
Attack for Flash MIX

Masashi Mitomo� and Kaoru Kurosawa

Tokyo Institute of Technology,
2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan

mitomo@flab.fujitsu.co.jp, kurosawa@ss.titech.ac.jp

Abstract. AMIX net takes a list of ciphertexts (c1, · · · , cN) and outputs
a permuted list of the plaintexts (m1, · · · , mN) without revealing the
relationship between (c1, · · · , cN) and (m1, · · · , mN). This paper shows
that the Jakobsson’s flash MIX of PODC’99, which was believed to be
the most efficient robust MIX net, is broken. The first MIX server can
prevent computing the correct output with probability 1 in our attack.
We also present a countermeasure for our attack.

1 Introduction

A MIX net takes a list of ciphertexts (c1, · · · , cN) of users 1, · · · , N and outputs a
permuted list of the plaintexts (m1, · · · ,mN) without revealing the relationship
between (c1, · · · , cN) and (m1, · · · ,mN). MIX nets have found many applications
in anonymous communication [4], election schemes [4,7,13,15] and payment sys-
tems [9].

The original MIX net was proposed by Chaum [4]. B.Pfitzmann and A.Pfitz-
mann, however, showed an attack by a sender, which is more complicated than
a simple repeated ciphertext attack [14].

Another problem of Chaum’s MIX net, based on RSA, is that the size of
each ciphertext ci is very long proportionally to the number of MIX servers v.
Park et al. overcame this problem by using ElGamal encryption scheme so that
the size of each ci became independent of v [13]. Almost all MIX nets proposed
after this paper are based on ElGamal encryption scheme.

A general method to achieve verifiability is to have each MIX server to prove
that he behaved correctly in zero knowledge. Sako and Kilian [15] showed such
an efficient proof system for Park et al.’s MIX net. This scheme is the first
universally verifiable MIX net.

On the other hand, Ogata et al. showed the first robust MIX net which is also
universally verifiable [12]. In this scheme, the computational cost of each MIX
server is O(κtN) and the external verifier’s cost is also O(κtN), where κ is the
security parameter and t denotes the number of malicious MIX servers.

At Eurocrypt’98, Abe showed a robust MIX net in which the external veri-
fier’s cost is reduced to O(κN) [1]. At the same time, Jakobsson showed a more
efficient robust MIX net, called practical MIX [8] (but not universally verifiable).

� He is currently working for Fujitsu Laboratories Ltd.

T. Okamoto (Ed.): ASIACRYPT2000, LNCS 1976, pp. 192–204, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Attack for Flash MIX 193

Instead of cut and choose methods, he introduced a method of so called repe-
tition robustness. However, this scheme was recently broken by Desmedt and
Kurosawa (DK attack) [5].

At PODC’99, Jakobsson proposed his second robust MIX net, called flash
MIX [10]. This scheme is the most efficient robust MIX net known so far which
satisfies v = O(t), where v is the number of MIX servers. (The MIX net recently
proposed by [5] requires v = O(t2).) In flash MIX, the computational cost of
each MIX server is only O(tN). The DK attack [5] for practical MIX [8] does
not work for flash MIX directly because two dummy elements are inserted into
the input list at the beginning of the protocol in flash MIX. Actually, Jakobsson
proved the security of flash MIX in [10, Theorem 1 and Theorem 2].

In this paper, however, we show that flash MIX is broken. In our attack, the
first MIX server can prevent computing the correct output with probability 1.
This means that his security proof is wrong. Our attack is a variant of the DK
attack for practical MIX [5]. We also present a countermeasure for our attack.
It will be a further work to study about the security of our countermeasure.

Flash MIX consists of the first re-encryption phase, the second re-encryption
phase and the unblinding protocol in which each MIX server proves that he
behaved correctly in the first and the second re-encryption phases. Now our
malicious first MIX server executes the first re-encryption phase honestly, but
cheats in the second re-encryption phase. He computes his invalid output lists
from not only his input lists of the second re-encryption phase but also the input
to the flash MIX itself so that no cheating is detected in the unblinding protocol.

