
Cryptanalytic Time/Memory/Data Tradeoffs for
Stream Ciphers

Alex Biryukov and Adi Shamir

Computer Science Department
The Weizmann Institute
Rehovot 76100, Israel.

Abstract. In 1980 Hellman introduced a general technique for breaking
arbitrary block ciphers with N possible keys in time T and memory M
related by the tradeoff curve TM2 = N2 for 1 ≤ T ≤ N . Recently,
Babbage and Golic pointed out that a different TM = N tradeoff attack
for 1 ≤ T ≤ D is applicable to stream ciphers, where D is the amount
of output data available to the attacker. In this paper we show that a
combination of the two approaches has an improved time/memory/data
tradeoff for stream ciphers of the form TM2D2 = N2 for any D2 ≤
T ≤ N . In addition, we show that stream ciphers with low sampling
resistance have tradeoff attacks with fewer table lookups and a wider
choice of parameters.
Keywords: Cryptanalysis, stream ciphers, time/memory tradeoff at-
tacks.

1 Introduction

There are two major types of symmetric cryptosystems: Block ciphers (which
encrypt a plaintext block into a ciphertext block by mixing it in an invertible
way with a fixed key), and stream ciphers (which use a finite state machine
initialized with the key to produce a long pseudo random bit string, which is
XOR’ed with the plaintext to obtain the ciphertext).

Block and stream ciphers have different design principles, different attacks,
and different measures of security. The open cryptanalytic literature contains
many papers on the resistance of block ciphers to differential and linear attacks,
on their avalanche properties, on the properties of Feistel or S-P structures,
on the design of S-boxes and key schedules, etc. The relatively few papers on
stream ciphers tend to concentrate on particular ciphers and on particular at-
tacks against them. Among the few unifying ideas in this area are the use of linear
feedback shift registers as bit generators, and the study of the linear complexity
and correlation immunity of the ciphers.

In this paper we concentrate on a general type of cryptanalytic attack known
as a time/memory tradeoff attack. Such an attack has two phases: During the
preprocessing phase (which can take a very long time) the attacker explores the
general structure of the cryptosystem, and summarizes his findings in large tables
(which are not tied to particular keys). During the realtime phase, the attacker

T. Okamoto (Ed.): ASIACRYPT2000, LNCS 1976, pp. 1–13, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

2 Alex Biryukov and Adi Shamir

is given actual data produced from a particular unknown key, and his goal is to
use the precomputed tables in order to find the key as quickly as possible.

In any time-memory tradeoff attack there are five key parameters:

– N represents the size of the search space.
– P represents the time required by the preprocessing phase of the attack.
– M represents the amount of random access memory (in the form of hard

disks or DVD’s) available to the attacker.
– T represents the time required by the realtime phase of the attack.
– D represents the amount of realtime data available to the attacker.

2 Tradeoff Attacks on Block and Stream Ciphers

In the case of block ciphers, the size N of the search space is the number of
possible keys. We assume that the number of possible plaintexts and ciphertexts
is also N , and that the given data is a single ciphertext block produced from a
fixed chosen plaintext block. The best known time/memory tradeoff attack is due
to Hellman [5]. It uses any combination of parameters which satisfy the following
relationships: TM2 = N2, P = N , D = 1 (see Section 3 for further details). The
optimal choice of T and M depends on the relative cost of these computational
resources. By choosing T = M , Hellman gets the particular tradeoff point T =
N2/3 and M = N2/3.

Hellman’s attack is applicable to any block cipher whose key to ciphertext
mapping (for a fixed plaintext) behaves as a random function f over a space of
N points. If this function happens to be an invertible permutation, the tradeoff
relation becomes TM = N , which is even better. An interesting property of
Hellman’s attack is that even if the attacker is given a large number D of chosen
plaintext/ciphertext pairs, it is not clear how to use them in order to improve
the attack.

