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Abstract. An object of interest is digitized if we acquire its 3-dimen-
sional digital images by using techniques such as computerized tomo-
graphic imaging. For recognition or shape analysis of such digitized ob-
jects, we need the study of 3-dimensional digital geometry and topology.
In this paper, we focus on one of the simplest geometric objects such as
planes and study their geometric and topological properties which are
expressed by using an algebraic method.

1 Introduction

In this paper, we deal with the geometric and topological properties of digitized
objects which are expressed by using an algebraic method. An object of interest
is digitized if we acquire its 3-dimensional digital images by using techniques
such as computerized tomographic imaging. For recognition and shape analysis
of such digitized objects, topological constraints such as topological equivalence
in use of Euler characteristics [1], skeletons [2], combinatorial manifolds [4], etc.
are used as well as geometric constraints which are given by algebraic equa-
tions/inequations. In this paper, we focus on one of the simplest geometric ob-
jects such as planes and study not only their digital geometry but their digital
topology for 3-dimensional computer imagery.

In the context of digital geometry, an algebraic approach for the study of
geometric properties of planes in an integer lattice space has been proposed
in [3,4,5,6,7]. They have defined a naive/standard plane which is a set of inte-
ger lattice points and proposed the theory using algebraic properties of a lat-
tice space. The algebraic properties such as local configurations of points in
naive/standard planes have been derived by their algebraic approach.

On the other hand, we have proposed an approach based on combinatorial
topology [8,9] for the definition and construction of topological planes in an
integer lattice space; they are called discrete planar surfaces and constructed by
applying our boundary extraction algorithm [8]. In this paper, we clarify the
relations between our discrete planar surfaces and naive planes such that our
discrete planar surface for 18- or 26-neighborhood system is a triangulation of a
naive plane in the aspect of combinatorial topology [10]; in [4], a triangulation
has been introduced in a similar approach for a standard plane, but not for
a naive plane. By seeing the topological structures of naive planes as discrete

G. Borgefors, I. Nyström, and G. Sanniti di Baja (Eds.): DGCI 2000, LNCS 1953, pp. 249–261, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



250 Yukiko Kenmochi and Atsushi Imiya

planar surfaces, we show their geometric and topological properties in an integer
lattice space, which can be derived from the algebraic properties of naive planes.

2 Definition of Naive Planes

Let R be the set of real numbers; R3 denotes the 3-dimensional Euclidean space.
A plane P in R3 is defined by

P = {(x, y, z) ∈ R3 : ax + by + cz + d = 0} (1)

where a, b, c, d are real numbers. Let Z be the set of real numbers; Z3 denotes
the set of lattice points whose coordinates are all integers. We introduce the
definition of planes in Z3 based on algebraic approach [5]. The naive plane is
defined with respect to P by

NP = {(x, y, z) ∈ Z3 : 0 ≤ ax + by + cz + d < w} (2)

where w = max{|a|, |b|, |c|}. The parameter w is called the width of NP.

3 Definition of Discrete Planar Surfaces

3.1 Definition of Discrete Combinatorial Surfaces

In this subsection, we introduce the definition of surfaces in Z3 based on the
approach of combinatorial topology [10]. In Z3 we define three different neigh-
borhoods of a lattice point x = (i, j, k) as

Nm(x) = {(p, q, r) ∈ Z3 : (i − p)2 + (j − q)2 + (k − r)2 ≤ t} (3)

for m = 6, 18, 26 corresponding to t = 1, 2, 3. They are called 6-, 18- and
26-neighborhoods, respectively. Depending on each neighborhood, we define el-
ements of 1-dimensional curves and 2-dimensional surfaces in Z3. These ele-
ments are called 1- and 2-dimensional discrete simplexes and abbreviated as 1-
and 2-simplexes, respectively. Suppose we define 0-dimensional discrete sim-
plexes, which are called 0-simplexes, as isolated points in Z3. Then 1- and 2-
simplexes are defined recursively as follows.

Definition 1. An n-simplex for n = 1, 2 is defined as a set of k points in Z3,
[x1, x2, . . . , xk] = {x1, x2, . . . , xk} so that the closed convex hull of x1, x2, . . . , xk

is one of n-dimensional minimum nonzero regions in R3 which are bounded by
the closed convex hulls of (n − 1)-simplexes.