Other related works. Abe showed MIX nets which are efficient for small N
[2,3]. In Abe’s MIX nets, the cost of each MIX server is O(tN logN). Jakobsson
and Juels showed a MIX net which has the same advantage in [11]. In their MIX
net, the cost of each MIX server is O(tN log2N). Since these complexities grow
faster in N than the other schemes, these schemes suit small N .

On the other hand, Desmedt and Kurosawa showed an MIX net in which the
cost of each MIX server is only O(N) while v = O(t2) [5].

2 Model of MIX Net

2.1 Model and Definitions

In the model of MIX nets, there exist three types of participants: users, a bulletin
board, and the MIX servers.

1. The users post encrypted messages (c1, · · · , cN) to the bulletin board.
2. After the bulletin board fills up, or after some other triggering event oc-

curs, the mix servers compute a randomly permuted list of decryptions
(m1, · · · ,mN) of all valid encryptions posted on the bulletin board.

MIX nets must satisfy privacy, verifiability and robustness. Suppose that at
most t among v MIX servers and at most N −2 among N senders are malicious.
Then we say that a MIX net satisfies :

194 Masashi Mitomo and Kaoru Kurosawa

– t-privacy if the relationship between (c1, · · · , cN) and (m1, · · · ,mN) is kept
secret.

– t-verifiability if an incorrect output of the MIX net is detected with over-
whelming probability.

– t-robustness if it can output (m1, · · · ,mN) correctly with overwhelming prob-
ability.

We say that a MIX net is t-resilient if it satisfies t-privacy, t-verifiability and
t-robustness.

2.2 ElGamal Based Encryption Scheme for Users

Let p be a safe prime, i.e., p, q be primes such that p = 2q + 1, and g be a
generator of Gq. Let y = gx mod p, where x is a secret key. The public key of
ElGamal encryption scheme is (p, q, g, y).

To encrypt a value m ∈ Gq, a random number r ∈u Zq is chosen and the
ciphertext (a, b) = (gr,myr) is calculated. For decryption, m = b/ax is calcu-
lated. (To guarantee that m ∈ Gq, we should let m = (M | p)M for an original
message M ∈ [1 . . . (p− 1)/2], where (M | p) is the Jacobi symbol of M .)

The MIX servers share a secret key x using a (t+1, v) threshold scheme [16],
where v denotes the number of MIX servers.

3 Flash MIX

Jakobsson proposed his second t-resilient MIX net, called flash MIX, at PODC’99
[10]. (His first t-resilient MIX net [8] was broken [5].) This scheme is the most
efficient robust MIX net known so far which satisfies v = O(t). (The MIX net
recently proposed by [5] requires v = O(t2).) In flash MIX, the computational
cost of each MIX server is only O(tN).

For (a, b), let
(c, d) = (agβ, byβ).

We say that (c, d) is a re-encryption of (a, b) and β is the re-encryption exponent.
For (a1, b1) and (a2, b2), we say that (a1a2, b1b2) is the product of (a1, b1) and
(a2, b2).

3.1 Functionality

The input to flash MIX is a list of ciphertexts

((a1, b1), · · · , (aN , bN)),

where (ai, bi) is an ElGamal encryption of a message mi with respect to the
public key (p, q, g, y). The output is a random permutation of

((á1, b́1), · · · , (áN , b́N)),

Attack for Flash MIX 195

where
(ái, b́i) = (aig

ri , biy
ri)

is a random re-encryption of (ai, bi). (ái, b́i) can later be decrypted by a (t+1, v)-
threshold decryption scheme.

Flash MIX starts with t + 1 MIX servers, say, MIX servers 1, · · · t + 1. If
cheating is detected during any step of the protocol, then a cheater detection
phase commences. In the cheater detection phase, a cheater is detected and
replaced. Afterwards, the protocol is restarted.

It consists of two subprotocols, the blinding protocol and the unblinding
protocol.

3.2 Blinding Protocol

Flash MIX first executes the blinding protocol as follows.

(1) Generation and insertion of dummies.
Two dummies (aN+1, bN+1) and (aN+2, bN+2) are constructed collectively by
all MIX servers such that aN+1, bN+1, aN+2 and bN+2 are random elements
of Gq. Let

L0 = ((a1, b1), · · · , (aN+2, bN+2)). (1)
(2) Duplication.

