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Summary - I n  this paper the l inear feedback shif t  registers are determined that  can 

generate the output sequence o f  two types o f  clock controlled shift registers suggested by 

P. Nyffeler. For one type of clock control sufficient conditions are given which guarantee 

that maximum linear complexity is obtained. Furthermore, it i s  shown that the randomness 

properties for sequences o f  maximal linear complexity depend on clocking procedure. 

1. Introduction. 

Pseudo random sequences generated by  linear feedback shift registers are used in various 

crypto systems as running key generators. I n  general several linear feedback sh i f t  registers 

are used to  produce the f ina l  pseudo random sequence. Since such a sequence i s  periodic, 

it can be generated by one single linear feedback shift register of f ini te length. The 

length of shortest l inear feedback shif t  register that is able to  produce the output 

sequence o f  a configuration is referred to  as the linear complexity of the sequence. I f  the 

linear complexity o f  some periodic sequence is L, then 2L consecutive symbols w i l l  be 

sufficient t o  determine both the l inear feedback and the init ial  state of a linear feedback 

shif t  register that can generate the sequence [I]. As a consequence, a configuration o f  

linear feedback shift registers must be such that the generated sequences do have a large 

linear complexity. 

This paper deals w i th  two  types o f  clock controlled shift registers, suggested by P. 
Nyffeler [2]. F i r s t  the l inear feedback shif t  registers are determined that can generate the 

output sequence o f  the clock controlled shif t  registers. For one configuration of clock 

control suff icient conditions are given which guarantee that maximal linear complexity is 

obtained. In the sequel of this paper (a,) w i l l  denote a linear recurring sequence over 

GF(q) w i th  period Ta whose minimal polynomial fa  i s  irreducible over GF(q), has degree 
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m>l, and satisfies f (OhO. Furthermore, (b ) w i l l  denote a periodic sequence over GF(q) 

wi th  period Tb. Throughout the paper it is assumed that (a,) and (b,) are generated by 

the linear feedback sh i f t  registers LFSRa and LFSRb respectively. It is also assumed that  

neither (an) nor (b,) equals the null-sequence. 

2. Cascade Clock Control 

Consider the configuration o f  two shift registers as given in Fig. 1. The clock of the f i rs t  

shif t  register, LFSRa, is controlled by the sequence generated by the second sh i f t  register, 

LFSRb. A t  t ime instant n>O LFSRb is clocked once and LFSRa is clocked c(bn-,) times, 

where c is some function: GF(q)+{O, ..., Ta-I I .  To avoid a t r iv ia l  situation, it is assumed 

that c(x) is not zero fo r  a l l  x in GF(q). Note that the function c may be par t  o f  the key 

information i n  a crypto system. 

LFSRa ynG 
I n  1 I 

$1111 

Fig. 1 Cascade Clock Contro l  w i t h  two shif t  registers. 

The sequence (y,) obtained at  the output i s  

n-I 
yn=as(n), where s ( n k  1 C(bk), n=0,1,2 ,... 

k=O 

Le t  Tb denote the period of  (b"). Furthermore, le t  S=s(Tb), i.e., the number of clock 

pulses generated in one period o f  (bn). 

Theorem 1. The sequence (y,) generated by the cascade clock control configuration of 

LFSRa and LFSRb has a minimal polynomial f*(x) such that 

where f(k) denotes the minimal polynomial of  the k-decimated sequence of (an), i.e., (akn). 

Proof Le t  k and I be integers and le t  k>O. Consider now the sequence (akn+,), i.e., 

the 1-th phase sh i f t  o f  (akn). It i s  easy t o  see that 
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m 

hk,l(x):=f (k) (x) t ank+lxn E GF(q)[x] where deg hk < deg fk (3 )  
n=O 

Consider the formal  power series y(x) associated wi th  the sequence (yn), defined by 

y(x)= t 
W 

ynxn. From (1) we have 
n=O 

0 m m Tb-1 
y(x)= Z ynxn= E aS(,)xn= E aS(m)+nSxm+nTb= 

n=O n=O n=O m=O 

Multiplying y(x) w i t h  f(’)(xTb) and using (3) and (4)  gives us 

F rom (4 )  and deg xm<Tb,for O(m<Tb,we have 

deg h(x) 2 (Tb-l) + Tb(deg f(’)(x) -1) < Tbdeg f(’)(x) ( 5 )  

This implies tha t  y(x)=h(x)/f(’)(xTb). However, we also have y(x)=h*(x)/f*(x), deg 

h*<deg f*, where f*(x) is the minimal polynomial f o r  (yn). The theorem follows from 

the minimali ty o f  f*. 

