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Introduction

One of the most pervasive problems in military and in commercial communica-
tions-like systems is the need to authenticate digital messages; where authentica-
tion is interpreted broadly to mean verification both that a message was originated
by the purported transmitter and that it has not been altered subsequently, which
includes verifying that it is not a repetition of an earlier legitimate but already
accepted message. The terminology "message" is a carryover from the origins of the
problem in communications systems, but as used here includes resident computer soft-
ware, data bank information, access requests and passes or passwords, hand-shaking
exchanges between terminals and central facilities or between card readers and tel-
ler machines, etc.; i.e., digital information exchange over a suspect channel or
interface in general. The need to authenticate information presupposes an oppon-
ent(s) -- who may in some circumstances be either the transmitter or receiver --
that desires to have unauthentic messages be accepted by the receiver, or by arbi-
ters, as authentic or else to fraudulently attribute to the transmitter messages
that he did not send.

Message authentication is commonly -- and inexplicably -- treated as though it
were a single, simple function of the message, much like a parity check, for
example. The probable explanation for this is that the result of the authentication
operation is two valued; i.e., either the message is accepted as authentic or else
it is rejected as inauthentic. What makes the authentication of digital messages
such a challenging problem though is that there is no single authentication function
that can suffice for all, or even for a large fraction, of the real world authenti-~
cation needs. For example in some cases the message content cannot (by design) be
kept secret from the opponent, while in others he is denied this information. Simi-
larly, in some cases the opponent succeeds if he can cause the receiver to accept
any fraudulent message, while in others he succeeds only if he can get a specific

message (or one of a small set of messages) accepted as authentic.
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In addition, the opponent may either be an outsider with no privileged informa-
tion or, in a particularly difficult case to deal with, he may be a legitimate
receiver misusing insider information provided him so that he can authenticate mes-
sages to generate forgeries. Clearly, digital message authentication in circumstan-
ces as widely varying as these cannot be expected to be a simple operation. In this
paper we shall first derive several theoretical bounds on the quality of authentica-
tion that can be achieved for particular authentication channel specifications --
and then exhibit an example system based on the data encryption standard (DES) that
seemingly violates these bounds [4]. This apparent contradiction -- arising from
the difference between computationally feasible and infeasible problems -- high-

lights an essential aspect of most practical authentication (or crypto) systems.

Authentication

In message authentication, there are three essential participants: a transmit-
ter who observes an information source*, such as a coin flip, and wishes to com-
municate these observations to a remotely located receiver over a publicly exposed,
noiseless, communications channel; and a receiver who wishes to not only learn
what the transmitter has observed but also to assure himself that the communications
(messages) that he receives actually came from the transmitter and that no altera-
tions have been made to them subsequent to the transmitter having sent them. The
third participant, the opponent, wishes to deceive the receiver into accepting a
message that will misinform him as to the state of the source. He can achieve this
end in either of two ways: by impersonating the transmitter and getting the
receiver to accept a fraudulent message of his own devising when in fact none has
been sent by the transmitter, or else by waiting and intercepting a message sent by
the transmitter and substituting some other message that is accepted by the receiver
as genuine, but which misinforms him of the state of the source. There are many

"side" constraints that must be considered in actual applications of authentication:

Ideally we would call the states of the source "messages" as is the practice in
communications theory. However, if we did this we would be forced to introduce
terminology to designate the collection of sequences that can be sent through the
channel, perhaps "authentication code," paralleling "error detecting and correcting
code"” from communications theory. Unfortunately, the natural contraction "codeword"
already has an accepted meaning in communications theory so that we would either
have to coin a new word to designate the particular sequence of symbols sent to
convey and authenticate a message -- none of which seem very natural —-- or else use
the cumbersome term "authentication codeword". The term "authenticator®, usually
used in the sense of an authentication codeword appended to a message, has too
restricted a connotation for the general case. We have opted instead to use the
term "message' to designate what is actually transmitted and to tolerate the rather
artificial device that the information conveyed by a message is the state of a
hypothetical source.
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the opponent could, for example, be the receiver attempting to falsely attribute
messages to the transmitter that he didn't originate and to convince a third party
of the authenticity of these forgeries or the transmitter disavowing authentic mes—
sages that he did send -- a problem situation commonly referred to as the customer-
broker scenario. In the present discussion we only consider one constraint; i.e.,
whether the receiver is ignorant of the state of the source observed by the legiti-
mate transmitter (authentication with secrecy) or knowledgeable of it (authenti-
cation without secrecy).

