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Abstract. In this work a new method to detect objects under scaled
orthographic projections is shown. It also calculates the parameters of
the transformations the object has suffered. The method is based on
the use of the Generalized Hough Transform (GHT) that compares a
template with a projected image. The computational requirements of
the algorithm are reduced by restricting the transformation to the tem-
plate edge points and using invariant information during the comparison
process. This information is obtained from a precomputed table of the
template that is directly transformed and compared with the image ta-
ble. Moreover, a multiresolution design of the algorithm speeds-up the
parameters calculation.

1 Introduction

Planar object recognition and three-dimensional (3D) pose estimation are the
most important tasks in computer vision. Some applications related to these
methods are object manipulation, autonomous vehicle driving, etc.

Perspective projection is one of the most suitable models for real camera
image formation. However, it introduces non-linear relations. Simpler camera
models can be used [1] under more relaxed situations which produce a negligible
error. When the size of the object is relatively small (in comparison to its depth)
and placed near the camera optical axis, the orthoperspective projection (or, in
general, the subgroup of affine transformations [2]) is a good approximation to
the perspective projection [3]. Here, the scaled orthographic projection will be
studied. This projection only incorporates the distance and the foreshortening
effects, but it eliminates the non-linear dependencies.

There are several methods to find the transformations between a planar tem-
plate and an image where this template is included and viewed from an arbitrary
position [4]. Selection of the most suitable method will be based on considera-
tions such as the kind of shapes we are dealing with and the ability to cope with
practical problems such as occlusion, noise, etc.

A simple approach to object detection is to find, for every possible orientation
and position, the template transformation that produces a better matching with
the image shape. However, the search space can become overwhelmingly large.
An efficient evaluate and subdivide search algorithm is carried out in [5] in order
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to find the affine transformation that brings the larger number of model features
close to image features. A variant of the Hausdorff distance is used as a similarity
measure between the two point sets.

Search space can be reduced if invariant features are used. Geometric invari-
ants are shape descriptors that remain unchanged under geometric transforma-
tions such as changing the viewpoint. Algebraic invariants are obtained using
the classical results derived from perspective geometry of algebraic curves. The
fundamental invariant in projective geometry is the cross-ratio (CR). Guo Lei [6]
uses the CR to recognize 3D views of different polygons. B.S. Song et al. present
in [7] a target recognition method based in CR that selects stable points for
complex scenes. More general algebraic invariants can be derived from configu-
rations of conics [3], points [9] and lines [10]. Besides the algebraic invariants,
Rothwell et al. use a canonical frame, invariant to perspective transformations
of the plane, to implement index functions that select models from a model
database, as part of a recognition system [11].

Differential invariants can also be applied. In [12], affine invariants requiring
one point correspondence and second order derivative, or requiring two points
correspondences and first order derivative, are used to determine whether one
curve may be a perspective projection of another one.

Other methods based on Fourier Descriptors [13] are aimed to exploit view-
point invariants, but they are not fully invariant in perspective transformations.
Furthermore, they are not robust when occlusion appears.

Several methods have been proposed to detect the 3D pose of a planar object
based on the Hough transform (hashing methods). Using the HT we can take ad-
vantage of its useful properties, like relative insensivity to noise, and robustness
to occlusions. However, it needs high computational and storage requirements.

In this paper we undertake a new approach to planar object detection based
on the Generalized Hough Transform (GHT) that compares template and im-
age information in order to calculate the transformations between the template
and the corresponding image shape. Computational and storage requirements
are greatly reduced by using invariant template and image information derived
from the gradients and positions associated with the edge points. Invariant in-
formation is stored in template and image tables which are compared during
the detection process. Template (or model) table information will be directly
modified during algorithm application without needing further computationally
expensive shape processing.

The rest of the paper is organized as follows. Next section introduces the
mathematical expressions involved in an orthoperspective transformation. Sec-
tion 3 presents the new method for planar shape detection and the expressions
that allows us to speed-up the generation and comparison of the tables. In section
4, several real experiments have been carried out in order to test the algorithm’s
behaviour. Finally, in section 5 several related works are analyzed more deeply.
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2 Scaled Orthographic Projection

The necessary transformations to project a planar object into the image plane
are presented here, where f is the focal distance of the camera lens, d is the
distance between the focal point and the intersection of the object plane with
the z — axis (the optical axis), and n being the normal vector to the object
plane. The projection of this vector onto x — y and = — z planes allows us to
determine the pan, 7, and the tilt, J, angles, respectively. Thus, 7 is the angle
between the projection of n onto the x — y plane and the z — axis. On the other
hand, § is the angle between the projection of n onto the x — z plane and the
Z — aris.

