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Summary - In this paper the linear feedback shift registers are determined that can
generate the output sequence of two types of clock controlled shift registers suggested by
P. Nyffeler. For one type of clock cantrol sufficient conditions are given which guarantee
that maximum linear complexity is obtained. Furthermore, it is shown that the randommness

properties for sequences of maximal linear complexity depend on clocking procedure.

1. Introduction.

Pseudo random sequences generated by linear feedback shift registers are used in various
crypto systems as running key generators. In general several linear feedback shift registers
are used to produce the final pseudo random sequence. Since such a sequence is periodic,
it can be generated by one single linear feedback shift register of finite length. The
length of shortest linear feedback shift register that is able to produce the output
sequence of a configuration is referred to as the linear camplexity of the sequence. If the
linear complexity of some periodic sequence is L, then 2L consecutive symbols will be
sufficient to determine both the linear feedback and the initial state of a linear feedback
shift register that can generate the sequence [1]. As a consequence, a configuration of
linear feedback shift registers must be such that the generated sequences do have a large

linear complexity.

This paper deals with two types of clock controlled shift registers, suggested by P.
Nyffeler [2]. First the linear feedback shift registers are determined that can generate the
output sequence of the clock controlled shift registers. For one configuration of clock
control sufficient conditions are given which guarantee that maximal linear complexity is
obtained. In the seque! of this paper (an) will denote a linear recurring sequence over

GF(qg) with period T, whose minimal polynomial fq is irreducible over GF(q), has degree
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m>1, and satisfies fa(0)¢0. Furthermore, (bn) will denote a periodic sequence over GF(q)
with period T,. Throughout the paper it is assumed that (a,} and (b,) are generated by
the linear feedback shift registers LFSRa and LFSRb respectively. It is also assurmed that

neither (a,) nar (b,) equals the null-sequence.

2. Cascade Clock Control

Consider the configuration of two shift registers as given in Fig. 1. The clock of the first
shift register, LFSRa, is controlled by the sequence generated by the second shift register,
LFSRb. At time instant n>0 LFSRb is clocked once and LLFSRa is clocked c(bn_1) times,
where ¢ is some function: GF(q)-’{D,...,Ta-’I }.' To avoid a trivial situation, it is assumed
that c(x) is not zero for all x in GF(g). Note that the function ¢ may be part of the key
information in a crypto system.

c:GF(q)->{0,1,...,T_-11
Y - LFSRa a

a,b#0,0,...

c(b_) [ LFSR
n

b b

S W
1111

Fig. 1 Cascade Clock Control with two shift registers.

The sequence (yn) abtained at the output is

n-1
Yn=as(n)s where  s(n)= T clby), n=0,1,2,... 6]
k:D

Let Tp dencte the period of (bp). Furthermore, let S=s(Ty), i.e., the number of clock

pulses generated in one period of (bn).

Theorem 1. The sequence (yn) generated by the cascade clock cantrol configuration of
LFSRa and LFSRb has a minimal polynomial £*(x) such that

0 | 9Dy, @

where f0¢) denotes the minimal polynomial of the k-decimated sequence of (a,), i.e., (3,)-

Proof Let k and | be integers and let k>0. Consider now the sequence (akn+l)’ i.e.,

the I-th phase shift of (a ). It is easy to see that
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<
hk,l(x):=f(k)(x) x ank+lxn€GF(q)[x] where deg By, 1 < deg £k (3
n=0
Consider the farmal power series y(x) associated with the sequence (y_), defined by
L=-]
y(x)= ZU ypx". From (1) we have
n=l
@ © Tb-1

=]

- LU n_

yO= T ypx'= E agpyx’= T L ag() 5%
n=0 n=0 n=0 m=0

m+nTb:

m N
=z x"'ZX Ag(m)+nS* b. (4)
m=0 n=0

1
Multiplying y(x) with #5)x ' B) and using (3) and (&) gives us

Th,1
T b T
9 BlyG= T xMhg mylx Ph=hlx) € GFa)x]
m=0

From (4) and deg x™XT, ,for 0<m<Ty,we have
deg h(x) < (T,-1) + Tyldeg £3Xx) -1) < T deg £30) (5)

This implies that y(x):h(x)/f(s)(be). However, we also have y(x):h*(x)/f*(x), deg
h*<deg f*, where f(x) is the minimal polynomial far (yn)- The theorem fallows from

the minimality of £

Under favourable conditions it can be shown that the polynomial given in (2) is the
minimal polynomial of (yn). Specializing a theorem by Serret on irreducible polynomials,

see [3], we obtain the following result:

Theorem 2. Suppaose f(s)(x) has degree d and has order T_.. Suppose also that
t
(1) all prime factors of T, >2 divide T but not (qd—1)/T ,
b a,S 3,5
) q9=1 mod 4 if T,=0 mod 4,

then f<s)(x by s prime over GF(g). Hence, it is the minimal polynomial of (y_).
Furthermore it has degree Tyd and has order T,,T,q.
Y

When f(x) is a maximum-length palynamial we have the following interesting special case
of Theorem 2.



145

Corollary 1. If f(x) is a maximum-length polynomial of degree m>1,

Q) ged(S,qM-1)=1,
(ii) all prime factars of Ty divide T and
(iii) if _the hypothesis (ii) in Theorem 2 is satisfied,

then £S)(x ) is the minimal polynomial of (y,).

