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1. INTRODUCTION 

In this paper, we investigate how a channel with perfect authenticity but no privacy can be used 
to repair the defects of a channel with imperfect privacy but no authenticity. More precisely, let US 
assume that Alice and Bob wish to agree on a secret random bit string. In order to achieve this goal, 
they have at their disposal an imperfect private channel and an authenticated public channel. The 
private channel is imperfect in various ways: transmission errors can occur, and partial information 
can leak to Eve, the eavesdropper, who also can modify the transmissions arbitrarily, as explained 
below. The only thing Eve cannot do is learn the entire contents of the original message sent by 
Alice. An interesting example of imperfect private "channel", used to exchange (not so random) 
shings, is Diffie and Hellman's public key distribution scheme pH], which leaks partial information, 
even if the discrete logarithm is indeed hard to compute, because it is always feasible for an eaves- 
dropper to determine whether the resulting secret is a quadratic residue or not. The quantum channel 
[BBl,BB2] is also susceptible to a limited amount of information leakage. 

We allow Eve to toggle bits of her choice on the private channel transmissions, or jumble them 
around, even if she cannot actually read them. This could occur, for instance, if privacy were 
attempted by enciphering the individual bits with a one-time pad or with a probabilistic encryption 
scheme [GMI (to toggle an encoded bit, it suffices to multiply its c d e  by the public quadratic non- 
residue), or alternatively, if a quantum channel were used (by passing selected photons through an 
appropriate sugar solution). Eve can also suppress the transmission of selected bits and replace them 
by bits of her choice. 
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On the other hand, the public channel aansmits information accurately (possibly because it is 
supplemented by a classical error-correcung code [MS]), and these transmissions cannot be modified 
or suppressed by Eve, but their entire contents becomes known to her. The authentication capability 
can either be enforced by physical properties of the channel or through the use of a universal hashing 
based authentication scheme [Wq. In the latter case, a small number of random secret bits must be 
shared initially between Alice and Bob, and some of them can be used only once, so that the net 
effect of the protocol can be viewed as key expansion rather than key’dismbution. Cornputationally 
secure authentication [Br,GGW can also be used if protection agms t  unlimited computing power is 
not sought. We shall assume throughout that Alice and Bob did not share initially any secret infor- 
mation, except perhaps for ths public channel authentication feature. 

It is instructive to compare our setting with the problem solved by the wire-tap channel of 
Wyner [W], which achieves similar results in a more classically information-theoretic setting. In 
Wyner’s setting, Alice encodes information by a channel code of her choice. The output of her 
encoder is fed into two classic (discrete, memoryless) communications channels: the main channel, 
leading to the intended receiver Bob, and the wire-tap channel, of lesser capacity than the main chan- 
nel, leading to the eavesdropper. All participants know the channel code and the statistical properties 
of both channels. Under these conditions, Wyner showed that by appropriate choice of the channel 
code, Alice can exploit the difference in capacity between the two channels to communicate reliably 
with Bob while maintaining almost perfect secrecy from the eavesdropper. In our setting, the users 
have an additional resource: the authenticated public channel. This allows them to cope with a more 
powerful eavesdropper. Our eavesdropper is more powerful in two ways, either of which would be 
fatal in Wyner’s setting: she can tamper with Alice’s communications as well as listen to them, and 
she eavesdrops by evaluating an N-bit to K-bit function of her choice, unknown to Alice and Bob, as 
we shall see in Section 4.2. 

In this paper, we assume that some random bit string has already been transmitted from Alice to 
Bob over the private channel. We investigate authenticated public channel protocols that, with high 
probability, detect tampering and transmission errors. Subsequent protocols transform both strings in 
such a way as to eliminate most, and in some cases all, of Eve’s information on the resulting smng, 
except for its length. These public channel protocols remain secure against unlimited computing 
power. Although excessive tampering on the private channel can result in suppressing communica- 
tions between Alice and Bob, it cannot fool them into thinking that they share a secret random smng 
when in fact their strings are different or otherwise compromised. 