Stream ciphers have a very different behavior with respect to time/memory
tradeoff attacks. The size N of the search space is determined by the number
of internal states of the bit generator, which can be different from the number
of keys. The realtime data typically consists of the first D pseudorandom bits
produced by the generator, which are computed by XOR’ing a known plaintext
header and the corresponding ciphertext bits (there is no difference between a
known and a chosen plaintext attack in this case). The goal of the attacker is to
find at least one of the actual states of the generator during the generation of
this output, after which he can run the generator forwards an unlimited number
of steps, produce all the later pseudorandom bits, and derive the rest of the
plaintext. Note that in this case there is no need to run the generator backwards
or to find the original key, even though this is doable in many practical cases.

The simplest time/memory tradeoff attack on stream ciphers was indepen-
dently described by Babbage [2] and Golic [4], and will be referred to as the BG
attack. It associates with each one of the N possible states of the generator the
string consisting of the first log(N) bits produced by the generator from that
state. This mapping f(x) = y from states x to output prefixes y can be viewed as

Cryptanalytic Time/Memory/Data Tradeoffs for Stream Ciphers 3

a random function over a common space of N points, which is easy to evaluate
but hard to invert. The goal of the attacker is to invert it on some substring
of the given output, in order to recover the corresponding internal state. The
preprocessing phase of the attack picks M random xi states, computes their
corresponding yi output prefixes, and stores all the (xi, yi) pairs in a random
access memory, sorted into increasing order of yi. The realtime phase of the at-
tack is given a prefix of D + log(N) − 1 generated bits, and derives from it all
the D possible windows y1, y2, ..., yD of log(N) consecutive bits (with overlaps).
It lookups each yj from the data in logarithmic time in the sorted table. If at
least one yj is found in the table, its corresponding xj makes it possible to de-
rive the rest of the plaintext by running the generator forwards from this known
state1. The threshold of success for this attack can be derived from the birth-
day paradox, which states that two random subsets of a space with N points
are likely to intersect when the product of their sizes exceeds N . If we ignore
logarithmic factors, this condition becomes DM = N where the preprocessing
time is P = M and the attack time is T = D. This represents one particular
point on the time/memory tradeoff curve TM = N . By ignoring some of the
available data during the actual attack, we can reduce T from D towards 1, and
thus generalize the tradeoff to TM = N and P = M for any 1 ≤ T ≤ D.

This TM = N tradeoff is similar to Hellman’s TM = N tradeoff for random
permutations and better than Hellman’s TM2 = N2 tradeoff for random func-
tions (when T = M we get T = M = N1/2 instead of T = M = N2/3). However,
this formal comparison is misleading since the two tradeoffs are completely dif-
ferent: they are applicable to different types of cryptosystems (stream vs. block
ciphers), are valid in different parameter ranges (1 ≤ T ≤ D vs. 1 ≤ T ≤ N),
and require different amounts of data (about D bits vs. a single chosen plain-
text/ciphertext pair).

To understand the fundamental difference between tradeoff attacks on block
ciphers and on stream ciphers, consider the problem of using a large value of
D to speed up the attack. The mapping defined by a block cipher has two
inputs (key and plaintext block) and one output (ciphertext block). Since each
precomputed table in Hellman’s attack on block ciphers is associated with a
particular plaintext block, we cannot use a common table to simultaneously
analyse different ciphertext blocks (which are necessarily derived from different
plaintext blocks during the lifetime of a single key). The mapping defined by a
stream cipher, on the other hand, has one input (state) and one output (an ouput
prefix), and thus has a single “flavour”: When we try to invert it on multiple
output prefixes, we can use the same precomputed tables in all the attempts.
As a result, tradeoff attacks on stream ciphers can be much more efficient than
tradeoff attacks on block ciphers when D is large, but this possibility had not
been explored so far in the research literature.

1 Note that yj may have multiple predecessors, and thus xj may be different from the
state we look for. However, it can be shown that these “false alarms” increase the
complexity of the attack by only a small constant factor.