According to Definition 1, a 1-simplex consists of two neighboring points in
Z3. The configurations of those two neighboring points depend on the neighbor-
hood systems as shown in the first line of Table 1. A 2-simplex is defined as a
set of points whose closed convex hull is bound by a set of the closed convex
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Table 1. Each n-simplexes for n = 1, 2 is defined as a set of points in Z3

for the 6-, 18- and 26-neighborhood systems. All n-simplexes are obtained by
rotation and translation of those in the table

2D

1D

N6 N18 N26

hulls of 1-simplexes and holds a 2-dimensional minimum nonzero area. All 2-
simplexes for each neighborhood system are shown in the second line of Table 1.
The constructive definitions of 1- and 2-simplexes are presented in [8].

If an n1-simplex is a subset of an n2-simplex where n1 < n2, the n1-simplex
is called a face of the n2-simplex; it is also called an n1-face. For instance, a 2-
simplex for the 26-neighborhood system has three 0-faces and three 1-faces. A
set of all faces included in a discrete simplex [a] = [x1, x2, . . . , xk] is denoted by
face([a]). Let the closed convex hull of k points, x1, x2, . . . , xk, be denoted by
CH({x1, x2, . . . , xk}). The embedded discrete simplex is defined as

‖a‖ = CH([a]) \ ( ∪
[b]∈face([a])

CH([b])) (4)

for any n-simplex [a], and ‖a‖ is called the embedded n-simplex of [a]. An n-
simplex and the embedded n-simplex are clearly different since [a] and ‖a‖ are
defined as sets of points in Z3 and R3, respectively.

Definition 2. A finite set K of discrete simplexes is called a discrete complex
if it satisfies the following conditions: if [a] ∈ K, face([a]) ⊆ K; if [a], [b] ∈ K
and ‖a‖ ∩ ‖b‖ �= ∅, then [a] = [b].

The dimension of K is equal to the maximum dimension of discrete simplexes
which belong to K. Hereafter, we abbreviate n-dimensional discrete complexes
to n-complexes as well as n-simplexes. Suppose that K is an n-complex. If there
exist at least one n-simplex [a] ∈ K for every s-simplex [b] ∈ K such that [b] ∈
face([a]) and s < n, K is called pure. If we can find a chain of discrete simplexes
between two arbitrary elements [c], [d] ∈ K, [c1] = [c], [c2], . . . , [ck] = [d], such
that [ci] and [ci+1], i = 1, 2, . . . , k − 1, has a common face in K, K is called
connected.

Definition 3. If a 2-complex K is pure and connected, K is a discrete combi-
natorial surface.

More discussion on discrete combinatorial surfaces in the sense of combinatorial
topology is given in [8]. Note that discrete complexes and discrete combinatorial
surfaces are constructed with respect to each neighborhood system.
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Table 2. A set ∂I+
m(i, j, k) for each of eight possible configurations of black and

white points in C(i, j, k), m = 6, 18, 26. In the table, we consider P such that
0 ≤ a ≤ b ≤ c, c > 0. The configurations within parentheses are ignored for the
construction of ∂I+

m because black points in such C(i, j, k) are regarded as 0- or
1-faces of 2-simplexes in the adjacent cubes of C(i, j, k)

# of black 
points

3

4

5

6

7

N6 N18 N26

P4a

P4b

P4a

P5

P6

P7

P5

P3

P4b

P7

P6

P5

P3

2
P2

P1
1

P6

a point in I   +

N6 N18 N26
# of black 

points

a point in (I   )’ +

C(i,j,k) 

I   (i,j,k)  +
m6

3.2 Construction of Discrete Planar Surfaces

The following two regions in R3 are separated by P:

H− = {(x, y, z) ∈ R3 : ax + by + cz + d ≤ 0} , (5)
H+ = {(x, y, z) ∈ R3 : ax + by + cz + d ≥ 0} . (6)

Obviously, we have
H− ∩H+ = P . (7)

Just as H− and H+ in R3, there are two regions in Z3, which are separated by
P as follows:

I− = {(x, y, z) ∈ Z3 : ax + by + cz + d ≤ 0} , (8)
I+ = {(x, y, z) ∈ Z3 : ax + by + cz + d ≥ 0} . (9)

