “encryption
scheme” for any mechanism whose goal is to provide privacy. Under this convention,
the key for the MAC is, by definition, a decryption key, since it enables recovery of
the plaintext from the ciphertext. In cryptographic policy, “encryption” seems to refer

The Security of Chaffing and Winnowing 521

to certain mechanisms rather than a goal. Actually, exactly what it refers to is unclear,
which is part of the point made in [11].)

2 Symmetric Encryption, PRFs, and AONTs

SYMMETRIC ENCRYPTION. A symmetric encryption schemeSE = (K, E ,D) consists
of a (randomized) key generation algorithmK (returning a keyK), a (randomized or
stateful) encryption algorithmE (takingK and a messageM ∈ {0, 1}∗ to return a ci-
phertextC) and a decryption algorithmD (takingK and a ciphertext and returning a
message). We require thatDK(EK(M)) = M for all M ∈ {0, 1}∗. In the “find-then-
guess” model [2] an adversary is given an oracle for encryption under keyK and wins if
it can find two equal-length messages whose ciphertexts it can later distinguish. Below
we associate to any adversary an “advantage” which measures its winning probabil-
ity, and then use as security measure of the scheme the maximum possible advantage
subject to stated resource restrictions on the adversary.

Definition 1. (Find-then-guess security of encryption, [2]) Let SE = (K, E ,D) be a
symmetric encryption scheme. For an adversaryA andb = 0, 1 define the experiment

Experiment Exppriv
SE (A, b)

K
R← K ; (M0, M1,St)← AEK(·)(find) ; C ← EK(Mb) ;

d← AEK(·)(guess, C,St) ; Return d

HereSt is some state information that the adversary may want to preserve to help it
later. It is mandated that|M0| = |M1| above. Now define theadvantage of A and the
advantage function of the scheme respectively, as follows:

Advpriv
SE (A) = Pr

[
Exppriv

SE (A, 0) = 0
]
− Pr

[
Exppriv

SE (A, 1) = 0
]

Advpriv
SE (t, q, µ) = max {Advpriv

SE (A) }
where the maximum is over allA with “time-complexity” t, making at mostq encryp-
tion oracle queries, these totalling at mostµ bits.

In this paper for simplicity we assume that all messages encrypted have the same length,
usually denotedm. This means thatµ = mq. We also assume that the length of each of
the challenge messages ism. The “time-complexity” refers to the worst case execution
time of experimentExppriv

SE (A) plus the size of the code ofA, in some fixed RAM
model of computation. We are considering only chosen-plaintext attacks, not chosen-
ciphertext attacks.

PSEUDORANDOM FUNCTIONS. Consider a mapF : {0, 1}k×S → {0, 1}l which takes
a keyK ∈ {0, 1}k and an inputx from the domainS to return an outputy = F (K, x).
The domainS is for convenience{0, 1}∗, or at least the set of all strings of length
up to some very large maximum length. The notationg

R← F is shorthand forK
R←

{0, 1}k ; g ← F (K, ·). We letR denote the family of all functions ofS to {0, 1}l so
that g

R← R denotes the operation of selecting at random a function ofS to {0, 1}l.
A distinguisherD is an algorithm that takes an oracle for a functiong : S → {0, 1}l,
and after computing with this oracle returns a bit. The following is the notion of [9]
concretized as per [3].

522 Mihir Bellare and Alexandra Boldyreva

Definition 2. Let F, R be as above, letD be a distinguisher, and supposet, q, µ ≥ 0.
Define theadvantage of D, and theadvantage function of F , respectively, as

Advprf
F (D) = Pr

[
Dg = 1 : g

R← F
]
− Pr

[
Dg = 1 : g

R← R
]

Advprf
F (t, q, µ) = max {Advprf

F (D) } .

where the maximum is over allD with time-complexity at mostt, making at mostq
oracle queries, these totalling at mostµ bits.

ALL -OR-NOTHING TRANSFORMS. An all-or-nothing transform is an efficiently com-
putable, keyless, randomized transformationAONT which maps a message to a se-
quence of blocks such that given theAONT of some message, one can easily compute
the original message [12]. The (deterministic) inverse transformation permitting recov-
ery of the message from the output is denotedAONT−1. Security pertains to the ques-
tion of what information you can compute about the message if you are given all but
one of the output blocks, and several notions have been suggested [12,6,8]. We provide
our formalization and compare it to the others later.