The relationship between an object point (z;,v;, 2;) and its corresponding
image point (u;,v;, f) can be expressed using the orthoperspective transforma-
tion:

Tj - oSO - COST — Y - SINT

U; = f . d (1)
T; - oSO - SINT + Y; - COST
vi=f- 7

3 Planar Object Detection

The detection process must find the occurrence of a template in an image. Six
different groups of parameters indicate the transformation to be applied to the
template to generate the object in the image. 1) Scaling of the template in the
object plane represented by matrix S. 2) Displacement along the object plane, d,
and d,,, represented by matrix D. 3) Rotation in the object plane, 3, represented
by matrix Rg. 4) Tilt angle around object plane x — azis, J, represented by ma-
trix Rs. 5) Pan angle around object plane z — axis, T, represented by matrix R, .
6) Scaling of the scaled orthographic projection, represented by matrix S,,.

After application of the previous transformations to the template, the new
coordinates of the template in the image plane are given by:

(ui,vi)' = Sp- Ry - Rs- Rg-D - S - (w,y:)" (2)

Note that the only transformation that introduces a distortion in the image
object is the application of the tilt angle. The rest of transformations only change
either the size (scaling), the orientation or the position.

3.1 Invariant Transformation

Recent work with the GHT [14] shows a new method to detect bidimensional
shapes that uses invariant information to displacement and scaling.

The edge points of the image are characterized by the parameters < x,y,0 >
where = and y are the coordinates of the points in a two-dimensional space and
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0 is the angle of the gradient vector associated with this edge point. An angle, &,
called difference angle is also defined. Its value indicates the positive difference
between the angles of the edge point gradient vectors that will be paired.

From this description we can derive a transformation from the original image
that generates new invariant information for the displacement and the scaling,
based on paired points. Thus, let p; and p; be two edge points, < z;,y;,0; >,
< x4,Y;j,0; > their associated information, and £ the difference angle to generate
the pairing. Then, the transformation 7 can be expressed as follows:

o (ei;aij) 9]‘—91‘25
T (pi,p;) = { 0 elsewhere )
where
Yi — Yy
= /L0 4
Qi (arctan i -z, 0 ) ( )

that is, ; is the positive angle formed by the line that joins p; and p; and the
gradient vector angle of the point p;.

The information generated by the application of the previous transformation
is stored in a table in order to improve the detection process speed. The mul-
tivalued characteristics of the previous transformation will be apparent during
table building. Next, we show the contents of this table:

Orientation table (OT). The information generated by the 7 transformation
is contained by this bidimensional table. The «;; and ¢; values are stored
in rows and columns, respectively. When a pairing with «;; and 6; value is
calculated, the OT'[a;][6;] position is incremented. Because different pairings
might coincide with the same a; and 6;; values, the content of OT'[cv;;][0;]
will indicate how many of them have these values. The information stored
in this table is invariant to scale and displacement. Note that a rotation 7
of an image in a plane causes a rotation of 7 columns of its O7 .

Then, we can use the O7 table to compare invariant information of the
template and the image under scaled orthographic projection. Before starting
the generation of the O7 tables, the template must be transformed as follows:

(ui,vi)' = Rs - Ry - (w3,y5)" (5)

In this way, the projected template will be similar to the image shape except
for a different scaling, displacement and orientation. Then the template and
image O7s will be different by a rotation of 7 columns. This displacement can
be calculated applying a matching process for both tables [14].

In general situation, where the values for the (4,3) angles are unknown, a O7T
table for the template needs to be generated for each (§, 3) value. Each template
table is compared with the O7 table of the image and a value for 7 is calculated,
see Fig. 3.1. The maximum voting will indicate the correct solution.

The table generation and comparison for each ¢ and § values may require a
high computational complexity. However, several improvements have been car-
ried out to obtain a good performance.
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Fig. 1. Block-Diagram of the system

3.2 Table Generation and Comparison

The new O7 table generation is accomplished by only using the edge points
of the template shape. Normally, the number of edge points in the template is
lower than in the image, where several different shapes can appear. This makes
the computational complexity of our method to be lower than other algorithms
using the image shape [15].

On the other hand, the O7 table construction is based on both the calcula-
tion of the gradient vectors of the edge points (f) and the value for the difference
angles (a). This calculation can take a high computational time. In order to re-
duce this time, we have studied the modifications in an angle value that arise
under a scaled orthographic projection. This allows to generate a O7 table for a
concrete § and (3 value by directly transforming the original O7 template table.

Modification of the Gradient and Difference Angles

Lemma 1. Let 0; be the gradient angle of the template edge point (x;,y;). Then,
the transformed gradient vector, O;, after application of expression (5) is :

Ori; = atan(tan(B + 60;)/coso) (6)

An important consequence of the previous lemma is that if (z;, y;) and (z;,y;)
are two paired points in the template using a pairing angle of £, the transformed
points after applying expression (5) are also paired.