τ ≥ 2 copies of L0 are created, where

τ = 1− log2ε

2log2N
(2)

for ε which denotes the maximum failure probability. They are denoted by
L1,0, L2,0, · · · , Lτ,0.

(3) First re-encryption.
For j = 1, 2, · · · , t+ 1, MIX server j takes as input the lists

L1,(j−1), L2,(j−1), · · · , Lτ,(j−1).

He re-encrypts each element of each lists given to him, and forwards random
permutations of the resulting lists to the next server. His output lists are
denoted by

L1,j, · · · , Lτ,j.

The final result of this step is denoted by

´L1,0
�
= L1,t+1, · · · , ´Lτ,0

�
= Lτ,t+1.

Since at least one of the t+1 MIX servers is assumed to be honest, they are
randomly re-encrypted and permuted lists of L0.

(4) Second re-encryption.
The t+1 MIX servers execute similar re-encryption on input ´L1,0, · · · , ´Lτ,0.
The input lists of MIX server 1 are ´L1,0, · · · , ´Lτ,0 and the output lists are
denoted by ´L1,1, · · · , ´Lτ,1. The input lists of MIX server j ≥ 2 are denoted
by ´L1,(j−1), · · · , ´Lτ,(j−1) and the output lists are denoted by ´L1,j , · · · , ´Lτ,j.

196 Masashi Mitomo and Kaoru Kurosawa

1 t + 1L0 →

−→ L1,1 −→ · · · −→

−→ Lτ,1 −→ · · · −→

−→ L1,t+1(= L′
1,0)

−→ Lτ,t+1(= L′
τ,0)

...
...

Fig. 1. First re-encryption

1 t + 1

L′
τ,0 →

L′
1,0 → −→ L′

1,1 −→ · · · −→

−→ L′
τ,1 −→ · · · −→

−→ L′
1,t+1

−→ L′
τ,t+1

...
...

...

Fig. 2. Second re-encryption

3.3 Unblinding Protocol

After the blinding protocol, the unblinding protocol is executed in which each
MIX server proves that he behaved honestly in the blinding protocol.

(1) Verifying the first re-encryption.
Each MIX server reveals the re-encryption exponents and the random per-
mutation which he used in the first re-encryption. They are checked by the
other MIX servers.

(2) Aggregation.
After the above step, everyone can compute the aggregate permutations
Π1, · · · , Πτ and the aggregate re-encryption exponents βi,j of the first re-
encryption such that

´L1,0 = Π1

(
(a1g

β1,1 , b1y
β1,1), · · · , (aN+2g

β1,N+2, bN+2y
β1,N+2)

)
,

... (3)
´Lτ,0 = Πτ

(
(a1g

βτ,1 , b1y
βτ,1), · · · , (aN+2g

βτ,N+2, bN+2y
βτ,N+2)

)
(3) Verification of dummy values.

In this phase, each MIX server proves that he behaved honestly about the
two dummies in the second re-encryption.

(3.1) MIX server 1 publishes how he permuted the two dummies in ´L1,1, · · · , ´Lτ,1.
(Note that after the verifying the first re-encryption phase, he knows the
positions of the two dummies in ´L1,0, · · · , ´Lτ,0.)

Attack for Flash MIX 197

Next, he reveals the re-encryption exponent he used for the second
dummy. He also proves that he knows the re-encryption exponent he
used for the first dummy in zero-knowledge.
They are checked by the other MIX servers.

(3.2) MIX server 2 behaves similarly to MIX server 1. (Note that from Step
3.1, he knows the positions of the two dummies in ´L1,1, · · · , ´Lτ,1.)

(3.3) MIX server 3, · · · , t+ 1 behave similarly.
(4) Verification of products.

In this phase, each MIX server proves that he behaved honestly about the
product of all elements except the second dummy of each list in the second
re-encryption.

(4.1) MIX server 1 behaves as follows. For i = 1, 2, · · · , τ , let

(Ai, Bi)
�
= the product of all elements of Ĺi,0

except the second dummy.