We assume for simplicity that theAONT takes input messages of lengthm and
has outputs of lengthsn. The attack allowed is non-adaptive, meaning the adversary
fixes beforehand the position of the output block that will be omitted. Denote this by
L ∈ {1, . . . , s}. During thefind stage the adversary comes up with a pair of messages
M0 andM1, both of lengthm. In its guess stage it is given aAONT for one of the
plaintextsM0, M1, with block L missing. The adversary wins if it correctly guesses
which message goes with the challengeAONT. If X ∈ {0, 1}sn is a string ofs blocks,
eachn-bits long, then we letX [1, . . . , L− 1, L + 1, . . . , s] denote the string consisting
of blocks1, . . . , L− 1, L + 1, . . . , s of X , meaning all but blockL.

Definition 3. Let AONT be a (randomized) algorithm taking an input of lengthm and
returning an output of lengthsn. Let L ∈ {1, . . . , s} be a block number.St denotes
some state information. Forb = 0, 1 define the experiment

Experiment Expaont
AONT,L(A, b)

(M0, M1,St)← A(find) ; C ← AONT(Mb)[1, . . . , L− 1, L + 1, . . . , s] ;
d← A(guess, C,St) ; Return d

Now define theadvantage of A and theadvantage function of AONT, respectively, as
follows:

Advaont
AONT,L(A) = Pr

[
Expaont

AONT,L(A, 0) = 0
]− Pr

[
Expaont

AONT,L(A, 1) = 0
]

Advaont
AONT,L(t) = max {Advaont

AONT,L(A) }
where the maximum is over allA with “time-complexity”t.

We now compare this to other notions, in all cases considering an adversary having
a stringC consisting of all but one block of the output. Rivest [12] asks that given
C it be computationally infeasible to get any non-trivial information about any block
of the message. Our definition is stronger than his, meaning any AONT secure in our

The Security of Chaffing and Winnowing 523

dt1, . . . ,dtn (dt1, tg1), . . . , (dtn, tgn)

SENDER RECEIVERCHANNEL

dt1, . . . ,dtnTagMAC(K,·)

ApplicationApplication

WinnowMAC(K,·)

Fig. 1. Authentication channel

sense is secure in his sense. Boyko’s definition of security [6] asks that givenC it be
computationally infeasible to get any non-trivial information about the message as a
whole, not just individual blocks. Desai [8] asks thatC be indistinguishable from a
random string of the same length. Our definition is weaker than either of these, in the
sense that any AONT secure in their sense is secure in our sense.

3 Defining Chaffing and Winnowing

Fix a mapMAC: {0, 1}k × {0, 1}∗ → {0, 1}l to be used as a message authentication
code. (Security assessments will assume that this map is a pseudorandom function, but
discussions and constructions will refer to it as a MAC.) Apacket is a pair(dt, tg)
consisting ofdata dt and atag tg where the length oftg is l-bits, the length of the
output ofMAC. A packet(dt, tg) is valid with respect toMACK —whereK ∈ {0, 1}k
is some key for the MAC— ifMACK(dt) = tg, andinvalid with respect toMACK

otherwise. WhenMACK is understood, we simply talk of valid and invalid packets.
The sender and receiver have an authenticated channel of communication based on

the MAC. Each party has a module responsible for authentication. These modules hold
in common a keyK ∈ {0, 1}k for the MAC. When the sender wants to send data
dt to the receiver in an authenticated way, the sender passesdt to its authentication
module, which creates the (valid) packetPkt = (dt, MAC(K, dt)). This packet is sent
to the receiver. We call this the “tag” procedure. The packet is received by the receiver’s
authentication module, which verifies the tag. If the tag is valid, it passes the data “up”
to the receiver. If the tag is not valid, the packet is simply discarded; nothing is passed up
to the receiver. The receiving module thus acts as a “filter”, separating “wheat” (valid)
packets from “chaff” (invalid) packets, and passing to the receiver only the data from
the valid packets. This is what [11] calls the “winnow” procedure. The two procedures
are specified in detail below, and the channel is depicted in Figure 1.