Under favourable conditions i t can be shown that the polynomial given in (2) i s  the 

minimal polynomial o f  (yn). Specializing a theorem by Serret on irreducible polynomials, 

see C31, we obtain the fol lowing result: 

Theorem 2. Suppose f (x) has degree d and has order Ta,S. Suppose also that 

(i) 

(ii) 

then f(’)(xTb) is pr ime over GF(q). Hence, it i s  the minimal polynomial of (yn). 

Furthermore it has degree Tbd and has order TbTa,S. 

When f(x) is a maximum-length polynomial we have the following interesting special case 

of Theorem 2. 

(S) 

a l l  pr ime factors o f  Tb>2 divide Ta,S but not (qd-l)/T,,s, 

qd=l mod 4 i f  Tb=O mod 4, 
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Corollary 1. If f(x) is a maximum-length polynomial of degree m l l ,  

(i) gcd(S,qm-l)=l, 

(ii) a l l  prime factors o f  Tb divide T and 

(iii) 

then f(')(x b, is the min imal  polynomial o f  (yn). 

i f  the hypothesis (ii) in Theorem 2 is satisfied, 
T 

Proof. We only need t o  show that condition (i) in Theorem 2 is satisfied. I f  f(x) is a 

maximum-length polynomial of degree mil, then f(x) has period T=qm-1. F r o m  

gcd(S,qm-l)=l it follows that  Ta,s=T. Together with the hypothesis that a l l  the pr ime 

factors p of Tb divide T and p t l ,  this shows that the condition (i) in Theorem 2 is 
satisfied. 

For some special instances of  the binary case this corollary coincide with results given in 

C41 and [51. An other result of Theorem 2 is the following corollary: 

Corollary 2. L e t  p, an odd prime, divide 2"-1 for some positive integer n. I f  the order of 

2 mod pk equals e fo r  k=2, ... d, wher6 e is the order of 2 mod p, but pd+l / Y Z e - l ,  then pd 

divides Zn-l. 

n c  Proof. Consider f i r s t  the case n=n'=order of 2 mod p. Assume that 2 - I=p Q, w i th  

p]Q and l(c<d. L e t  e be the order of 2 mod pc, e=ord2pc, and correspondingly 

el =ordZQ. Note tha t  Icm(e,el)=n. Since gcd(p,Q)=l we have A :=~rd~(p 'Q)~=  

I ~ m ( a r d 2 p ~ ~ , o r d ~ Q ~ ) .  I f  2c(d, then A(lcm(e,el Q)<nQ. If 2c>d, then A(lcm(ep2c-d,el Q) 

_(nQp2c-d. Consider now the cascade clock control of two maximum length shif t  

registers o f  length n. Theorem 2 implies that the minimal polynomial f o f  the output 

sequence is pr ime over GF(2) , is o f  degree B:=n(2"-1) and has period (pcQ)'. 

However we just have shown that  deg f=A<B, hence c>d. Finally, l e t  n>n'. No te  that  

2"'-11 2"-1 i f f  n'] n and n'=crd2pln because 2"=1 mod p. This proves that  pdl Zn'-1 

12"-1. 

Note: this result can be obtained also by using only partial results on which Theorem 2 is 

based, [31. 