The source 8 is defined by a probability distribution S on its states; si.
H(S) is the resulting binary entropy of 8, i.e., on average this much information
must be communicated to the receiver to inform him of the state of the source. If
only H(S) bits were communicated, then there would be no possibility of authentica-
tion, hence authentication codes -- like error detecting and correcting codes --
depend on the deliberate introduction and use of redundant information in the trans-
mission.

In a common U. S. military authentication protocol both the transmitter and
receiver have matched sealed authenticators -- actually a short random sequence of
symbols produced and distributed by the National Security Agency. The sealed
packets are constructed so as toc provide a positive indication (tattle-tale) if they
are opened. Each communicant is responsible for the protection of his sealed
authenticator and is administratively restrained from opening it until it is needed
to authenticate a message. To authenticate a message, the transmitter opens a
sealed authenticator, appends the enclosed authentication suffix to the message and
then encrypts the resulting extended message. The receiver, upon receiving the
cipher would open his matching sealed authenticator and accept the message as
genuine if the cipher decrypted to a string of symbols with the proper suffix, and
otherwise reject it as inauthentic. If there are r bits of information in the
authenticator suffix, an opponent (if he cannot break the "sealing" encryption
algorithm) would have only a 2" probability of "guessing" a cipher which would
decrypt into a message ending with the unknown (to him) authentication suffix and
hence be accepted as authentic by the receiver. This example illustrates the
essential point in all authentication schemes ~- namely that for a particular choice
of authenticator the receiver will accept only a fraction out of the total number of
messages possible.

Continuing the parallel between error detecting and correcting codes and
authentication codes, let the particular mapping of states of the source into
acceptable (authentic) messages determined by a specific choice (of authenticators)
by the transmitter and receiver be called an encoding rule; ei. ¢ is then the set
of all available (to the transmitter/receiver) encoding rules. Given €, the trans-
nitter and receiver choose encoding rules according to a probability distribution E,

which in turn determines a binary entropy of H(E) as to the average equivocation



264

about the rule being employed. Finally, there is a space M consisting of all of the
messages that the transmitter can use to communicate states of the source to the
receiver. We assume that the transmitter can communicate to the receiver any obser-
vation he makes of the source; therefore |m| > |8| where |8| is interpreted to be
the cardinality of states of 8§ that have nonzero probébility of occurrence. The
inequality is strict, since as has already been remarked if || = |§|, all messages
would have to be acceptable to the receiver and, hence, no authentication would be
possible.

A concise representation of authentication against an opponent impersonating
the transmitter is now possible in the form of an [8[ x [I'nl matrix, A. The rows of
A are indexed by encoding rules and the columns by messages. The entry in a(ei,mj)
is the element of 8 encoded by rule ey into message mj if such a source mapping
exists under ei and 0 otherwise. As a consequence of the (reasonable) assumption
that the transmitter can communicate any state he observes of the source to the
receiver, every element of § appears in each row of A at least once and perhaps
several times. Earlier comments imply that each row and column contains at least

one 0 entry. We now define another |€] x |M| matrix X, in which

1 if a(ei,mj) e 8

x(e, ,m.) = .
10 o] otherwise
For example, for |8 = 2, |m| = 4, the "best" authentication system possible has:
31 52 0 0 Tt 1 0 0
s 0 s 0 1 0 1 0
A=la! s, 02 s and X=1g 1 0 1 :
0 0 S, 8, o o0 1 1

It is now easy to see the relationship of the impersonation "game" to the matrix X.
Ifr mj is an acceptable {authentic) message to the receiver when encoding rule ei has
been agreed to by the transmitter and receiver then x(eimj) = 1 and the opponent has
a probability of success of p = 1 if he communicates mj to the receiver. Con-
versely, whenever x(ei,mj) = 0 he is certain the message will be rejected. It is
certainly plausible -- and in fact rigorously true -- that the opponents probability
of success in impersonating the transmitter is the value, VI’ of the zero sum game
whose payoff matrix is X.

The matrix representation, Y, of authentication against an opponent who waits
to observe a message sent by the legitimate transmitter and then substitutes some
other message is considerably more complex, since the simple strategies available to
him in this case are conditional probabilities; i.e., he observes message mj and
must choose, based on this observation, a message M to substitute in its stead.
The choices available to the transmitter and receiver are the same as in the imper-—

sonation case, namely the choice of an encoding rule ey and perhaps a choice (by the
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transmitter) of which message to use to communicate the state of the source, SZ’ if
e, maps s, into two or more messages.