We say that I− and I+ are the digitization of H− and H+, respectively. For both
I− and I+, we can construct the boundaries which are discrete combinatorial
surfaces with the m-neighborhood system for m = 6, 18, 26, denoted by ∂I−m and
∂I+

m, using the similar algorithm for boundary extraction [8]. Both ∂I−m and ∂I+
m

are considered to be the digitization of P and called discrete planar surfaces
with respect to P. In this subsection, we present how to generate ∂I+

m from I+.
The same procedure can be applied to generate ∂I−m if I+ and ∂I+

m are replaced
by I− and ∂I−m, respectively.
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Algorithm 1.
input: I+.
output: ∂I+

m.
begin

1. Points in I+ and the complement (I+)′ = Z3 \ I+ are assigned black and
white points, respectively;

2. in any unit cubic region

C(i, j, k) = {(x, y, z) ∈ Z3 : i ≤ x ≤ i + 1, j ≤ y ≤ j + 1, k ≤ z ≤ k + 1}
(10)

such that C(i, j, k)∩I+ �= ∅ and C(i, j, k)∩(I+)′ �= ∅, the black and white
points have either of eight different configurations as shown in Table 2;

3. for each C(i, j, k), ∂I+
m(i, j, k) is obtained as a set of 2-simplexes and

their faces by referring to Table 2;
4. obtain

∂I+
m = ∪

(i,j,k)∈Z3
∂I+

m(i, j, k) . (11)
end

The next theorem is derived; the proof is given in [9].

Theorem 1. Each ∂I+
m (resp. ∂I−m) for m = 6, 18, 26 obtained from I+ (resp.

I−) by Algorithm 1 is a discrete combinatorial surface and called a discrete
planar surface.

4 Relations between Naive Planes and Discrete Planar
Surfaces

Let B+
m be the set of all lattice points in ∂I+

m for m = 6, 18, 26, such that

B+
m = ∪

[a]∈∂I+m

[a]. (12)

Then, the following lemma is derived.

Lemma 1. For any plane P, the inclusion and equality relations

B+
6 ⊇ B+

18 = B+
26 (13)

hold.

Proof. Using C(i, j, k) of (10), for each m, we define

B+
m(i, j, k) = B+

m ∩ C(i, j, k) (14)

which is a subset of B+
m. Let us compare a triplet of B+

m(i, j, k), m = 6, 18, 26
for every C(i, j, k) in Z3. If we make a comparison between B+

6 (i, j, k) and
B+

18(i, j, k) in Table 2, we see

B+
6 (i, j, k) ⊃ B+

18(i, j, k) (15)
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Table 3. The classification of all points in I+ into two types with respect to
each configuration of Table 2: a set of black and gray points which are included
in B+

26 and a set of white points which are not included in B+
26

# of points
in     

configurations of points in 
and an example of P

1

2

a unit cube

points in 

3

4

5

6

7

P1

P2

P3

P4a P4b

P5

P6

P7

an example
of P

B   +

I   +
I   +

26

points in
but not in  

I   +

B   
+
26

# of points
in     

configurations of points in 
and an example of PI   +

I   +

for configurations P4b, P5, P6 and P7, otherwise we obtain

B+
6 (i, j, k) = B+

18(i, j, k). (16)

Between B+
18(i, j, k) and B+

26(i, j, k), we see

B+
18(i, j, k) = B+

26(i, j, k) (17)

for any configuration in Table 2, even if ∂I+
18(i, j, k) and ∂I+

26(i, j, k) are different
for P5 and P6. From (15), (16) and (17), we see that (13) holds. ��

We then prove the next theorem.

Theorem 2. For any P, the equality relations

NP = B+
18 = B+

26 (18)

hold.

Proof. Let us consider P such that 0 ≤ a ≤ b ≤ c, c > 0. In this case w = c.
From (2) we obtain

NP = {(x, y, z) ∈ Z3 : −a

c
x − b

c
y − d

c
≤ z < −a

c
x − b

c
y − d

c
+ 1} . (19)