(Ci, Di)
�
= the product of all elements of Ĺi,1

except the second dummy.

Then it holds that

Ci = Aig
µi and Di = Biy

µi (4)

for some µi. MIX server 1 publishes such µi, for 1 ≤ i ≤ τ . The other
MIX servers verify that eq.(4) holds for 1 ≤ i ≤ τ .

(4.2) MIX servers 2, 3, · · · , t+ 1 behave similarly.
(5) Verification of relative sorting.

Each MIX server j proves that ´L1,j is a permuted and re-encrypted version
of Ĺi,j for 2 ≤ i ≤ τ in the second re-encryption.
Let f be a keyed function that can be modelled by a random oracle. For
simplicity, we assume that the range and the domain of f are equal but for
a negligible fraction of values.

(5.1) MIX server 1 behaves as follows. Let

´L1,1 = ((á1, b́1), · · · , (´aN+2, ´bN+2)),

Ĺi,1 = ((ć1, d́1), · · · , (´cN+2, ´dN+2)),

Then ´L1,1 is a permuted and re-encrypted version of Ĺi,1 for 2 ≤ i ≤ τ .
That is,

´L1,1 = Φi

(
(ć1gγi,1 , d́1y

γi,1), · · · , (´cN+2g
γi,N+2, ´dN+2y

γi,N+2)
)

(5)

for some Φi and {γi,j}. Note that MIX server 1 can compute such Φi

and {γi,j} from Πi, {βi,j} of eq.(3) and the random numbers he used in
the second re-encryption.

198 Masashi Mitomo and Kaoru Kurosawa

Now MIX server 1 proves that eq.(5) holds by revealing the so called tag
lists T1,1, · · · , Tτ,1 and the so called offset lists E2,1, · · · , Eτ,1 such that

T1,1 = (R1, · · · , RN+2),
Ti,1 = Φ−1

i (R1, · · · , RN+2) for 2 ≤ i ≤ τ,

Ei,1 = Φ−1
i (γi,1, · · · , γi,N+2) for 2 ≤ i ≤ τ,

where R1, · · · , RN+2 are unique elements in the domain of f . (Revealing
the tag lists and the offset lists is almost equivalent to revealing Φi and
{γi,j}).
The other MIX servers verify that eq.(5) holds by using the above tag
lists and offset lists.

(5.2) Each MIX server i(≥ 2) applies the function f , keyed with a secret
and random key, to all the elements of his input tag lists. His tag lists
are obtained by applying the permutation he used in the second re-
encryption to the above updated lists. He also generates his offset lists
by using his input tag lists and input offset lists. He then reveals his tag
lists and offset lists. The other MIX servers verify them.

(6) Output of flash MIX.
If no cheater was found, then dummies are removed from the re-encrypted
and permuted first list copy, and the resulting list is output.

3.4 Security

The DK attack [5] for practical MIX [8] does not work for flash MIX directly
because two dummy elements are inserted into the input list at the beginning of
the protocol in flash MIX. Actually, Jakobsson argued the security of flash MIX
as follows [10, Proof of Theorem 1].

In order to successfully alter some elements in the final output, the adver-
sary has to alter at least two elements of the re-encrypted and permuted first
list copy, none of which are the second dummy. (See Step (4) and (6) of the
previous subsection.) In order for this not to be noticed in the step where lists
are relatively sorted and compared, the adversary has to select the same two
elements from the remaining τ − 1 list copies.

He claimed that this probability was smaller than ε. (See eq.(2) for ε.) In the
next section, however, we show that this claim is not true.

4 Attack for Flash MIX

In this section, we show that MIX server 1 can prevent computing the correct
output.

Attack for Flash MIX 199

4.1 Attack for the Blinding Protocol

In the blinding protocol of flash MIX, our malicious MIX server 1 executes the
first re-encryption honestly, but cheats in the second re-encryption. He computes
his invalid output lists L′

1,1, · · · , L′
τ,1 from not only his input lists L′

1,0, · · · , L′
τ,0

of the second re-encryption phase but also the input to the flash MIX itself (L0

of eq.(1)). See Fig.3 and Fig.4.