Definition 4. [MAC-based tag and winnow procedures] We associate to a MAC
functionMAC: {0, 1}k×{0, 1}∗→ {0, 1}l the followingtag and winnow procedures.
The tag procedure produces a valid packet from the input data. The winnow procedure
takes as input a stream of packets and returns the data of the valid packets:

524 Mihir Bellare and Alexandra Boldyreva

Algorithm TagMAC(K,·)

For i = 1, . . . , n do
tgi ← MAC(K, dti)
Return (dti, tgi)

EndFor

Algorithm WinnowMAC(K,·)(Pkt′1, . . . , Pkt′n′)
For i = 1, . . . , n′ do

Parse Pkt′i as (dt, tg)
If MAC(K, dt) = tg then return dt

EndFor

HereK ∈ {0, 1}k is a key for the MAC andn is the number of packets in the input
stream.

The receiver has no direct access to the packets or their MACs, no access to (or even
knowledge of) the invalid packets, which are simply discarded by the winnow proce-
dure. The receiver only gets, in order, the data part of the valid packets.

Definition 5. [ATPT] An authentication to privacy transform (ATPT) with tag length
l is a tripleATPT = (MakeWheat, AddChaff, Recover) of algorithms, where
• MakeWheat takes as input a messageM and returns a sequencew1, . . . , wn of

strings called thewheat strings
• AddChaff takes as input a sequencePkt1, . . . , Pktn of packets called thewheat

packets and returns another sequencePkt′1, . . . , Pkt′n′ of packets
• Recover takes as input stringsw1, . . . , wn and returns a messageM .

The first two algorithms can be probabilistic or stateful (accessing a global state variable
such as a counter). The last algorithm is usually deterministic and stateless.

An ATPT above is used in combination with an authentication channel to provide con-
fidentiality. The way the process works is depicted and explained in Figure 2. Our inter-
est is in the security of this entire procedure viewed as a symmetric encryption scheme.
For this purpose it is convenient to think of it more as a standard symmetric encryption
scheme, consisting of a key generation, encryption and decryption procedure. (The fact
that it works by chaff and winnow is irrelevant to the security, although of course cru-
cial to policy debate.) Below, we specify the symmetric encryption scheme that results
from running a given ATPT over a given authentication channel, by specifying the three
constituent algorithms.

Definition 6. Let ATPT = (MakeWheat, AddChaff, Recover) be an ATPT with tag
lengthl, and letMAC: {0, 1}k × {0, 1}∗ → {0, 1}l be a MAC. Associated to them is
a canonical encryption scheme (K, E ,D). The key generation algorithmK is the same
as that of the MAC, namely it outputs a randomk-bit key K, and the encryption and
decryption algorithms are as follows:

Algorithm EK(M)
(w1, . . . , wn)← MakeWheat(M)
For i = 1, . . . , n do

Pkti ← (wi, MACK(wi))
EndFor
(Pkt′1, . . . , Pkt′n′)←

AddChaff(Pkt1, . . . , Pktn)
Return Pkt′1, . . . , Pkt′n′

AlgorithmDK(Pkt′1, . . . , Pkt′n′)
(dt1, . . . , dtn)←

WinnowMAC(K,·)(Pkt′1, . . . , Pkt′n′)
M ← Recover(dt1, . . . , dtn)
Return M

We require thatDK(EK(M)) = M for all M ∈ {0, 1}∗.

The Security of Chaffing and Winnowing 525

MakeWheat

M

Pkt′1 Pkt′n′

WinnowMAC(K,·)

M

Recover

AddChaff

S
en

de
r

R
ec

ei
ve

r

(w1, tg1)︸ ︷︷ ︸
Pkt1

TagMAC(K,·)

(wn, tgn)︸ ︷︷ ︸
Pktn

w1 wn

w1 wn

The (plaintext) messageM is first processed
by a (keyless) transformMakeWheat to yield
a sequencew1, . . . , wn of strings, each of
which is MACed to yield a streamPkt1 =
(w1, tg1), . . . , Pktn = (wn, tgn) of valid
packets, wheretgi = MAC(K, wi) for i =
1, . . . , n. The (keyless)AddChaff procedure
adds chaff packets to produce a new stream
Pkt′1, . . . , Pkt′n′ of packets (the ciphertext)
which is sent to the receiver. They hit the re-
ceiver’s winnow (cf. Definition 4) which dis-
cards packets with invalid MACs, and passes
up to the receiver the data from the valid
packets. A (keyless)Recover procedure now
puts this data together to get back the origi-
nal messageM . The three keyless algorithms
MakeWheat, AddChaff, and Recover com-
prise what we call the ATPT (authentication to
privacy transform)— they enable the possibil-
ity of obtaining confidentiality via an existing
authentication channel without the addition of
any extra cryptographic elements.