4 Alex Biryukov and Adi Shamir

3 Combining the Two Tradeoff Attacks

In this section we show that it is possible to combine the two types of tradeoff
attacks to obtain a new attack on stream ciphers whose parameters satisfy the
relation P = N/D and TM2D2 = N2 for any D2 ≤ T ≤ N . A typical point
on this tradeoff relation is P = N2/3 preprocessing time, T = N2/3 attack
time, M = N1/3 disk space, and D = N1/3 available data. For N = 2100 the
parameters P = T = 266 and M = D = 233 are all (barely) feasible, whereas the
Hellman attack with T = M = N2/3 = 266 requires an unrealistic amount of disk
space M , and the BG attack with T = D = N2/3 = 266 and M = N1/3 = 233

requires an unrealistic amount of data D.

3.1 Hellman’s Time/Memory Tradeoff Attack on Block Ciphers

The starting point of the new attack on stream ciphers is Hellman’s original
tradeoff attack on block ciphers, which considers the random function f that
maps the key x to the ciphertext block y for some fixed chosen plaintext. This f is
easy to evaluate but hard to invert, since the problem of computing x = f−1(y) is
exactly the cryptanalytic problem of deriving the key x from the given ciphertext
block y.

To perform this difficult inversion of f with an algorithm which is faster than
exhaustive search, Hellman uses a preprocessing stage which tries to cover the N
points of the space with a rectangular m×t matrix whose rows are long paths ob-
tained by iterating the function f t times on m randomly chosen starting points.
The startpoints are described by the leftmost column of the matrix, and the
corresponding endpoints are described by the rightmost column of the matrix
(see Fig. 1). The output of the preprocessing stage is the collection of (start-
point, endpoint) pairs of all the chosen paths, sorted into increasing endpoint
values. During the actual attack, we are given a value y and are asked to find its
predecessor x under f . If this x is covered by one of the precomputed paths, the
algorithm repeatedly applies f to y until it reaches the stored endpoint, jumps
to its associated startpoint, and repeatedly applies f to the startpoint until it
reaches y again. The previous point it visits is the desired x.

A single matrix cannot efficiently cover all the N points, (in particular, the
only way we can cover the approximately N/e leaves of a random directed graph
is to choose them as starting points). As we add more rows to the matrix,
we reach a situation in which we start to re-cover points which are already
covered, which makes the coverage increasingly wasteful. To find this critical
value of m, assume that the first m paths are all disjoint, but the next path
has a common point with one of the previous paths. The first m paths contain
exactly mt distinct points (since they are assumed to have no repetitions), and
the additional path is likely to contain exactly t distinct points (assuming that t
is less than

√
N). By the birthday paradox, the two sets are likely to be disjoint

as long as t · mt ≤ N , and thus we choose m and t which satisfy the relation
mt2 = N , which we call the matrix stopping rule.

Cryptanalytic Time/Memory/Data Tradeoffs for Stream Ciphers 5

length t

m
startpoints

m
endpoints

Fig. 1. Hellman’s Matrix

A single m × t matrix with mt2 = N covers only a fraction of mt/N =
1/t of the space, and thus we need t “unrelated” matrices to cover the whole
space. Hellman’s great insight was the observation that we can use variants fi

of the original f defined by fi(x) = hi(f(x)) where hi is some simple output
modification (e.g., reordering the bits of f(x)). These modified variants of f
have the following properties:

1. The points in the matrices of fi and fj for i �= j are essentially independent,
since the existence of a common point in two different matrices does not
imply that subsequent points on the two paths must also be equal. Conse-
quently, the union of t matrices (each covering mt points) is likely to contain
a fixed fraction of the space.

2. The problem of computing x from the given y = f(x) can be solved by
inverting any one of the modified functions fi over the modified point yi =
fi(x) = hi(f(x).