This extended abstract contains no proofs and only a selection of the results found in the com- 
plete paper [BBR]. For easier reference, we retain here the full paper’s numbering for sections, 
theorems, etc.. In Section 2, we explain why classical error-correcting codes are inappropriate in this 
context. In Section 3, we investigate how transmission errors and tampering can be detected with 
high probability, and sometimes corrected, at the cost of leaking some information to Eve. In Section 
4, we investigate how Alice and Bob can subsequently reduce arbitrarily Eve’s information at the 
cost of reducing slightly the length of their shared random smng, assuming they have an a pn’ori 
upper bound on the amount of information collected by Eve on the private channel. In Section 5, we 
investigate the possibility of depriving Eve entirely from any information on the final shared random 
string, at the cost of reducing i t s  length more substantially. 

Before we get started, let us give the following definition and some notation: if i < j ,  a function 
: {O,ly‘  -+ {O,l}i is equirable if % { x  1 A x )  = a} = 2J-i for every binary string a of length i. If x and 



470 

y are equal length bit strings, x 8 y denotes their bit-by-bit exclusive-or. Finally, if x is a length N 
bit  string and if 0 5 K _< N ,  x mod 2K denotes the length K bit s h g  consisting of the rightmost K 
bits of 1, and x div 2K denotes the length N-K bit string obtained from x by deleting its rightmost K 
bits. We shall herein assume that the reader is familiar with the classical notions of error-correcting 
codes WS], information theory [GI, universal hashing [CW,WC], and the theory of finite fields pel .  

2. THE INADEQUACY OF CLASSICAL ERROR-CORRECTmG CODES 

Let us recall that the imperfect private channel considered here is susceptible, not only to ran- 
dom transmission errors, but also to any amount of controlled tamping. The classical theory of 
error-correcting codes [MS], on the other hand, is based on the assumptions that few errors are more 
likely to occur than many, and that errors are not maliciously set by an opponent It is therefore not 
quite adequate for our purpose. 

For instance, let x and y be Alice and Bob’s strings, respectively, and let N be their length. 
Eve’s ability to toggle bits of her choice enables her to actually select x @ y ,  barring actual 
transmission errors. This is clearly intolerable if  enor detection is anempted through a linear error- 
correcting‘ code [MS]. Inderd, let x be the private channel transmitted codeword corresponding to 
Alice’s chosen random string. Let z be any codeword chosen by Eve. If she perturbs the private 
channel transmission so that Bob receives y = x  CD z, it will not be possible for him to detect 
tampering. Notice that Eve can achieve this without gaining any knowledge on the contents of the 
original rransmission x. 

Should AIice randomly shuffle the codeword bits, in an attempt to preclude this threat, and pub- 
Iicly tell Bob how to unscramble them only after the private chancel uansmission is completed, it 
would no longer be possible for Eve to toggle selected bits and be certain to escape detection. How- 
ever, if a Hamming code of dimension [Nju l  is used, for instance, Eve can toggle 3 random bits and 
escape detection with probability U(N-2). Using such a protocol, Alice and Bob could only achieve 
a high probability of not being fooled, say 1 - 2-”, at the cost of exchanging unreasonably long 
strings. In Section 3.1. we describe error detection schemes such that the probability of undetected 
tampering and transmission errors is independent of the number and position of altered bits. More- 
over, this probability can be exponentially small in the length of the strings transmitted. 

3. DETECTION AND CORRECTION OF TRANSMISSION ERRORS AND TAMPERISG 

Let x be some random bit string selected by Alice. Assume shz transmits it  directly through the 
imperfect private channel, and let y be the string thus received by Bob. Let L” be the length of both 
stmgs. We investigate public channel protocols that allow Alice aid Bob to detect whenever x f y 
wirh an arbitrarily small error probability, independently of how 4’ differs for Y. The fact that these 
protocols leak information to Eve about x is considered in Section 4. 