Lemma 2. Let «; be the difference angle value between two paired points using a
pairing angle of £. Then, the transformed difference angle, ar;, after application
of expression (5) is:

ar; = atan(tan(8 + 0; + «;)/ cosd) — Op; (7)
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The demonstrations of the previous lemmas are straightforward, so we have
omitted them due to space limitations. The two previous lemmas allow the cre-
ation of the new OT tables for each § and 3 angles without needing the calcula-
tion neither the projected edge points nor the new difference angle for the paired
points. The O7 tables are sparse, so only the positions with values different from
zero are stored. This reduces the required storage and allows the implementation
of a more efficient transformation and comparison process.

3.3 Pose and Position Estimation

A matching algorithm has to compare, by columns, the transformed template O7
table — for each possible tilt, pan value — and the O7 of the image for different
shifting values in order to calculate the pose (tilt, pan and rotation angles). The
scale and the displacement values are obtained, after eliminating the previous
transformations in the contour of the tested image, in the same way as in [14].

4 Experimental Results

As we showed in the previous sections, the detection process is based on the use
of the gradient and difference angles associated with the edge points. Then, the
accuracy of our method will be limited by the accuracy of the angle detection.
Good initial values for the angles and edge points are obtained by applying a
Canny operator.

We have used different images in order to test the behaviour of the whole
detection process. All the examples have been executed in a SGI Workstation
with a R-10000 processor at 225 MHz. The range of the tilt, rotation and pan
angles for the experiments are (0°, 60°), (-30°, 30°), and (0° , 360°), respectively.
Images are 8 bit greyscale with half PAL size (384x288 pixels). Model images
are acquired in a fronto-parallel view. There is no need for any camera calibra-
tion procedure. The pairing angles have been chosen taking into account the
template’s shape [14], in a way that a significant subset of the contour points of
the template are paired. For this purpose the gradient’s histogram of the shape
must be studied.

In addition, the algorithm uses a multipass approach to accelerate the pro-
gram execution. Starting with a coarse estimation of the pose angles, successive
steps focus in a narrower interval around the solution estimated in the previous
step. Finally, the scale and displacement values are calculated.

The accuracy of the detection process is checked by using the likelihood
function stated in [16]. First, this function measures the similarity, attending to
edge points localization and gradient angle values, between transformed template
and image contours. A visual checking is also carried out by superimposing the
projected template shape on the image one.

First, we have applied the detection to B&W model images that have been
projected using a warping process (Fig. 4). In this manner, we can know the
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Table 1. Parameters of the warping deformation for the test images

|Temp1ate||TpojNTs|Ipo]NTs| ((5,ﬁ,7’) |SCale|LikelihOOd (%)|

Moon 801 602 |(45,10,-20)| 0.90 87.37
Indalo 1231 1312 | (39,13,29)|1.15 83.58
Clover 568 599 |(50,19,-29)| 1.20 82.39
Key 622 531 |(34,-28,13)] 0.92 92.43

exact tilt, rotation, pan and scale values which have been used and check the ac-
curacy of the detection. This allows us to study the theoretical behaviour of our
programs. The template properties and experiment configurations are showed in
Table 1. The first and second columns indicate the number of points detected
by the Canny operator in both the template and transformed template. The
following two columns show the parameters of the projection of the template
by a warping process. Finally, in the last column, the value of the maximum
theoretical likelihood is expressed. This value is calculated comparing the pro-
jected template with the warped image for the optimal pairing angles using the
exact transformation parameters in pose and scale (the displacement has to be
estimated). A 100% likelihood is not reached due to the discrete nature of the
image transformation.

IHEAra

Fig. 2. Warped images

Table 2 summarizes the parameters used in program execution and the results
obtained for the detection proposes. (£1, &) are the used pairing angles. When
two pairing angles are used, the achieved accuracy is better in general. The
(0,0, 7), scale and the likelihood for the detected parameters are depicted in
the subsequent columns. Finally, the computational time for the multipass and
sequential algorithm is shown in the last two columns of Table 2. An important
speed-up is achieved for the multipass approach.

Finally, several real images, obtained using a CCD camera, are presented in
Fig. 3 in order to show the behaviour of the proposed algorithms in practical
situations. The images in the left column are the templates used and the images
in the right column shows a visual checking of the solution, by superimposing
the projected template on the image.
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Table 2. Results obtained for warped images

[Image (points)[| (&1, &) | (6,3,7) [Scale|Like. (%)]|Timensuiri(s.)|Timeseq (s.)]