Yis a [€] «x ]m|2 array whose rows are indexed by e, and whose columns are
indexed by the lmlz pairs mj|mk; meaning ms is observed and m is substituted. The

k
entries in Y are:

1 if encoding rule e, is used, and when message m
i is substituted for m, the receiver is deceived as
yjk = to the state of the gource* .
0

T Ttrategy for the opponent in this case consists of an Imlz—tuple (qjk) where
n
Lay =1, for153s [m], and qj) is the probability of his substituting message
k=1
m,_for m,.

J

“ Since the opponent has, as a part of his strategy, the option to either imper-
sonate the transmitter before a legitimate message is sent or else to wait and sub-
stitute some other message in an attempt to deceive the receiver, the complete
authentication "game™ is the concatenation of X and Y, i.e., a rectangular
]e| x|m|(|m| + 1) game subject to the strategy constraints mentioned above plus
some additional ones having to do with the transmitter's optimal use of his choices
(if any) among available messages to communicate an observed state of the source
(splitting). Not surprisingly there exist authentication éystems in which the
optimal strategy for the opponent is either pure impersonation, pure substitution,
optional linear combinations of the two, or most interesting -- essential mixing of
both as well as examples in which splitting is essential in the transmitter/
receiver's optimal strategies. The point of these remarks is that we have shown in
earlier papers that an opponent's overall probability of success under an optimal

strategy in deceiving the receiver, P is at least the value of the game whose

d'
payoff matrix is the concatenation of X and Y, and hence that

>
Pd z max(vI,vs)

where VI and vy are the values of the impersonation game on X and of the substitu-

tion game on Y, respectively. We will not pursue this game theory formulation [1]
further here, since the purpose of this paper is to review some "channel bounds™ on
Pd for the authentication channel in terms of the parameters H(S), H(M) and H(E) and
then to exhibit a practical system (based on DES) that appears to violate this

If a common state of the source, Sl’ ”
would be accepted by the receiver as an authentic message when in fact

is mapped into mj and m, under ei, then even

though mk

the transmitter sent mj, he would not be misinformed as to the state of the source

and hence yi =0 in this case alsoc.

Ik
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bound. Of course, the real purpose of the paper is to explain away this apparent

contradiction.

The Authentication Channel Bound

Since they have been derived in full detail elsewhere [2], we only exhibit the
principal results on the authentication channel bound that are needed to make this
paper self-contained. Theorem 1 states the fundamental authentication channel

bound.

Thecrem 1 (Authentication Channel Bound)

There is a strategy for the opponent such that
(1) log Pd 2 H(MES) - H(E) - H(M)
for any transmitter/receiver strategy, E.

Discussion

Pd is the probability that the receiver is deceived as to the state of the
source. H(E) and H(M) are the a priori equivocation about the encoding rule being
used by the transmitter and receiver and of the message(s) respectively. H(MES) is
the joint uncertainty as to the state of the source, the encoding rule and the
resulting message. (1) is only one of many equivalent formulations of the channel
bound, but is the form most naturally proven by information theoretic arguments.

The expression (1) shows an interesting, and often valuable (to the transmit-
ter/receiver) difference between the essential equivocation faced by the opponent in
attempting to deceive the receiver and that faced by the legitimate receiver in
attempting to recover the state of the source from the message. The difference in
their tasks arises only when the encoding rule encodes at least one state of the
source into two or more acceptable messages. In this case H(MES) when expressed in

the form
H(MES) = H(E[MS) + H(MS)

makes clear that to the opponent, meaningful uncertainty about the encoding rule can
exist even though he knows both the state of the source and the message chosen to
communicate it. H(E]MS) is essentially the uncertainty (to the opponent) introduced
by splitting messages. By meaningful, we mean that this uncertainty can be used by
the transmitter/receiver to confound him in choosing a substitute message. The

receiver on the other hand doesn't care about which message the transmitter chooses,
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since he knows the encoding rule and hence

will correctly infer the state of the

source irrespective of which choice the transmitter made.