3. The value of yi = fi(x) can be computed even when we do not know x by
applying hi to the given y = f(x).

The total precomputation requires P ≈ N time, since we have to cover a
fixed fraction of the space in all the precomputed paths. Each matrix covers
mt points, but can be stored in m memory locations since we only keep the
startpoint and endpoint of each path. The total memory required to store the
t matrices is thus M = mt. The given y is likely to be covered by only one of
the precomputed matrices, but since we do not know where it is located we have
to perform t inversion attempts, each requiring t evaluations of some fi. The
total time complexity of the actual attack is thus T = t2. To find the tradeoff
curve between T and M , we use the matrix stopping rule mt2 = N to conclude
that TM2 = t2 · m2t2 = N2. Note that in this tradeoff formula the time T can
be anywhere in the range 1 ≤ T ≤ N , but the space M should be restricted

6 Alex Biryukov and Adi Shamir

to N1/2 ≤ M ≤ N , since otherwise T > N and thus the attack is slower than
exhaustive search.

3.2 An Improved Attack on Stream Ciphers

As explained earlier in this paper, the main difference between tradeoff attacks
on block ciphers and on stream ciphers is that in a block cipher each given
ciphertext requires the inversion of a different function, whereas in a stream
cipher all the given output prefixes can be inverted with respect to the same
function by using the same precomputed tables.

To adapt Hellman’s attack from block ciphers to stream ciphers, we use the
same basic approach of covering the N points by matrices defined by multi-
ple variants fi of the function f which represents the state to prefix mapping.
Note that partially overlapping prefixes do not necessarily represent neighboring
points in the graph defined by the iterations of f , and thus they can be viewed
as unrelated random points in the graph. The attack is successful if any one
of the D given output values is found in any one of the matrices, since we can
then find some actual state of the generator which can be run forward beyond
the known prefix of output bits. We can thus reduce the total number of points
covered by all the matrices from about N to N/D points, and still get (with
high probability) a collision between the stored and actual states.

There are two possible ways to reduce the number of states covered by the
matrices: By making each matrix smaller, or by choosing fewer matrices. Since
each evaluation step of fi adds m states to the coverage, it is wasteful to choose m
or t which are smaller than the maximum values allowed by the matrix stopping
rule mt2 = N . Our new tradeoff thus keeps each matrix as large as possible,
and reduces the number of matrices from t to t/D in order to decrease the total
coverage of all the matrices by a factor of D. However, this is possible only when
t ≥ D, since if we try to reduce the number of tables to less than 1, we are forced
to use suboptimal values of m and t, and thus enter a less efficient region of the
tradeoff curve.

Each matrix in the new attack requires the same storage size m as before,
but the total memory required to store all the matrices is reduced from M = mt
to M = mt/D. The total preprocessing time is similarly reduced from P = N to
P = N/D, since we have to evaluate only 1/D of the previous number of paths.
The attack time T is the product of the number of matrices, the length of each
path, and the number of available data points, since we have to iterate each one
of the t/D functions fi on each one of the D given output prefixes up to t times.
This product is T = t2, which is the same as in Hellman’s original attack.

To find the time/memory/data tradeoff in this attack, we again use the ma-
trix stopping rule mt2 = N in order to eliminate the parameters m and t from
the various expressions. The preprocessing time is P = N/D, which is already
free from these parameters. The time T = t2, memory M = mt/D, and data D
clearly satisfy the invariant relationship:

TM2D2 = t2 · (m2t2/D2) · D2 = m2t4 = N2

Cryptanalytic Time/Memory/Data Tradeoffs for Stream Ciphers 7

This relationship is valid for any t ≥ D, and thus for any D2 ≤ T ≤ N . In
particular, we can use the parameters P = T = N2/3, M = D = N1/3, which
seems to be practical for N up to about 100.

4 Time/Memory/Data Tradeoff Attacks with Sampling

One practical problem with tradeoff attacks is that random access to a hard
disk requires about 8 milliseconds, whereas a computational step on a fast PC
requires less than 2 nanoseconds. This speed ratio of four million makes it crucial
to minimize the number of disk operations we perform, in addition to reducing
the number of evaluations of fi. An old idea due to Ron Rivest was to reduce
the number of table lookups in Hellman’s attack by defining a subset of special
points whose names start with a fixed pattern such as k zero bits.