Now our malicious MIX server 1 executes the second re-encryption phase as
follows.

(1) MIX server 1 first chooses random numbers α1, · · · , αN such that

α1 + · · ·+ αN = 1mod q. (6)

(2) For 1 ≤ i ≤ τ , L′
i,0 is written as follows.

Ĺi,0 = Πi

(
(a′i,1, b

′
i,1), . . . , (a

′
i,N+2, b

′
i,N+2)

)
where Πi is the aggregate permutation,

a′i,k
�
= akg

βi,k , b′i,k
�
= bky

βi,k . (7)

and βi,k is the aggregate re-encryption exponent. (See eq.(3).)

1 t + 1L0 →

−→ L1,1 −→ · · · −→

−→ Lτ,1 −→ · · · −→

−→ L1,t+1(= L′
1,0)

−→ Lτ,t+1(= L′
τ,0)

...
...

Fig. 3. First re-encryption of our attack

MIX server 1 does not know Πi. However, note that he can compute the
products a′i,1 · · ·a′i,N+2 and b′i,1 · · · b′i,N+2. Now MIX server 1 computes

Ãi
�
= a′i,1 · · · a′i,N+2/aN+1aN+2 and B̃i

�
= b′i,1 · · · b′i,N+2/bN+1bN+2, (8)

where (aN+1, bN+1) and (aN+2, bN+2) are the two dummy elements which are
inserted into the input list at the beginning of the protocol (see eq.(1)).
(3) Next for i = 1, . . . , τ , MIX server 1 publishes

Ĺi,1
�
= θi

(
(Ãi

α1
gti,1 , B̃i

α1
yti,1), · · · , (Ãi

αN

gti,N , B̃i

αN

yti,N),

(aN+1g
ti,N+1, bN+1y

ti,N+1), (aN+2g
ti,N+2, bN+2y

ti,N+2)
)

(9)

where θi and ti,1, · · · , ti,N+2 are randomly chosen by MIX sever 1.

200 Masashi Mitomo and Kaoru Kurosawa

1 t + 1

L′
τ,0 →

L′
1,0 →

L0 →
−→ L′

1,1 −→ · · · −→

−→ L′
τ,1 −→ · · · −→

−→ L′
1,t+1

−→ L′
τ,t+1

...
...

...

Fig. 4. Second re-encryption of our attack

Let

Ã
�
= a1 · · · aN , B̃

�
= b1 · · · bN . (10)

Then note that for i = 1, . . . , τ , Ĺi,1 is a randomly re-encrypted and permuted
list of (ã1, b̃1), · · · , (ãN , b̃N), (aN+1, bN+1), (aN+2, bN+2), where

(ã1, b̃1) = (Ãα1 , B̃α1)
...

(ãN , b̃N) = (ÃαN , B̃αN).

4.2 Attack for the Unblinding Protocol

We next show that MIX server 1 can behave properly in each phase of the
unblinding protocol so that no cheating is detected.

Theorem 1. MIX server 1 can behave properly so that the verifying the first
re-encryption phase ends successfully.

Proof. Our MIX server 1 executed the first re-encryption phase honestly. There-
fore, he can execute the verifying the first re-encryption phase correctly. 	

Theorem 2. MIX server 1 can behave properly so that the verification of dummy
values phase ends successfully.

Proof. Everyone knows Πi of eq.(3). MIX server 1 knows θi of eq.(9). Therefore,
MIX server 1 knows how the two dummies are permuted from Ĺi,0 to Ĺi,1. Hence,
MIX server 1 can publish a description of how the two dummies are permuted
from Ĺi,0 to Ĺi,1 for 1 ≤ i ≤ τ .

Next let

zi,N+1 = ti,N+1 − βi,N+1

zi,N+2 = ti,N+2 − βi,N+2

Attack for Flash MIX 201

where βi,j are defined in eq.(3) and ti,j are defined in eq.(9). Then zi,N+1 and
zi,N+2 are the re-encryption exponents of the two dummies from Ĺi,0 to Ĺi,1.

MIX server 1 can compute zi,N+1 and zi,N+2 because he know {ti,j} and
{βi,j}. Therefore, he can reveal zi,N+2. He also proves that he knows zi,N+1 in
zero-knowledge.