Theorem 2 gives eight equivalent expressions to (1) for the case of authentica-

tion with secrecy: i.e., the opponent does not know the state of the source obser-

ved by the transmitter. This, of course,

only matters if the opponent elects to

substitute messages rather than to impersonate the transmitter.

Theorem 2
H(MES) - H(E) - H(M) is equivalent

to any of the following eight entropy

expressions.
X Equivalent Form
(2) ES H(M{ES) + H(S) - H(M)
(3) H(E|MS) ~ H(E) + H(MS) - H(M)
MS or
(4) H(E|MS) - H(E) + H(S|M)
(5) H(E[M) - H(E)
ME or
(6) H(M|E) - H(M)
(7 5 H(ME|S) + H(8) - H(E) - H(M)
(8) E H(MS|E) - H(M)
(9) M H(ES|M) - H(E)
Proof':

The proof in each case proceeds by splitting the argument in the entropy H(MES)

appearing in (1) through conditioning the joint probability on the variable X and

then using simple identities to reduce the

(2) is typical.

H(MES)

H(M|ES) +

H(M|ES) +

H(M{ES) +

resulting expressions. The derivation of

H(ES)
H(E|S) + H(S)

H(E) + H(S)

since E and S are independent random variables, Hence
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H(MES) - H(E) - H(M) = H(M|ES) + H(S) - H(M)

as was to be shown, etc.
Eq. (2) says that

log Py 2 H(S) - H(M) + H(M|ES) .

The right-hand term H(M|ES) is the average uncertainty about M given the encoding

rule e, € & and state of the source s; € §. But there is no uncertainty if there is

J

no splitting, i.e., if there are no choices of messages available to the transmitter
to communicate state 8 to the receiver when using encoding rule ej. In this case,

and indeed in general,

(10) H{S) < H(M)

for authentication to be possible at all. We have noted earlier that the inequality
(1) ‘ [s| < Im|

had to also hold for authentication to be possible. In view of the similarity of
(10) and (11) a natural question i3 whether one of the inequalities is stronger than
the other, i.e, implies the other, The following small example shows that this is

not the case.

Consider two sets A = (a1,a2) and B = (b1,b b3) with probability distributions

2
e e skl
respectively. Then H(A) = 1 and
H(B) = 5" % log 7 = %
Now let & = A and I = B, SO that
Is| < Im]
but

H(S) > H(M)

‘showing that (11) doesn't imply (10). Conversely, let $ =B and m=A, so that
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H(S) < H(M)
then

lsl > |m|
showing that (10) need not imply (11) either. |l

What is true is that for authentication to be possible both (10) and (11) must be
satisfied; i.e., that there must be more messages than states of the source and the
average information content in a message must be at least as large as the average
uncertainty it resolves (for the receiver) as to the state of the source. Stated in
this way, both conditions are certainly reasonably, the only surprising thing is
that they are independent.

Using the results of Theorem 2, it is possible to derive some {generally)
weaker but enlightening channel bounds. We first note that the total effective
equivocation to the opponent playing the substitution game but without knowledge of
the source state, i.e., authentication with secrecy, is no greater than H(E|M) and
as remarked earlier, the opponent's total effective equivocation if he knows the

source state, i.e., authentication without secrecy, is at most H(E|MS).

Theorem 3

For authentication with secrecy
1
(12) log Py 2 -3 H(E)
while for authentication without secrecy

(13) log Py 2 —15 {H(E) - H(MS) + HM)} = - % {u(z) - "(s|m}

Proof.

For authentication with secrecy

(%) log P, 2z min{log vI,-H(E]M)}

while for authentication without secrecy
(15) log P, 2 min{log vI,—H(E]MS)} .

In either (14) or (15) the bounds derived in Theorem 1 and 2 on the value of the
impersonation game can be substituted, since the opponent's impersonation strategy

is independent of whether he plays substitution with or without secrecy. Replacing
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the minimum on the right-hand side of the inequality by the average of the two
bracketed terms either weakens the inequality if the terms are not identical or
leaves it unaffected if they are. Therefore for authentication with secrecy,
replacing Vi with the bound (5) in (14) we get

log Py zlz {H(E[M) - H(E) - H(EIW)] = - -;—H(E)

and similarly by replacing v, with the bounds (3) or (4) in {15) we get

I
log Py 2 3 [H(E[MS) = H(E) + H(MS) - H(M) - K(E[MS)}
= - 3 (H(E) - HOMS) + KO}
Ol’"
log P, = 5 {H(E) - H(s|w]

as was to be shown.

