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Many proposed keystream generators consist of a number of binary 
maximum length shift registers combined by a nonlinear binary func- 
tion. The registers guarantee a long period and the nonlinear func- 
tion destroys the linearity i.e. it gives the output sequence a lar- 
ge linear complexity <l>, (linear equivalent <2>). In order to avoid 
correlation attacks the function should also be correlation immune 
<3> i.e. the output sequence should be statistically independent of 
the various inputs. There is however a trade off between the linear 
complexity and the order of correlation immunity, since it is not 
easy to achieve both properties. The reason for this is that in the 
binary field GF(2) there are too few functions. As an example the 
only correlation immune function of two variables is linear. 

In the field GF(2e) the situation is different. For instance, the 
polynomial function x+y+3xy+2 (x y+xy ) +x2y2 in GF (4) is both non- 2 2  

linear and correlation immune. In order to valuate such a function 
one must be able to calculate its linear complexity. That is the 
purpose of this paper. We shall show the following result stated 
here for two variables. 

THEOREM: Let x and y be two sequences in GF(2e) given by maximum 
length shift registers of lengths m and n which are relatively prime 
and greater than three. If they are combined by means o€ a polyno- 
mial function the linear complexity L of the resulting sequence is 
given by 
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where Ili 1 1  is the number of ones in the binary representation of i. 
This result is general since all functions in a finite field are 
polynomial functions <l>. We shall also sketch a generalization to 
G F ( ~ ~ )  for p > ~ .  

Example 

If the correlation immune polynomial mentioned above is used to com- 
bine two registers in GF(4) of length 4 and 5 then the linear comp- 
lexity is 4+5+20+20+20+20. In fact the polynomial implements the 
function "x plus y mod 4 " .  A more striking example is obtained if "x 
plus y mod 16" in GF(16) is written as a polynomial. It turns out to 
be correlation immune and it contains many nonlinear terms. If 
GF(16) is implemented as GF(2) (t)/(t +t+l) and two registers of 
length 17 and 19 are combined, the linear complexity is 1670090. 

4 

Preliminaries 

We shall use the following results which have been proved more gene- 
rally by among others Selmer < 4 > ,  Herlestam <1>, Zierler and Mills 
<5>. 

Lemma: Consider two sequences from two linear feedback registers 
whose feedback polynomials have simple roots ai and b. which are all 
different. The sum of the sequences will have a feedback polynomial 
the roots of which constitute the union [ai, b$ . Moreover, if all 
root pair products a.b. are different then the product sequence will 
have a feedback polynomial with roots a.b. This can be seen from 
the fact that the output n-th term from such sequences can be writ- 
ten as a linear combination of the n-th powers of the roots of the 
feedback polynomial < 6 > .  

1 

1 3  

= 3 '  

Proof of the theorem 

We work in K=GF(Ze). Let the sequence x = ( x . )  be generated by a li- 
near shift register with maximum length feedback polynomial f O f  de- 
gree m. This implies that if a denotes a root of f then the exten- 
sion field K(a) = GF(2em) consists of the elements 
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2em- 
'=1. The polynomial f has the following roots 2 O,a,a ,...,a 

(m-1) e ..... a 2e a 22e a a 

Now consider the sequence x2 = (xi2). Squaring is an automorphism in 
fields of characteristic two and therefore this sequence must be 
obtained if you square the coefficients of f .  The roots will also be 
squared. Repeating this procedure gives that the m roots of the po- 

lynomial which generates x2k are 

2e+k (m-1) e+k 
a ..... a k=O, 1, ..., e-1 2k a 

Thus the roots are of the form a raised to different powers of two: 
2i, i=o,1,. . .me-l. Consequently, if you multiply a number of diffe- 
rent roots then their exponents will add and it is possible to de- 
duce from the resulting exponent which roots that were used as fac- 
tors. Different factors give different products. 

Now consider the sequence xn where 0 < n < 2e. The exponent n can be 
written as a sum of powers of two and the sequence can be looked 

upon as a product of the corresponding sequences xlk which have been 

described above. The root products are different and we can use the 

lemma of Selmer < 4 > .  We have now proved: 

Theorem: Let the sequence x in GF(2e) be given by a maximum length 
polynomial of degree m. Then a polynomial sequence has the linear 
complexity 

We note also that the root products do not belong to K 

a ( 2  -'Ir where sists of the elements 0, ar, a , ...... e 2r 
since K con- 

r=(Zem-l)l(2e-l) and these powers are obtained when all roots be- 
longing to one xn - sequence are multiplied together. 

Consider now two sequences x and y over X=GF(2e) given by maximal 
length polynomials with degrees m and n which are supposed to be 
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relatively prime. The common splitting field of those polynomials is 
GF(2emn). We denote the primitive roots a and b. Both Kla) and K(b) 
are subfields and K(a)nK(b)=K since the intersection consists of 
those elements in GF(2emn) which remain fixed under the automor- 

phisms t-t2em and t--t2en. Therefore they are also fixed under the 

automorphism t- =tZe which implies that they belong to 
K=GF ( 2e) . 

2egcd(m,n) 

i j  when a term xkyl is formed we obtain root products of the type a b 
where a originates from xk and similarly bj from y . Again we must 

i j  show that different factors give rise to different products. If a b 
then it follows that a (i-il) E K .  That this is impossible = a  

when m 2 4 can be seen as follows. Arrange for an element in K(a) = 

GF(2 ) the binary representation of the exponent of a in a exm- 
matrix. Then for elements of K each row will consist entirely of 
either zeros or ones whereas for elements which are root products 
there will be at most a single one in each row. For m 2 4 it is im- 
possible for the sum of a "K type" and a "root product type" expo- 
nent to yield another "root product type"; there will be too many 
ones left. 

i 1 

ilbjl 

em 

e The case GF(p ) when p>2 

Similar results are also valid when the characteristic is greater 
than two i.e. when K=GF(pe). The difference in the deduction when 
p>2 concerns the roots corresponding to xk for l<k<p. Herlestam has 
shown ( 7 )  that all C(mik-Ilk) possible root products are present. By 
means of automorphisms it can be shown that the polynomial correspon- 

ding to xkp has the same number of roots, all of the form ai where 

i in the p-ary number system has only one single nonzero digit. The 

linear complexity of a power xn, O<n<pel can now be written: 

j 

where nor nl,...ne-l denote the p-ary digits. This expression is the 
generalisation of m lli" when p>2. The condition greater than three 
should be replaced by greater than p+l. In all other respects the 
proofs and theorems are similar. 
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