Moon; (180, -) [(45,10,-20)[0.90| 87.37 0.20 3.73
Moons (180, 90) |(45,10,-20) 0.90 | 87.82 0.48 9.10
Tndalo, (180, -) [(39,10,-32)[ 1.15] 71.80 0.51 9.72
Tndalos (175, 125)((39,13,29)| 1.15 | 83.58 0.96 18.91
Clover; (180, -) [(50,18,-30)[ 1.20| 78.68 0.14 2.74
Clover, (45, 90) |(50,25,-27)[ 1.12| 63.74 0.37 7.13
Key; (180, -) [(34,-30,11)] 0.92] 94.63 0.12 2.36
Keys (180, 150)((33,-25,17)] 0.92| 88.37 0.30 5.63

Table 3. Practical situation

[Image (points) | (&, &) | (6,8,7) [Like. (%)|Time (s.)]
Pliers (1803) (180, 135)[(20,-19,-40)| 73.13 1.41
Jewish Harp (1483)|| (180, 45) | (43,24,8) | 81.27 | 0.01
Cutter (1650) (180, 135)| (20-6,0) | 73.46 | 0.47
Scissors (2561) (45,-) | (12,35,4) | 80.47 0.67

Table 3 summarizes the more important configuration values. Now, for real
images, two pairing angles, except for Scissors, are necessary if a reasonable
precision is looked for. The images were acquired from an unknown arbitrary
point of view, so the detected pose in the second column is only for informative
purposes. The values for the likelihood function reported by the algorithm show
that good accuracy have been achieved, in comparison with the values reported
for the warped images. Finally, the computational times are presented for the
multipass algorithm.

5 Related Works

In this section, a brief review of another works that use the HT to estimate the
3D orientation and position of a planar patch is presented. Others papers, using
the HT for detecting 2D transformations are not covered here [17,18].

The method described in [19] claims to be the first one in using the HT
for planar object 3D pose estimation. It consists in mapping the classical 2D
Hough space into another Hough space of the same dimensions using only ge-
ometrical considerations. The new space is related to the former through a 3D
transformation that takes into account the orientation and location of an object.
In this way, data and model are transformed in a common representation space,
where a direct matching can be carried out by determining the pose of the actual
object with respect to the known pose of the model. The method is based on
the classical HT to detect straight lines, and hence it deals with rigid planar
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Fig. 3. Practical situation
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objects bounded by straight segments. Planar shapes bounded by curvilinear
edges, polyhedra and scenes containing several objects can also be tackled, in an
indirect and more complex fashion, but they are not addressed in the work pre-
sented. The main limitation of this approach, as pointed by the authors, lies in
the computational complexity of the matching process, which involves exploring
a 6-dimensional space for pose estimation.

A new version of the GHT, called PTIGHT [20], is proposed for detecting
a perspectively transformed planar shape in a perspective image that is taken
from an unknown viewpoint. In order to build a perspective reference table from
a given template, all possible perspective shape images are derived by applying
forward perspective transformation on the template for all viewing directions and
positions. The overlapping of this information imposes two restrictions. First, the
positions in the HT with votes greater than a threshold are considered potential
candidates. This hypothesis must be verified by back-projecting the image shape
over the template in order to find the best solution. The resolutions than can be
achieved are poor, 5° for the tilt and pan angles in the reported results. Although
the images tested there are not complex, the computational time is high. Also,
a camera calibration is required in order to know the focal distance.

The algorithm presented in [15] detects planar objects that are rotated a
tilt and pan angle, and distorted by a perspective projection before applying a
chain of 2D transformations. Our method reduce the computational complexity
of this approach by using a less complex perspective model and restricting the
transformation to be applied to the template table which, usually, has a lower
number of entries than the image table.

Finally, a technique dealing with parallel projected planar objects with ro-
tational symmetry is presented by Yip [21]. The main contribution of the paper
is that it provides a method to reduce the dimensionality of the HT space by
breaking it down into several lower order ones. The problem is the shape form
and projection model restrictions it imposes.

6 Conclusions

A new method to detect planar shapes under orthoperspective projection has
been presented. The method copes with a situation in which the shape of the
projected image presents a different displacement, orientation and scaling in re-
lation to a template. The method is based on the GHT and generates invariant
information, by using gradient information, that allows us to uncouple the pa-
rameter calculation and, in this way, reduce computational complexity. A new
table generation is accomplished by only using the edge points of the template
shape. Generally, the number of edge points in the template is lower than in the
image, making the computational complexity of our method to be lower than al-
gorithms using the image shape. Important improvements have been introduced
to save gradient angle calculation of the projected points. Several examples, that
show the accuracy of the algorithm with real images, have also been presented.
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