Corollary
(16) Py 2 ——
vle
Proof :
an H(E) 2 logle|

with equality if and only if the transmitter/receiver's optimal strategy E is the
uniform probability distribution on €. The conclusion follows by substituting (17)
into (12).1

The expression of the channel bound given in (16) is the one which is appar-

ently violated by the DES based authentication scheme described in the next section.

A "Practical" Authentication Scheme

The source is a "fair" coin flip, i.e., the probability of heads or tails is
1/2. The transmitter/receiver choose to encode (not authenticate) the state "heads"
as the sixty-four bit binary string 11...1 and "tails" as 011...1. 1In other words
the redundant information used to authenticate a message is the suffix of 63 1's and

only the left-most bit conveys any information about the state of the socurce. They
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then encrypt whichever of these strings is indicated by the coin flip using DES and
a secret (known only to them) DES key ~— which as is well known consists of fifty-—
six bits of equivocation to an outsider; the opponent. Each choice of a DES key
corresponds in this scheme to a choice of an authentication encoding rule.

Consequently, |g} = 256, and (16) says that

- 3.7 x 107

> 4
d 28
Vlg 2

i.e., the transmitter/receiver cannot, even if they use the 2

P 9

56 encoding rules

optimally, limit the opponent's chances of deceiving the receiver to less than
roughly four parts in a billion.

Now consider the "practical" chance that the receiver will be deceived. First,
there are 26“l possible ciphers (messages), only two of which are acceptable for any
particular choice of a key (authentication encoding rule). Therefore, if the oppon-—
ent merely selects a cipher at random and attempts to impersonate the transmitter,

63 9 9

his chances of success are 2 or approximately one chance in 101 not four in 107!

The question is, can he do better. As far as impersonating the transmitter is con-
cerned, the answer is essentially no, even if he has unlimited computing power. For
each choice of an encoding rule, there are two {out of ZGH) ciphers that will be
acceptable as authentic. Assuming that the mapping of 8 into I under DES keys is a
random process, this says that the total expected number of acceptable ciphers (over
all 256 keys) is = 256'9888, i.e., € close to 257. Even if the opponent could res-
trict himself to choosing a cipher from among this collection, his chances of having

a fraudulent message be accepted by the receiver would only be 2_56

1 . i
chance in 10 T which 1s what we meant when we said that the answer was essentially

or roughly one

no. The opponent could not do better, nor worse, (in attempting to impersonate the

transmitter) than choose a cipher randomly from among the = 257

potentially
acceptable ciphers, if the transmitter/receiver chose an encoding rule indexed by
the 256 DES keys using a uniform probability distribution as their strategy.

The argument in the preceding paragraph is not misleading, i.e., the opponent's
chances of deceiving the receiver through imperscnating the transmitter are no
better than stated. On the other hand, the channel bound in (16) applies to all
authentication schemes —-- hence the apparent contradiction must arise in connection
with the opponent's substitution strategy. If the opponent waits to observe a
legitimate message (cipher), can he put this information to practical use to deceive
the receiver. Even if he doesn't know the state of the source, he knows tha% the
5 DES

keys. He also knows that with a probability of essentially one (= 0.996), there is

clipher is the result of encrypting either 111...1 or 011...1 with one of the 2

only one key that maps the observed message into either of these codes, hence, he is
faced with a classical "meet in the middle" cryptanalysis of DES, Clearly if he
succeeds in identifying the DES key, i.e., the encoding rule being employed by the
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transmitter receiver, he can encrypt the other binary string and be certain of
having it accepted and hence be certain of deceiving the receiver, The point,
though, is that in order for him to make use of his observation of a message he must
be able to cryptanalyze DES. If he can do this, the expected probability of
deceiving the receiver is ¢ close to one -- the small deviation being attributable
to the exceedingly small chance that two (or more) DES keys might have encoded
source states into the same message (cipher). Thus, we have the paradoxical result
that the practical system is some eight or nine orders of magnitude more secure than
the theoretical limit simply because it is computationally infeasible for the
opponent to carry out in practice what he should be able to do in principle. In
this respect practical message authentication [3] is closely akin to practical
cryptography where security is equated to the computational infeasibility of
inverting from arbitrarily much matching cipher text and plaintext pairs to solve
for the unknown kKey -- even though in principle there is more than enough infor-

mation available to insure a unique solution.
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