3.1. Error detection 

A very simple b u t  impractical way of testing whether I = J is for Alice to choose a random 
functinnf: + {O,l}K, where K is a security parameter. After the private channel transmission 
is completed, she sends f ( x )  to Bob over the public channel, together with a complete description of 
the function f. Should Bob find out that f ( v )  = f(n), this would be considered as strong evidence that 
j = x ,  the error probability being TK. On the other hand, should f(y) be different from f(*). Bob 
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could report to Alice with certainty that he did not receive the correct string. The amount of infor- 
mation on x leaking to Eve from this protocol depends only on the security parameter K ,  and not on 
the length N of the strings (except of course for the fact that K < N). This would not be the case if a 
classical error-detecting code had been used. Unfortunately, this scheme cannot be used in practice 
because then arc too many such functions, so that K2" bits are typically needed to merely transmit a 
description of the randomly chosen function. 

Universal hashing [CWl provides an efficient way to achieve the same goal. After the private 
channel transmission is completed, Alice randomly chooses a function f :  {O,l}N + {0,llK among 
some standard universal 2 class of functions. She then sends both A x )  and a description o f f  to Bob. 
Thanks to universal hashing, the description off can be transmitted efficiently. After computingfb), 
Bob checks whether it agrees with Ax). If it does, a basic property of universal hashing allows them 
to assume that x = y ,  their probability of error being bounded by 2-K. 

3.2. Reconciliation of the strings 

Whetherf: {0,lJN -+ { O , l } K  is chosen as a completely random function or within some univer- 
sal:! class of functions, what should Alice and Bob do whenever f l x )  differs fromfb)? If the private 
channel is reliable enough that only one or perhaps two errors are to be expected at most, it may be 
worthwhile for Bob to try computing Kz) on all strings z differing from y by only one bit or two, in 
the hope of finding a match withflx) and thus a likely candidate z for x. 

If many transmission errors are to be expected, this would be much too time consuming. In the 
full paper, we offer two different solutions to this problem, one based on the posr-facro application of 
a convolutional code and one based on a blockwise exclusive-or strategy. The effect of the convolu- 
tional code protocol is to allow Bob to transform y into x with high probability, at the cost of disclos- 
ing to Eve some information about x. Protocols from Section 4 can subsequently be applied to 
reduce that information. On the other hand, the effect of the exclusive-or strategy is to transform both 
x and y into a probably common shorter string z on which Eve has no more information than she hi- 
tially had on x from eavesdropping over the private channel. 

4. REDUCTION OF THE EAVESDROPPER'S WFORMATIOX 

Assuming that Alice and Bob agree on their strings as a resuit of one of the protocols discussed 
above, Eve has two different sources of information on that string: deterministic information obtained 
from eavesdropping on the private channel, as the original random bit string was being transmitted, 
and stochastic information resulting from eavesdropping on the public channel, as the agreement pro- 
tocol was being carried out. 

In this section, we investigate how to reduce Eve's information arbitrarily close to zero, at the 
cost of s!ightly shrinking the random bit str;ng shared between Alice and Bob at the end of the proto- 
col. In a first step, we assume that no eavesdropping on the private channel has occurred, but that 
tampering and transmission errors were possible. In a second step, we assume to the contrary that a 
limited amount of eavesdropping on the private channel is susceptible of having occurred, but that it 
is not necessary to carry out an agreement protocol from Section 3, thus depriving Eve from this 
potential stochastic information. Finally, the full paper considers the case where both sources Of 

information are simultaneously available to her. All these protocols are secure against an eaves- 
dropper with unlimited computing power. 
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4.1. Reducing the public channel eavesdropper’s information 

Let us assume for the moment that Eve did not attempt eavesdropping on the private channel, 
but that she has complete information on the error detection protocol carried out between Alice and 
Bob over the public channel. Let x be the random string of length N on which Alice and Bob have 
just agreed, and le t f :  { O , l } N  -+ {O,l}K be their error detection function. Eve knows the K-bit value 
of A x ) ,  together with the function f itself. Her information can be characterized by the set 
C = {z E {O,l}N I&) =Ax)} of possible candidates for x. From Eve’s point of view, each element 
of C is equally likely to be the smng x currently shared between Alice and Bob. Notice that Alice 
and Bob also have complete knowledge on the set C. 