For every point x = (x, y, z) in NP, if we set a point cx ∈ P such that

cx = (x, y,−a

c
x − b

c
y − d

c
) , (20)
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then we see that
0 ≤ |x − cx| < 1 (21)

from (19). Since B+
18 = B+

26 from Lemma 1, we will show that every x ∈ B+
26

satisfies (21) and no point in Z3 \B+
26 satisfies (21) to prove this theorem. Let us

consider a cubic region C(i, j, k) of (10). Table 2 gives all configurations of points
in I+ and (I+)′ for a C(i, j, k). All black points in Table 2 are classified into black,
gray and white points in Table 3. All black points in Table 3 apparently satisfy
(21). Let us consider the case a > 0. For each gray point x = (x, y, z), if we set
two points in P such as

ax = (− b

a
y − c

a
z − d

a
, y, z) (22)

and
bx = (x,−a

b
x − c

b
z − d

b
, z) , (23)

we obtain
|x − ax| ≥ |x − bx| ≥ |x − cx| (24)

since |x − ax| : |x − bx| : |x − cx| = 1/a : 1/b : 1/c from Lemma 2 in Appendix
and 0 < a ≤ b ≤ c. We then see in Table 3 that every gray point x satisfies

|x − ax| < 1 or |x − bx| < 1 , (25)

and from (24) we obtain (21). In the case a = 0, we will have only P2, P4a and
P6 for configurations of C(i, j, k) in Table 3, and gray points exist only in P6.
If b > 0, we set bx and have the second inequation of (25). Thus, we also obtain
(21). If b = 0, we will have only P4a in which no gray point exists. Obviously,
no white point in Table 3 satisfies (21). From a comparison between Tables 2
and 3, we see that a set of black and gray points in Table 3 is equal to a set of
points of B+

26 in Table 2. Thus, we have (18). ��
Theorem 2 indicates that either of ∂I+

18 or ∂I+
26 is a triangulation of NP in

the aspect of combinatorial topology. From Lemma 1 and Theorem 2, we obtain
the next corollary.

Corollary 1. For any P, the inclusion relation

NP ⊆ B+
6 (26)

holds.

If NP = B+
6 , we say that ∂I+

6 is also a triangulation of NP, but if NP ⊂ B+
6 ,

it is not obviously. If we define a naive plane such that

NP− = {(x, y, z) ∈ Z3 : −w < ax + by + cz + d ≤ 0} (27)

instead of NP and set
B−

m = ∪
[a]∈∂I−m

[a] (28)

for m = 6, 18, 26, then the following corollary is derived.
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Corollary 2. For any P, the relations

NP− = B−
18 = B−

26 (29)

and
NP− ⊆ B−

6 (30)

hold.

Equation (29) in Corollary 2 indicates that either of ∂I−18 or ∂I−26 is a trian-
gulation of NP− in the aspect of combinatorial topology.

5 Properties of Naive Planes as Discrete Planar Surfaces

In this section, we discuss the local configurations of discrete simplexes in ∂I+
6 ,

∂I+
18 and ∂I+

26 with respect to P. From Theorem 2 and the properties of local
point configurations of NP which have been introduced in [4,5,6,7], we can
derive the combinatorial properties of ∂I+

6 , ∂I+
18 and ∂I+

26; they are summarized
in Propositions 1 to 5. Let us consider the configurations of discrete simplexes in
the parts of ∂I+

m for m = 6, 18, 26 which project on the coordinate plane z = 0
as a rectangle whose sizes are λ × µ.

Proposition 1. In the case of λ = µ = 2, there exist five different configura-
tions in NPs and the corresponding configurations of discrete simplexes for ∂I+

m,
m = 6, 18, 26, are shown in Fig. 1 with respect to any P such that 0 ≤ a ≤ b ≤ c,
c > 0.

Proposition 2. At most four different configurations of discrete simplexes for
λ = µ = 2 are contained in a ∂I+

m, m = 6, 18, 26.

Proposition 3. In the case of λ = µ = 3, there exist 40 different configurations
in NPs and the corresponding configurations of discrete simplexes for ∂I+

m, m =
6, 18, 26, are shown in Figs. 2, 3 and 4, respectively, with respect to any P such
that 0 ≤ a ≤ b ≤ c, c > 0.