Fig. 2. Chaff-and-winnow based “encryption”.

The last requirement is made so that this is a valid symmetric encryption scheme, mean-
ing correctly encrypted data can be decrypted by a receiver that knows the secret key.

In the sequel, we will specify chaff-and-winnow based encryption schemes directly
as standard symmetric encryption schemes, because this is more conducive to security
assessments. Accordingly it is useful to have the following terminology.

Definition 7. LetSE = (K, E ,D) be a symmetric encryption scheme. We say thatSE is
a chaff-and-winnow based encryption scheme if there exists an ATPT transformATPT
and a MACMAC: {0, 1}k × {0, 1}∗ → {0, 1}l such thatSE is exactly the canonical
confidentiality procedure associated toATPT andMAC as per Definition 6.

4 Analysis of Rivest’s Schemes

As above,MAC: {0, 1}k × {0, 1}∗ → {0, 1}l is a message authentication code. In
the bit-by-bit scheme, the sender maintains a counterctr that is initially zero. The en-
cryption procedure (more precisely, theMakeWheat algorithm) increments this counter
upon each invocation. Assume all messages to be encrypted have lengthm.

526 Mihir Bellare and Alexandra Boldyreva

Scheme 1. [Bit-by-bit CW] The key generation algorithmK of this symmetric en-
cryption scheme returns a randomk-bit key K for the MAC, and the encryption and
decryption algorithms are as follows:

Algorithm EK(M)

BreakM into bits,M = b1 . . . bm

For i = 1, . . . , m do

tg[i, bi]← MAC(K, bi‖〈ctr + i〉)
tg[i, b̄i]

R← {0, 1}l
Pkt[i, 0]← (0‖〈ctr + i〉, tg[i, 0])

Pkt[i, 1]← (1‖〈ctr + i〉, tg[i, 1])

EndFor
ctr ← ctr + m

Return Pkt[1, 0], Pkt[1, 1], . . . ,
Pkt[m, 0], Pkt[m, 1]

AlgorithmDK(Pkt1, . . . , Pkt2m)

For i = 1, . . . , 2m do
Parse Pkti as (dt, tg)

If MAC(K, dt) = tg

then return first bit of dt

EndFor

Here b̄ denotes the complement bit ofb and 〈i〉 denotes the binary representation of
integeri as a binary string of some fixed, predefined lengthp. The “wheat” packets are
Pkt[i, bi] for i = 1, . . . , m and the “chaff” packets arePkt[i, b̄i] for i = 1, . . . , m.

In the full version of this paper [1] we show formally that the above (and other schemes
of this paper) are chaff-and-winnow based encryption schemes by saying what are the
algorithmsMakeWheat, AddChaff, andRecover.

The following theorem shows that this scheme meets the “find-then-guess” notion
of privacy under the assumption thatMAC is a PRF. The reduction is almost tight. The
proof is in [1].

Theorem 1. Let MAC: {0, 1}k × {0, 1}∗ → {0, 1}l be a pseudorandom function and
let SE = (K, E ,D) be the bit-by-bit chaff-and-winnow based encryption scheme of
Scheme 1. Assume the counter is p-bits long. Then for any t, q, µ with µ < 2p–

Advpriv
SE (t, q, µ) ≤ 2 ·Advprf

MAC(t, q′, µ′) ,

where q′ = µ and µ′ = (1 + p)µ.

If the counter is allowed to wrap around the scheme is obviously insecure. It is possible
to use randomness instead of a counter. In this case each bit of the message is concate-
nated with random value represented as a string of some fixed predefined length. This
value is drawn at random for each bit of the message. The analysis is analogous but the
concrete security is worse due to birthday attacks.