3. Clock Controlled Sampling 

Consider the configuration of two linear feedback shif t  registers as shown in Fig. 2. The 

output of the f i rs t  register LFSRa is sampled under control of the outputs o f  the second 

register LFSRb and a mapping g f r o m  GF(q) onto GF(2). If g(bn)=l then the output symbol 

o f  LFSRa is loaded in ce l l  D and i t  w i l l  become the new output y-symbol. Otherwise the 

new output y-symbol equals the previous y-symbol. It w i l l  be assumed that g is no t  the 

zero-map, i.e., not  a i l  elements of GF(q) are mapped to only 0. 
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LFSRa g : G F ( q ) - > { O , l l  

Fig. 2 Clock control led sampling. 

4 (b,) LFSRb 

The sequence (yn) obtained a t  the output is 

where g is a mapping as explained above. Furthermore, assume that bo i s  such that 

g(bo)=l. This rest r ic t ion assures that the f irst output symbol i n  (y,) is a. instead o f  the 

in i t ia l  state of the memory ce l l  D. 

Theorem 3. The sequence (yn) generated by the clock controlled sampling configuration of 

LFSRa and LFSRb has a min imal  polynomial f* such that 

Proof Imi ta te the proof of Theorem 1 with Tb instead of S and use the f a c t  that 

s(nTb+m)=nTb+s(m). 

For the binary case this result is connected wi th  a result given in  [Z]. Le t  a be a zero of 

f(x), then it is easily shown tha t  a is also a zero of  (7). Thus f(x) divides f(Tb)(x ’), hence 

it is much harder to  guarantee that (7) is the minimal polynomial of (ynh 

T 

4. Randomness aspects 

Besides the linear complexity o f  the generated sequences, their statistical properties are 

of importance. Particularly, it is desirable that the symbols in the sequence do no t  depend 

(too much) on the preceding symbols. I f  for a sequence x the average conditiona! entropies 

H(Xn),H(Xn I Xn-l), H(Xn I Xn-l ,Xn-2),...,H(X,l Xn-, ..Xn-m) form a rapid decreasing function 

then there i s  a strong dependence between a symbol and the symbols preceding it. F rom 

Theorem 2 it is clear that, as far as the linear complexity of the generated sequence i s  

concerned, the clock function in the f irst type of clock control only plays a secondary 

roll. Though dif ferent clock functions give rise t o  different output sequences, the same 
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linear complexity may be obtained. For example, i f we take the maximum-length 

polynomial fw=x5+x2+l  over GF(2) and b=l/(x5+x3+l), then the clock functions co and cl, 

defined as co(O)=O, co(l)=l and cl(0)=l, c1(1)=2, w i l l  result in two dif ferent sequences 

which have the same linear complexity L=155. However, the randomness properties o f  the 

two sequences (wi l l  generally) dif fer. This is i l lustrated by Fig. 3 which shows how the 

conditional entropies H(Xn),H(Xn I Xn-l ),H(Xn I Xn-l ,Xn-2),...,H(XnI Xn-l ..Xn-lo) d i f fer  for  the 

two dif ferent clock functions in the previous example. 

, . a ,  . , , , ,  
0 2 4 6 8 1 0  0 2 4 6 8 10 

Fig. 3 The average conditional entropies H(Xn), ..., H(Xn 1 Xn-l ..Xn-,,) of the output symbols 

using two dif ferent clock functions co and c1 

i- > i-> 

The symbol dependence observed when clocking i s  done according to co i s  due t o  the fact  

that LFSRa stands s t i l l  for  almost half  of the time. As a result of this observation one 

has t o  choose the clock function not only wi th  respect t o  the linear complexity o f  the 

sequence but  also the randomness properties have to  be taken into account. 

In the case of clock controlled sampling a symbol i n  the output stream may also be a 

repetition. This happens when no new symbol i s  loaded into the D element. Such 

repetitions can be avoided when one increases the number of instances in  which a new 

symbol is loaded in to 0. However this causes the output sequence t o  become more 

identical t o  the sequence generated by LFSRa. 

5. Conclusion 

It has been shown that  under certain well defined conditions we can guarantee a high 

linear complexity for the sequences produced by the cascade clock control configuration. 

The random properties o f  these sequences depend on the method of clocking. Furthermore, 

for the clock controlled sampling configuration it is much harder t o  guarantee a high 

linear complexity and (or) good random properties. 
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