Special points are easy to generate and to recognize. During the preprocessing
stage of Hellman’s attack, we start each path from a randomly chosen point, and
stop it only when we encounter another special point (or enter a loop, which is
unlikely when t ≤ √

N). Consequently, we know that the disk contains only
special endpoints. If we choose k = log(t), the expected length of each path
remains t (with some variability), and the set of mt endpoints we store in all the
t tables contains a large fraction of the N/t possible special points.

The main advantage of this approach is that during the actual attack, we
have to perform only one expensive disk operation per path (when we encounter
the first special point on it). The number of evaluations of fi remains T = t2,
but the number of disk operations is reduced from t2 to t, which makes a huge
practical difference.

Can we use a similar sampling of special points in tradeoff attacks on stream
ciphers? Consider first the case of the BG tradeoff with TM = N , P = M ,
and 1 ≤ T ≤ D. We say that an output prefix is special if it starts with a
certain number of zero bits, and that a state of the stream cipher is special if
it generates a special output prefix. We would like to store in the disk during
preprocessing only special pairs of (state, output prefix). Unlike the case of
Hellman’s attack (where special states appeared on sufficiently long paths with
reasonable probability, and acted as natural path terminators), in the BG attack
we deal with degenerate paths of length 1 (from a state to its immediate output
prefix), and thus we have to use trial and error in order to find special states.

Assume that the ratio between the number of special states and all the states
is R, where 0 < R < 1. Then to find the M special states we would like to store
during preprocessing, we have to try a much larger number M/R of random
states, which increases the preprocessing time from P = M to P = M/R. The
attack time reduces from T = D to T = DR, since only the special points in the
given data (which are very easy to spot) have to be looked up in the disk. To
make it likely to have a collision between the M special states stored in the disk
and the DR special states in the data, we have to apply the birthday paradox
to the smaller set of NR special states to obtain MDR = NR. The invariant
satisfied for all the possible values of R is thus

8 Alex Biryukov and Adi Shamir

TP = MD = N for 1 ≤ T ≤ D

An interesting consequence of this tradeoff formula is that the sampling tech-
nique had turned the original BG time/memory tradeoff (TM = N) into two
independent time/preprocessing (TP = N) and memory/data (MD = N) trade-
offs, which are controlled by the three parameters m, t, and R. For N = 2100

the first condition is easy to satisfy, since both the preprocessing time P and the
actual time T can be chosen as 250. However, the second condition is completely
unrealistic, since neither the memory M nor the data D can exceed 240.

We now describe the effect of this sampling technique on the new tradeoff
TM2D2 = N2 described in the previous subsection. The main difference between
Hellman’s original attack on block ciphers and the modified attack on stream
ciphers is that we use a smaller number t/D of tables, and force T to satisfy
T ≥ D2. Unlike the case of the BG attack, the preprocessing complexity remains
unchanged as N/D, since we do not need any trial and error to pick the random
startpoints, and simply wait for the special endpoints to occur randomly dur-
ing our path evaluation. The total memory required to store the special points
remains unchanged at M = mt/D. The total time T consists of t2 evaluations
of the fi functions but only t disk operations. We can thus conclude that the
resultant time/memory/data tradeoff remains unchanged as TM2D2 = N2 for
T ≥ D2, but we gain by reducing the number of expensive disk operations by a
factor of t. Rivest’s sampling idea thus has no asymptotic effect on Hellman-like
tradeoff curves for block and stream ciphers, but drastically changes the BG
tradeoff curve for stream ciphers.