The security of these schemes comes with a price. They are very inefficient since
they have large data expansion: if the message ism bits long then2m(1 + p + l) bits
are transmitted, wherep is the length of a counter andl is the length of the output of
the MAC. Bleichenbacher suggested that it is possible to reduce the communication
cost by a factor of two by selecting at random and sending just one packet for each
bit, either a chaff or a wheat packet. The receiver checks the validity of the data packet

The Security of Chaffing and Winnowing 527

and complements the bit if the packet is invalid. Bleichenbacher further suggested that
it is possible to reduce the communication even more if the sender authenticates each
byte of the message and transmits only the computed MAC, but not the byte itself. The
receiver then has to compute MACs for all possible bytes and take that for which the
MACs match.

Another scheme mentioned in [11] authenticated message blocks of some length
rather than single bits, but the author already indicated that it was insecure under strin-
gent notions of privacy such as the one we use here. We go on to the scattering scheme.

As before letMAC: {0, 1}k × {0, 1}∗ → {0, 1}l be our message authentication
code. In the scattering scheme, the output of an AONT is viewed as a sequence ofs
blocks, eachn bits long. The ciphertext will contains wheat packets interspaced with
s′ > 0 chaff packets, wheres′ is a parameter of the scheme. The wheat packet positions
are a random subset of{1, . . . , s + s′}. The full description follows.

Scheme 2. [Scattering scheme] We fix an all-or-nothing transformAONT: {0, 1}m
→ {0, 1}sn. We assume that all messages to be encrypted have lengthm. The key
generation algorithmK of this symmetric encryption scheme returns a randomk-bit
keyK for the MAC, and the encryption and decryption algorithms are as follows:

Algorithm EK(M)
M ′ ← AONT(M)
ParseM ′ asm1‖m2‖ · · · ‖ms where|mi| = n
PickS ⊆ {1, . . . , s + s′} at random
subject to|S| = s
j ← 0
For i = 1, . . . , s + s′ do

If i ∈ S then
j ← j + 1
tg[i]← MAC(K, mj)
Pkt[i]← (mj , tg[i])

else

dt[i]
R← {0, 1}n

tg[i]
R← {0, 1}l

Pkt[i]← (dt[i], tg[i])
EndIf

EndFor
Return Pkt[1], Pkt[2], . . . Pkt[s + s′]

AlgorithmDK(Pkt1, . . . , Pkts+s′)
For i = 1, . . . , s + s′ do

Parse Pkti as (dt, tg)
If MAC(K, dt) = tg
then mi ← dt

EndFor
M ← AONT−1(m1‖m2‖ · · · ‖ms)
Return M

The most obvious attack is to test each group ofs packets to see whether they are
the wheat packets. The adversary goes through all sizes subsets of the packets. In each
case it forms a candidate output ofAONT and appliesAONT−1. Assuming it knows
some partial information about the message, it can tell when it got the choice of the
subset right. The time taken by this attack is proportional to

(
s+s′

s

)
.

The intuition for security given in [11] is that this is the best possible attack. The
complexity is large as long as boths and s′ are above some minimal threshold; for
example, both more than128. Accordingly we could sets′ = 128 and choose the
AONT so that its output always had at least 128 blocks.

528 Mihir Bellare and Alexandra Boldyreva

A closer look reveals however that security is not so straightforward. For example,
another thing to consider is the effect of equal data blocks. If the data blocks in two
packets are equal, an adversary can get some information by looking at their tags: if the
tags are unequal, they cannot both be wheat packets, because the MAC is deterministic.
This can reduce the complexity of an attack, indicating that the time-complexity of an
attack must also be a function of the block sizen of the output.

There are other such considerations, but more importantly, we claim that Rivest’s
notion of security for the AONT can be shown to be insufficient to make this scheme se-
cure. An example illustrating this is to consider an AONT each of whose output blocks
has the property that the first few bits are0. (One can show that if any AONT meeting
Rivest’s definition exists , then so does one with this property.) But with this AONT,
Scheme 2 can be broken because wheat packets can be distinguished from chaff pack-
ets: the wheat packets are the ones whose data has first few bits zero. The same counter-
example shows that Definition 3 is also not enough.

The example AONT we constructed above does not however meet Boyko’s stronger
notion of security for AONTs [6], so the next question is whether Scheme 2 could be
proven secure under this stronger notion. However even with this stronger notion it is
unclear one can prove security. The reason is that the ciphertext contains the complete
output of the AONT, while the security property of the AONT pertains to a setting
where the adversary has no information about at least one block of the output of the
AONT. This makes it unclear how to do a reduction. Indeed, the security property of an
AONT does not seem to mesh well with what is required to prove security of Scheme 2.
We will see next that a positive statement can be made by considering a particular
AONT, namely the OAEP transform of Bellare and Rogaway [5]. But in general, as the
transform used in the initial step, an AONT seems to be neither sufficient nor necessary
for the security of Scheme 2.