Then the verification of dummy values phase ends successfully. 	

Theorem 3. MIX server 1 can behave properly so that the verification of prod-
ucts phase ends successfully.

Proof. From eq.(3), it holds that

Ai = a1 · · · aN+1 · gβi,1+···+βi,N+1

Bi = b1 · · · bN+1 · yβi,1+···+βi,N+1

On the other hand, from eq.(9), it holds that

Ci = (Ãi

α1
gti,1) · · · (Ãi

αN

gti,N) · (aN+1g
ti,N+1)

= Ãi

α1+···+αN · aN+1 · gti,1+···+ti,N+1

= Ãi · aN+1 · gti,1+···+ti,N+1 (11)

from eq.(6). Substitute eq.(7) into eq.(8). Then we have

Ãi = a′i,1 · · · a′i,N+2/aN+1aN+2

= a1g
βi,1 · · ·aN+2g

βi,N+2/aN+1aN+2

= a1 · · ·aN · gβi,1+···+βi,N+2 (12)

Further, substitute eq.(12) into eq.(11). Then we have

Ci = a1 · · ·aN · gβi,1+···+βi,N+2 · aN+1 · gti,1+···+ti,N+1

= a1 · · ·aN+1 · g(βi,1+···+βi,N+2)+(ti,1+···+ti,N+1)

Similarly, we have

Di = b1 · · · bN+1 · y(βi,1+···+βi,N+2)+(ti,1+···+ti,N+1)

Now let
µi = ti,1 + · · ·+ ti,N+1 + βi,N+2. (13)

Then it is clear that eq.(4) is satisfied.
MIX server 1 can compute the above µi because everyone knows βi,N+2 and

{ti,j} is chosen by MIX server 1. Note that βi,N+2 is computable for everyone
by aggregating the re-encryption exponents of the second dummy, which are
published in the verification of dummy values. He reveals this µi. Then the
verification of products phase ends successfully. 	

202 Masashi Mitomo and Kaoru Kurosawa

Theorem 4. MIX server 1 can behave properly so that the verification of rela-
tive sorting phase ends successfully.

Proof. Substitute eq.(12) into eq.(9). Then we have

Ĺi,1
�
= θi

(
(Ãα1gti,1+α1·(βi,1+···+βi,N+2), B̃α1yti,1+α1·(β1,1+···+β1,N+2)),

...
(ÃαN gti,1+αN ·(β1,1+···+β1,N+2), B̃αN yti,1+αN ·(βi,1+···+βi,N+2)),

(aN+1g
ti,N+1, bN+1y

ti,N+1),

(aN+2g
ti,N+2, bN+2y

ti,N+2)
)

where Ã and B̃ is defined in eq.(10). Let

γi,1
�= t1,1 − ti,1 + α1 · (β1,1 + · · ·+ β1,N+2)− α1 · (βi,1 + · · ·+ βi,N+2),
...

γi,N
�
= t1,N − ti,N + αN · (β1,1 + · · ·+ β1,N+2)− αN · (βi,1 + · · ·+ βi,N+2),

where ti,j is defined in eq.(9). Note that MIX server 1 can compute γi,1, · · · , γi,N

for 2 ≤ i ≤ τ .
Now MIX server 1 reveals the tag lists T1,1, · · · , Tτ,1 and the offset lists

E2,1, · · · , Eτ,1 such that

Ti,1 = θi(R1, · · · , RN+2) for 1 ≤ i ≤ τ,

Ei,1 = θi(γi,1, · · · , γi,N+2) for 2 ≤ i ≤ τ,

where θi is defined in eq.(9) and R1, · · · , RN+2 are unique elements in the domain
of f . It is easy to see that eq.(5) is satisfied with Φi = θ1θ

−1
i .

Therefore, the verification of relative sorting phase ends successfully. 	

Theorem 1 ∼ 4 show that each phase of the unblinding protocol ends suc-

cessfully and no cheating is detected.