5 Tradeoff Attacks on Stream Ciphers with Low
Sampling Resistance

The TM2D2 = N2 tradeoff attack has feasible time, memory and data require-
ments even for N = 2100. However, values of D ≥ 225 make each inversion attack
very time consuming, since small values of T are not allowed by the T ≥ D2

condition, while large values of T do not benefit in practice from the Rivest
sampling idea (since the T = evaluations of fi functions dominate the

√
T disk

operations).
At FSE 2000, Biryukov, Shamir and Wagner [3] introduced a different notion

of sampling, which will be calledBSW sampling. It was used in [3] to attack the
specific stream cipher A5/1, but that paper did not analyse its general impact
on the various tradeoff formulas. In this paper we show that by using BSW
sampling, we can make the new TM2D2 = N2 tradeoff applicable with a larger
choice of possible T values and a smaller number of disk operations.

The basic idea behind BSW sampling is that in many stream ciphers, the
state undergoes only a limited number of simple transformations before emitting
its next output bit, and thus it is possible to enumerate all the special states
which generate k zero bits for a small value of k without expensive trial and
error (especially when each output bit is determined by few state bits). This is

Cryptanalytic Time/Memory/Data Tradeoffs for Stream Ciphers 9

almost always possible for k = 1, but gets increasingly more difficult when we
try to force a larger number of output bits to have specific values. The sampling
resistance of a stream cipher is defined as R = 2−k where k is the maximum
value for which this direct enumeration is possible. Stream ciphers were never
designed to resist this new kind of sampling, and their sampling resistance can
serve as a new quantifiable design-sensitive security measure. In the case of A5/1,
Biryukov Shamir and Wagner show that it is easy to directly enumerate the 248

out of the 264 states whose outputs start with 16 zeroes, and thus the sampling
resistance of A5/1 is at most 2−16. Note that BSW sampling is not applicable
at all to block ciphers, since their thorough mixing of keys and plaintexts makes
it very difficult to enumerate without trial and error all the keys which lead to
ciphertexts with a particular pattern of k bits during the encryption of some
fixed plaintext.

An obvious advantage of BSW sampling over Rivest sampling is that in the
BG attack we can reduce the attack time T by a factor of R without increasing
the preprocessing time P . We now describe how to apply the BSW sampling
idea to the improved tradeoff attack TM2D2 = N2.

Consider a stream cipher with N = 2n states. Each state has a full name
of n bits, and an output name which consists of the first n bits in its output
sequence. If the cipher has sampling resistance R = 2−k, we can associate with
each special state a short name of n − k bits (which is used by the efficient
enumeration procedure to define this special state), and a short output of
n − k bits (which is the output name of the special state without the k leading
zeroes). We can thus define a new random mapping over a reduced space of
NR = 2n−k points, where each point can be viewed as either a short name
or a short output. The mapping from short names to short outputs is easy to
evaluate (by expanding the short names of special states to full names, running
the generator, and discarding the k leading zeroes), and its inversion is equivalent
to the original cryptanalytic problem restricted to special states.

We assume that DR ≥ 1, and thus the available data contains at least one
output which corresponds to some special state (if this is not the case we simply
relax the definition of special states). We try to find the short name of any one
of these DR special states by applying our TM2D2 = N2 inversion attack to
the reduced space with the modified parameters of DR and NR instead of D
and N . The factor R2 is canceled out from the expression TM2(DR)2 = (NR)2,
and thus the tradeoff relation remains unchanged. However, we gain in two other
ways:

1. The original range of allowed values of T was lower bounded by D2, which
could be problematic for large values of D. This lower bound is now reduced
to (DR)2, which can be as small as 1. This makes it possible to use a wider
range of T parameters, and speed up actual attacks.

2. The number of expensive disk operations is reduced from t to tR, since only
the DR special points in the data have to be searched in the t/D matrices
at a cost of one disk operation per matrix. This can greatly speed up attacks

10 Alex Biryukov and Adi Shamir

with moderate values of t in which the t disk operations dominate the t2

function evaluations.

Table 1 summarizes the behavior of the three types of tradeoff attacks under
the two types of sampling techniques discussed in this paper. It explains why
BSW sampling can greatly reduce the time T , even though it has no effect on
the asymptotic tradeoff relation itself. Only this type of sampling enabled [3] to
attack A5/1 and find its 64 bit key in a few minutes of computation on a single
PC using only 4,000 disk operations, given the data contained in the first two
seconds of an encrypted GSM conversation.