The OAEP transform appeals to random oraclesG: {0, 1}n → {0, 1}m andH :
{0, 1}m → {0, 1}n wheren is the length of the OAEP seed andm as usual is the
message length. It takes as input anm-bit stringM and proceeds as follows–

Algorithm OAEPG,H(M)
r

R← {0, 1}n ; y ← G(r) ⊕M ; w← H(y)⊕ r ; Return w‖y

Boyko showed that OAEP is an AONT, but this will not help us here given the above dis-
cussion. Instead, we go back to the transform itself and prove the security of Scheme 2
whenAONT is set to OAEP.

As with any proof concerning OAEP, we work in the random oracle model of [4].
We must “lift” our definitions to allow all algorithms and parties, including the adver-
sary, access to the random oraclesG, H . Briefly, modifyExppriv

SE (A, b) in Definition 1
to begin by pickingG, H randomly. AllowEK andA oracle access toG, H . Allow
the scheme advantage to take extra parameters,Advpriv

SE (t, q, µ; qG, qH), these being
bounds on the number of queries made by the adversary to the oracles in question.

The bound below reflects the above intuition: it is inversely proportional to
(
s+s′

s

)
and also to2n. This shows that for OAEP the security is what one would have liked it
to be for a “good” AONT. The proof of Theorem 2 can be found in [1].

The Security of Chaffing and Winnowing 529

Theorem 2. Let n, m be integers with m a multiple of n. Let MAC: {0, 1}k×{0, 1}∗ →
{0, 1}l be a pseudorandom function. Let SE = (K, E ,D) be Scheme 2 using OAEP
as the AONT, with parameters n, s, s′ where s = m/n + 1. For any t, q we let
µ = nq(s− 1). Assume qH ≤ 2n/2 and qG ≤ (1/2) · (s+s′

s

)
. Then

Advpriv
SE (t, q, µ; qG, qH) ≤

2qH(
s+s′
s−1

) +
2qG + (q + 1)2 · [(s + s′)2 + 1]

2n
+ Advprf

MAC(t′, q′, µ′)

where t′ = t, q′ = q(s + s′) and µ′ = nq(s + s′).

5 A New Chaffing-and-Winnowing Scheme

Here we suggest an alternative scheme that has low data expansion and analyze its
advantage function. It returns to much more “standard” paradigms of encryption than
the scattering scheme. Simply apply an AONT to the message and then encrypt the
first block of the message. If the last encryption is done by chaffing-and-winnowing,
say using the bit-by-bit scheme, the whole scheme is also a chaffing-and-winnowing
scheme, since the AONT is keyless. The savings in bandwidth comes from the fact that
the number of bits encrypted using the bit-by-bit scheme is independent of the length
of the message.

Scheme 3. Let AONT be an all-or-nothing transform taking input messages of length
m and returning outputs of lengthsn. The output is viewed as a sequence ofn-bit
blocks. Letse = (K, e, d) be the bit-by-bit scheme of Scheme 1 with message space
{0, 1}n. The new scheme isSE = (K, E ,D) where

Algorithm EK(M)
M ′ ← AONT(M)
Let m′ be the first block ofM ′ andm′′ the rest
C1 ← eK(m′)
Return C1‖(m′′, MAC(K, m′′))

AlgorithmDK(C1‖(m′′, τ))
m′ ← dK(C1)
M ′ ← m′‖m′′

M ← AONT−1(M ′)
Return M

Note that the MAC attached tom′′ is irrelevant to security; it is only there in order to
make the final scheme a chaffing-and-winnowing scheme.

We now analyze the security of Scheme 3. Refer to Definition 3 for the definition
of the advantage function ofAONT and note thatL = 1 in this case, meaning we are
requiring security only in the case where the first block is the one not provided to the
adversary. A proof of the following theorem is in [1].