4.3 Output of Flash MIX

Let the input to flash MIX be a list of ciphertexts

((a1, b1), · · · , (aN , bN)),

where (ai, bi) is an ElGamal encryption of a message mi with respect to the
public key (p, q, g, y).

Then after threshold decryption, flash MIX must output a random permu-
tation of

(m1, · · · ,mN).

Attack for Flash MIX 203

However, in our attack, flash MIX outputs

((m1 · · ·mN)α1 , · · · , (m1 · · ·mN)αN)

which is clearly different from (m1, · · · ,mN). Therefore, flash MIX does not
compute the correct output without being detected.

5 Countermeasure

In this section, we show a countermeasure for our attack. The blinding protocol
is unchanged. The new unblinding protocol is as follows.

(1) Open dummies of the first re-encryption.
Each MIX server publishes how he permuted the two dummies in the first
re-encryption. He next proves that he knows the re-encryption exponents of
the two dummies in zero-knowledge.

(2) Verification of dummy values in the second re-encryption.
Unchanged.

(3) Verification of products in the second re-encryption.
Unchanged.

(4) Verifying the first re-encryption.
Unchanged.

(5) Aggregation.
(6) Verification of relative sorting in the second re-encryption.

Unchanged.

Note that

1. (1) is newly introduced. In (1), the re-encryption exponent of the second
dummy is not revealed.

2. (4) was put at the beginning of the unblinding protocol in the original
scheme.

Then our attack does not work. Theorem 1, 2 and 4 hold. However, Theorem
3 does not hold.

It will be a further work to study about the security of our countermeasure.

References

1. M. Abe, “Universally Verifiable Mix-net with Verification Work Independent of
the Number of Mix-centers,” Eurocrypt ’98, pp. 437–447.

2. M. Abe, “A Mix-Network on permutation networks,” ISEC Technical report 99-10
(in Japanese) (May, 1999)

3. M. Abe, “Mix-Networks on permutation networks,” Asiacrypt ’99, pp. 258–273.
4. D. Chaum, “Untraceable electronic mail, return addresses, and digital

pseudonyms,” Communications of the ACM, ACM 1981, pp. 84-88 “Undeniable
Signatures,”

204 Masashi Mitomo and Kaoru Kurosawa

5. Y.Desmedt and K.Kurosawa, “How to break a practical MIX and design a new
one”, Eurocrypt’2000.

6. T. ElGamal, “A Public-Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms,” Crypto ’84, pp. 10-18

7. A. Fujioka, T. Okamoto and K. Ohta, “A practical secret voting scheme for large
scale elections,” Auscrypt ’92, pp. 244-251

8. M. Jakobsson, “A practical MIX,” Eurocrypt ’98, pp. 448–461.
9. M. Jakobsson and D. M’Raihi, “Mix-based Electronic Payments,” SAC’98, pp.

157–173.
10. M. Jakobsson, “Flash Mixing,” PODC’99, pp. 83–89.
11. M. Jakobsson and A. Juels “Millimix: Mixing in small batches,” DIMACS Technical

report 99-33 (June 1999)
12. W. Ogata, K. Kurosawa, K. Sako, K. Takatani, “Fault Tolerant Anonymous Chan-

nel,” ICICS ’97, pp. 440-444
13. C. Park, K. Itoh, K. Kurosawa, “All/nothing election scheme and anonymous chan-

nel,” Eurocrypt ’93, pp. 248-259
14. B. Pfitzmann and A. Pfitzmann. “How to break the direct RSA-implementation

of MIXes,” Eurocrypt ’89, pp. 373-381
15. K. Sako, J. Kilian, “Receipt-Free Mix-Type Voting Scheme,” Eurocrypt ’95, pp.

393-403
16. A. Shamir, “How to Share a Secret,” Communications of the ACM, Vol. 22, 1979,

pp. 612-613

	Attack for Flash MIX
	Introduction
	Model of MIX Net
	Model and Definitions
	ElGamal Based Encryption Scheme for Users

	Flash MIX
	Functionality
	Blinding Protocol
	Unblinding Protocol
	Security

	Attack for Flash MIX
	Attack for the Blinding Protocol
	Attack for the Unblinding Protocol
	Output of Flash MIX

	Countermeasure
	References