Sampling BG attack Hellman’s attack Our attack
type on stream ciphers on block ciphers on stream ciphers

Rivest new tradeoffs: unmodified tradeoff: unmodified tradeoff:
TP = MD = N TM2 = N2 TM2D2 = N2

for 1 ≤ T ≤ D for 1 ≤ T ≤ N for D2 ≤ T ≤ N
increased P fewer disk operations fewer disk operations

BSW unmodified tradeoff: inapplicable to unmodified tradeoff:
TM = N, 1 ≤ T ≤ D block ciphers TM2D2 = N2, wider

range, (RD)2 ≤ T ≤ N
even fewer disk operations

Table 1. The effect of sampling on tradeoff attacks.

References

1. D. Coppersmith, H. Krawczyk, Y. Mansour, The Shrinking Generator, Proceedings
of Crypto’93, pp.22–39, Springer-Verlag, 1993.

2. S. Babbage, A Space/Time Tradeoff in Exhaustive Search Attacks on Stream Ci-
phers, European Convention on Security and Detection, IEE Conference Publica-
tion No. 408, May 1995.

3. A. Biryukov, A. Shamir, and D. Wagner, Real Time Cryptanalysis of A5/1 on a
PC, Proceedings of Fast Software Encryption 2000.

4. J. Golic, Cryptanalysis of Alleged A5 Stream Cipher, Proceedings of Eurocrypt’97,
LNCS 1233, pp. 239–255, Springer-Verlag 1997.

5. M. E. Hellman, A Cryptanalytic Time-Memory Trade-Off, IEEE Transactions on
Information Theory, Vol. IT-26, N 4, pp.401–406, July 1980.

6. W. Meier, O. Staffelbach, The Self-Shrinking Generator, Proceedings of Euro-
crypt’94, pp.205–214, Springer-Verlag, 1994.

Cryptanalytic Time/Memory/Data Tradeoffs for Stream Ciphers 11

A The Sampling Resistance of Various Stream Cipher
Constructions

As we have seen in the main part of the paper low sampling resistance of a stream
cipher allows for more flexible tradeoff attacks. In this appendix we briefly review
several popular constructions and discuss their sampling resistance.

A.1 Non-linear Filter Generators

In many proposed constructions a single linear feedback shift register (LFSR) is
tapped in several locations, and a non-linear function f of these taps produces
the output stream. Such stream ciphers are called non-linear filter generators,
and the non-linear function is called a filter. The sampling resistance of such
constructions depends on the location of the taps and on the properties of the
function f . A crucial factor in determining the sampling resistance of such con-
structions is how many bits of the function’s input must be fixed so that the
function of the remaining bits is linear.

Multiplexor is a boolean function, which takes s = log t+t bits of the output,
and treats the first log t bits as an address of the bit in the next t bits. This bit
becomes the output of the function. In order to linearize the output of the
multiplexor one needs to fix only log t bits. Multiplexor is thus a weak function
in terms of linearization. The actual sampling resistance of the multiplexor is
influenced by the minimal distance between the address taps and the minimal
distance from the address taps to the output tap.

As a second example, consider the filter function

f(x1, . . . , xs) = g(x1, . . . , xs−1)⊕ xs.

If there is a gap of length l between tap xs and the other taps x1, . . . , xs−1, then
the sampling resistance is at most 2−l, since by proper choice of the s−1 bits we
can linearize the output of the function f . Suppose that our aim is to efficiently
enumerate all the 2n−l states that produce a prefix of l zeroes. We can do this
by setting the n− l non-gap bits to an arbitrary value, and then at each clock we
choose the xs bit in a way that zeroes the function f (assuming that feedback
taps are not present in the gap of l bits).