Theorem 3. Let MAC: {0, 1}k × {0, 1}∗ → {0, 1}l be a pseudorandom function
and let AONT be an all-or-nothing transform with input length m, output length sn.
Let SE = (K, E ,D) be Scheme 3 using AONT as the all-or-nothing transform and
Scheme 1 as se. Assume the counter in the latter is p-bits long. Then for any t, q, µ with
µ = qm and qn < 2p–

530 Mihir Bellare and Alexandra Boldyreva

Advpriv
SE (t, q, µ) ≤ 2 ·Advprf

MAC(t, q1, µ1) + Advaont
AONT,1(t)

where q1 = q(n + 1) and µ1 = qn(s + p).

A concrete instantiation can be obtained by using OAEP in the role of the AONT. The
security of this instantiation relies on the fact that OAEP is a secure AONT [6], and the
concrete security can be obtained by combining the above with the results in [6]. (In
that case we would have to lift all of the above to the random oracle model, but this is
easily done.)

Acknowledgments
We thank Ron Rivest and Daniel Bleichenbacher for helpful discussions, and the anony-
mous referees for their constructive comments.

The authors are supported in part by a 1996 Packard Foundation Fellowship in Sci-
ence and Engineering and NSF CAREER Award CCR-9624439.

References
1. M. BELLARE AND A. BOLDYREVA, “The security of chaffing and winnowing,” Full ver-

sion of this paper, available viahttp://www-cse.ucsd.edu/users/mihir.
2. M. BELLARE, A. DESAI, E. JOKIPII AND P. ROGAWAY, “A concrete security treatment of

symmetric encryption: Analysis of the DES modes of operation,”Proceedings of the 38th
Symposium on Foundations of Computer Science, IEEE, 1997.

3. M. BELLARE, J. KILIAN AND P. ROGAWAY, “The security of cipher block chaining,”
Advances in Cryptology – Crypto ’94, Lecture Notes in Computer Science Vol. 839,
Y. Desmedt ed., Springer-Verlag, 1994.

4. M. BELLARE AND P. ROGAWAY, “Random oracles are practical: a paradigm for designing
efficient protocols,”Proceedings of the 1st Annual Conference on Computer and Commu-
nications Security, ACM, 1993.

5. M. BELLARE, P. ROGAWAY, “Optimal asymmetric encryption - How to encrypt with RSA,”
Advances in Cryptology – Eurocrypt ’94, Lecture Notes in Computer Science Vol. 950,
A. De Santis ed., Springer-Verlag, 1994.

6. V. BOYKO, “On the security properties of OAEP as an all-or-nothing transform,”Advances
in Cryptology – Crypto ’99, Lecture Notes in Computer Science Vol. 1666, M. Wiener ed.,
Springer-Verlag, 1999.

7. R. CANETTI , Y. DODIS, S. HALEVI , E. KUSHILEVITZ, A. SAHAI , “Exposure-resilient
functions and all-or-nothing transforms,”Advances in Cryptology – Eurocrypt ’00, Lecture
Notes in Computer Science Vol. 1807, B. Preneel ed., Springer-Verlag, 2000.

8. A. DESAI, “The security of all-or-nothing encryption: protecting against exhaustive
key search,”Advances in Cryptology – Crypto ’00, Lecture Notes in Computer Science
Vol. 1880, M. Bellare ed., Springer-Verlag, 2000.

9. O. GOLDREICH, S. GOLDWASSER AND S. MICALI , “How to construct random func-
tions,”Journal of the ACM,Vol. 33, No. 4, 210–217, (1986).

10. S. GOLDWASSER AND S. MICALI , “Probabilistic encryption,”Journal of Computer and
System Science, Vol. 28, 1984, pp. 270–299.

11. R. RIVEST, “Chaffing and winnowing: Confidentiality without encryption,”http:
//theory.lcs.mit.edu/˜rivest/publications.html.

12. R. RIVEST, “all-or-nothing encryption and the package transform,”Proceedings of the 4th
Workshop on Fast Software Encryption, Lecture Notes in Computer Science Vol. 1267,
Springer-Verlag, 1997.

	The Security of Chaffing and Winnowing
	Introduction
	Background, Motivation, and Questions
	Defining Chaffing and Winnowing
	Security of Rivest's Schemes
	New Schemes
	Is Chaffing and Winnowing ``Encryption''?

	Symmetric Encryption, PRFs, and AONTs
	Defining Chaffing and Winnowing
	Analysis of Rivest's Schemes
	A New Chaffing-and-Winnowing Scheme
	Acknowledgments
	References