Proof. We only need to show that condition (i) in Theorem 2 is satisfied. If f(x) is a
maximum-length polynomial of degree m>1, then f(x) has period T=q™-1. From
ged(S,qM-1)=1 it follows that Ta,S:T' Together with the hypothesis that all the prime
factors p of Ty divide T and p*‘l, this shows that the condition (i) in Theorem 2 is
satisfied.

For some special instances of the binary case this corollary coincide with results given in

[4] and [5]. An other result of Theorem 2 is the following corollary:

Corollary 2. Let p, an odd prime, divide 2".1 for some positive integer n. If the order of
2 mod pk equals e for k=2,...d, wher¢ e is the order of 2 mod p, but pd+1,{’23-1, then pd
divides 271,

Proof. Censider first the case n=n’=order of 2 mod p. Assume that 2"-1=p°Q, with
pf@ and 1<c<d. Let e be the order of 2 mod pF, e=ord,p®, and correspondingly
eq=ordyQ. Note that lem(e,eq)=n. Since gcd(p,Q)=1 we have A::ordz(ch)Z=
lcm(ordzpzc,ordZQZ). If 2c<d, then Aglcm(e,e1G)§nQ. If 2c>d, then ASlcrn(epzc'd,e1G)
Snszc'd. Consider now the cascade clock control of two maximum length shift
registers of length n. Theorem 2 implies that the minimal polynomial f of the output
sequence is prime over GF(2) , is of degree B:=n(2"-1) and has period (pcG)z.
However we just have shown that deg f=A<B, hence c>d. Finally, let n>n”. Note that
2" 1} 271 iff n|n and n’=crdyp|n because 2"=1 mod p. This proves that pdl AL
|20,

Note: this result can be obtained also by using only partial results on which Thecrem 2 is
based, (31

3. Clock Controlied Sampling

Consider the configuration of two linear feedback shift registers as shown in Fig., 2. The
output of the first register LFSRa is sampled under control of the outputs of the second
register LFSRb and a mapping g from GF(q) onto GF(2). If glb,)=1 then the output symbol
of LFSRa is loaded in cell D and it will become the new output y-symbol. Otherwise the
new output y-symbol equals the previous y-symbol. It will be assumed that g is not the

zero-map, i.e., not ail elements of GF(g) are mapped ta only D.
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y,~—1 D LFSR, g:GF (gq)->{0,1}
a
n L——HH a,b30,0,...
g(bn) g —b LFSRb

Fig. 2 Clock controlled sampling.

The sequence (yn) obtained at the output is

Yn=8s(n)s where  s(n)= max k, n=0,1,2,... (6)
0<kén
g(by)=1

where g is a mapping as explained above. Furthermore, assume that bg is such that
glbg)=1. This restriction assures that the first output symbol in (y,) is ag instead of the

initial state of the memory cell D.

Theorem 3. The sequence (yn) generated by the clock controlled sampling configuration of
LFSRa and LFSRb has a minimal polynomial #* such that

60 | #Tb)xTb). )

Proof Imitate the proof of Theorem 1 with T _ instead of S and use the fact that

b
s(nTb+m)=nTb+s(m).

For the binary case this result is connected with a result given in [2]. Let a beTa zero of
f(x), then it is easily shown that a is alsg a zero of (7). Thus f(x) divides f(Tb)(x b), hence

it is much harder to guarantee that (7) is the minimal polynomial of (y,).

4, Randomness aspects

Besides the linear complexity of the generated seqguences, their statistical properties are
of importance. Particularly, it is desirable that the symbols in the sequence do not depend
{too much) on the preceding symbols. If for a sequence x the average conditional entropies
HOXHKL [ Xp1 s H(Xn|Xn_1,Xn_2),...,H(XniXn_1..Xn_m) form a rapid decreasing function
then there is a strong dependence between a symbol and the symbols preceding it. From
Theorem 2 it is clear that, as far as the linear complexity of the generated sequence is
concerned, the clock function in the first type of clock control only plays a secondary

roll. Though different clock functions give rise to different output sequences, the same
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linear complexity may be obtained. For example, if we take the maximum-length
polynomial f0)=x2+x2+1 over GF(2) and b=1/(x5+x3+1), then the clock functions cq and ¢y,
defined as cq(0)=0, cgl1)=1 and cq(0)=1, cq(1)=2, will result in two different sequences
which have the same linear complexity L=155. However,the randomness praperties of the
two sequences (will generally) differ. This is illustrated by Fig. 3 which shows how the
conditional entropies H(Xn),H(anXn_1),H(anXn_1 ,Xn_z),...,H(anXn_1..Xn_m) differ for the

two different clock functions In the previous exampie.
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Fig. 3 The average conditional entropies H(Xn),...,H(Xn|Xn_1..Xn_m) of the output symbols

using two different clock functions cg and ¢y

The symbol dependence observed when clocking is done according to y is due to the fact
that LFSRa stands still for almost half of the time. As a result of this observation one
has to choose the clock function not only with respect to the linear complexity of the

sequence but also the randomness properties have to be taken into account.

In the case of clock controlled sampling a symbol in the output stream may also be a
repetition. This happens when no new symbol is loaded into the D element. Such
repetitions can be avoided when one increases the number of instances in which a new
symbol is loaded into D. However this causes the output seguence to become more

identical to the seguence generated by LFSRa.

5. Conclusion

It has been shown that under certain well defined conditions we can guarantee a high
linear complexity for the sequences produced by the cascade clock control configuration.
The random properties of these sequences depend on the method of clocking. Furthermore,
for the clock controlled sampling configuration it is much harder to guarantee a high

linear complexity and (or) good random properties.
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