Proposition 4. At most nine different configurations of discrete simplexes for
λ = µ = 3 are contained in a ∂I+

m, m = 6, 18, 26.

x y

z(a) (b) (c)

a point 
in I   +

Fig. 1. All five configurations of discrete simplexes in ∂I+
6 (a), ∂I+

18 (b) and ∂I+
26

(c), whose projections on plane z = 0 lie on the 2× 2 square grids
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Fig. 2. All 40 configurations of discrete simplexes in d1: whose projections on 
plane z = 0 lie on the 3 x 3 square grids. The star of each white point is also 
shown as discrete siinplexes with diagonal lines in the figures 

Propositions 1 to 4 give the coexistelice of adjacent 2-simplexes in a dI&, 
m = 6,18,26. There are actually two simplicia1 configurations for P4a in a1F8 
and a1&, and for P6 in a1& as shown in Fig. 5. For each 0-simplex [x] E aI&, 
we can define the star such that 

In Figs. 3 and 4, we choose one of the configurations in Fig. 5 for P4a or P6 so 
that the number of 2-simplexes in the star of a white point [ X I  becomes as small 
as possible. The projection of .([XI : aIA) on the coordinate plane z = 0 is in 
a square whose size is 3 x 3 if 0 5 a < b < c and c > 0. From this fact, we also 
derive the following proposition. 



Yukiko Kenmochi and Atsushi Imiya 

Fig. 3. All 40 configurations of discrete simplexes in d1t8 whose projections on 
plaiie z = 0 lie on the 3 x 3 square grids. The star of each white point is also 
shown as discrete siinplexes with diagonal lines in the figures 

Proposition 5. Any discrete planar surface dI& for rn = 6,18,26 consists of 
2-simplexes and their faces so that every 0-simplex [ X I  E aI& has one of the 
stars whose configurations are illustrated i n  Figs. 2, 3 and 4 ,  respectively. 

We see that the equivaleiit siinplicial configurations of a star can appear in 
different siinplicial coiifiguratioiis each of which projects on the coordinate plaiie 
z = 0 as a 3 x 3 square in Figs. 2, 3 and 4. Thus, the total number of different 
coiifiguratioiis of discrete simplexes of a star will be less than 40, i.e. 4, 18 and 
23 configurations for the 6-, 18- and 26-neighborhood systems, respectively. The 
similar results of local configurations for 81; are also presented in [ 

- 
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Fig. 4. All 40 configurations of discrete simplexes in a1t6 whose projections on 
plane z = 0 lie on the 3 x 3 square grids. The star of each white point is also 
shown as discrete simplexes with diagonal lines in the figures 

6 Conclusions 

In this paper, we first proved that Bt8 and B;, are equal to N P .  Froin the 
equality relations, we see that dI& for rn = 18,26 is a triaiigulatioii of N P  in 
the sense of combinatorial topology. Since aIA consists of discrete simplexes, 
we described the local properties of aI& by using configurations of discrete 
simplexes instead of those of lattice points, such as the coexistence of adjacent 
2-simplexes and the configuration of discrete simplexes of a star in a dI&. If we 
set w = l a  + bl  + I c  in (2), we obtain standard planes with respect to P of ( I ) ,  
instead of naive planes [4]. It is our future work to clarify the relations between 
standard planes and aI&, m = 6,18,26. A part of this work was supported by 
JSPS Grant-in-Aid for Encouragement of Young Scientists (12780207). 
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(a) (b)

Fig. 5. Two simplicial configurations of P4a for m = 18, 26 (a) and P6 for
m = 26 (b)
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Appendix: Lemma 2

Let us consider P of (1) such that a, b, c > 0. For each point p ∈ I+ \ P such
that p = (s, t, u), we set three planes such as

S = {(x, y, z) ∈ R3 : x = s} , (32)
T = {(x, y, z) ∈ R3 : y = t} , (33)
U = {(x, y, z) ∈ R3 : z = u} . (34)

p

a b

c P

x

y

z

Fig. 6. Three points a, b and c defined for a plane P and a point p which is not
in P
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Let a, b and c be the intersection points of P, T and U, P, S and U, and P, S
and T, respectively, as illustrated in Fig. 6. Then the next lemma is derived.

Lemma 2. For any p ∈ I+ \ P, we obtain

|p − a| : |p − b| : |p − c| = 1/a : 1/b : 1/c (35)

where a, b, c > 0.

Proof. The equation of the line which is the intersection of P and U is given by
ax + by + cu + d = 0. Thus, the slope of the line in U is given by

|p − b|
|p − a| =

a

b
. (36)

Similarly, the slopes of the intersection lines between P and T, and P and S,
are respectively given by

|p − c|
|p − b| =

b

c
and

|p − a|
|p − c| =

c

a
. (37)

From (36) and (37), we obtain (35). ��
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