Sum of Products A sum of products is the following boolean function: Pick
a set of disjoint pairs of variables from the stream cipher’s state: (xi1 , xi2),
. . . (xis−1 , xis). Define the filter function as:

f(x1, . . . , xs) =
s−1⊕

j=1

xij · xij+1 .

A sum of products becomes a linear function if s/2 of its variables (one for each
pair) are fixed. If these variables are all set equal to zero then f becomes the

12 Alex Biryukov and Adi Shamir

constant function f = 0. We can thus expect this function to have a moderate
resistance to sampling. The non-linear order of this function is only 2 and thus
by controlling any pair xij xij+1 we can create any desired value of the filter
function. For example if the target pair is (xi1 , xi2) then the function f can be
decomposed into:

f(x1, . . . , xs) = xi1xi2 ⊕ g(xi3 , . . . , xis).

At each step if the value of g is zero, the values of the target pair can be chosen
arbitrarily out of (0, 0), (0, 1), (1, 0). If however g = 1 , then the value of the
target pair must be (1, 1). Thus if the control pair is in a tap-less region of size
2l with a gap l between the controlling taps, the sampling resistance of this
cipher is at most 2−l.

As another example, suppose that a consecutive pair of bits is used as a target
pair. It seems problematic to use a consecutive pair for product linearization,
since sometimes we have to set both bits to 1. This is however not the case if we
relax our requirements, and use output prefixes with non-consecutive bits forced
to have particular values. For example, prefixes in which every second bit is set
to zero (and with arbitrary bits in between) can be easily generated in this sum
of adjacent products.

Suppose now that in each pair the first element is from the first half of the
register and the second element comes from the second half. Suppose also that
the feedback function taps the most significant bit and some taps from the lower
half of the register. In this case the sampling resistance is only 2−n/2. We set
to arbitrary values the n/2 bits of the lower half of the register and guess the
most significant tap bit. This way we know the input to the feedback function
and linearize the output function. Forcing the output of the filter function at
each step yields a linear equation (whose coefficients come from the lower half
of the register and whose variables come from the upper half). After n/2 steps
we have n/2 linear equations in n/2 variables which can be easily solved. This
way we perform enumeration of all the states that produce the desired output.

Moreover, if all pairs in the product are consecutive, then even a more inter-
esting property holds. We can linearize the function just by fixing a subset of
n/2 even (or odd) bits of the register, and thus linearization is preserved even
after shifting the register (with possible interference of the feedback function).

A.2 Shrinking and Self-Shrinking Generators

The shrinking generator is a simple construction suggested by [1] which is not
based on the filter idea. This generator uses two regularly clocked LFSRs and the
output of the first one decides whether the output of the second will appear in
the output stream or will be discarded. This generator has good statistical prop-
erties like long periods and high linear complexity. A year later a self-shrinking
generator (which used one LFSR clocked twice) was proposed by [6]. The out-
put of the LFSR is determined by a pair of most significant bits an−1, an of the
LFSR state: If an−1 = 1 the output is an, and if an−1 = 0 there is no output

Cryptanalytic Time/Memory/Data Tradeoffs for Stream Ciphers 13

in this clock cycle. This construction has the following sampling algorithm: pick
arbitrary value for n/2 decision bits, and for each pair with a decision bit equal
to 1 set the corresponding output bit to 0. If the decision bit is 0 then we have
freedom of choice and we enumerate both possibilities. The sampling resistance
of this construction is thus 2−n/4.

	Cryptanalytic Time/Memory/Data Tradeoffs for Stream Ciphers
	Introduction
	Tradeoff Attacks on Block and Stream Ciphers
	Combining the Two Tradeoff Attacks
	Hellman's Time/Memory Tradeoff Attack on Block Ciphers
	An Improved Attack on Stream Ciphers

	Time/Memory/Data Tradeoff Attacks with Sampling
	Tradeoff Attacks on Stream Ciphers with Low Sampling Resistance
	References
	The Sampling Resistance of Various Stream Cipher Constructions
	Non-linear Filter Generators
	Shrinking and Self-Shrinking Generators