In order to reduce Eve’s information, Alice and Bob pubhcly agree on a function 
g : ( O , l > N  -+ {O,l}R, for some integer R 2 N-K, such that knowledge of the set C gives arbitrarily 
little information on g(x) ,  or perhaps even none at all. The final string on which Alice and Bob agree 
is thus g(x).  In other words, the purpose of this function g is to shrink the string x by at least K bits, 
in order to compensate for the K bits of infomation that knowledge of C gives Eve. 

4.1.1. The case of truly random functions 

Assume the error detection function f was chosen randomly among all N-bit to K-bit functions. 
Let g : {O,l}N + {O, l }R  be the function g(x) = x mod 2R. Let S = N-K-R, then 

Theorem 8. The expected amount of information known by Eve on g(x) from knowledge 
off, g and A x )  is less than 2S/ln2 bit. 

Here, S should be thought of as the number of additional bits sacrificed to privacy. Sacrificing one 
more bit in the final smng chops in half Eve’s information about i t  This holds even if Eve knows in 
advance which information reduction function g is to used. Any other equitable N-bit to R-bit func- 
tion would have performed just as well. 

4.1.3. The case of universal hashing 

Let us now assume that a practical error detection protocol was used: the function 
f :  {o,1lN + (O,l}K was randomly chosen among some universal2 class of hash functions. Rather 
than developing a general theory of information reduction in h s  context, let us design an ad hoc 
technique for a given universal class. 

Let a and b be elements of GF(2”) [Be] such that a # 0. The degree one polynomial 
q,.b(x) = f b, arithmetic being done in CF(2Iv), defines a permutation of GF(2N). If we let 
d : { O , l } N  + GF(2N) stand for the natural one-one correspondance, this induces a permutation 
K,,b : {o,1jN + {o,I}~ defined by E ~ J ~ )  = (s-’(q=,b(d(x))), Therefore, for any fixed K 5 N ,  the func- 
tion ha,, : {o,l)lv + [o,1jK defined by hab(x) = q ~ , ( x )  mod 2K is equitable. Futhermore, the class of 
all such functions ha,,, for every a, b E GF(2N), a f 0, forms a universal class of hash functions, SO 

that it can be used for the error detection protocol. 

Theorem 15. Let a and b be any elements of CFQN) such that a # 0. Let x be a random 
suing of length N .  Then knowledge of a, b and ha,&) gives no information on the length 
N-K string defined as x , , ( x )  div 2=. 
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Use of this universal2 class allows Alice and Bob to venfy whether their strings are identical, 
with a probability of error at most 2-K. If they turn out to be the same, they can be transformed into 
a new siring that is only K bits shorter, on which Eve has no information at all. This is optimal. 

4.2. Reducing the private channel eavesdropper’s information 

Let us now assume that partial eavesdropping has occurred on the private channel. Let K be an 
upper bound on the number of bits of information thus obtained by Eve, where K < N .  This can be 
formalized as follows in general: Eve chooses any function e : {O,l}N + {O,l}K, and she obtains the 
value of e(x)  after x has been transmitted over the private channel. Of course, Alice and Bob have 
no information on which function e was chosen by Alice, except for an upper bound on K. 

The effect of eavesdropping over the private channel is very similar to that of eavesdropping 
over the public channel, as described in Section 3, in that the information gained by Eve can be 
characterized by a set E = {z E {O,l}N I e(z )  = e(x)}  of possible candidates for x. However, there is a 
fundmental difference: it is no longer hue that Alice and Bob have complete knowledge on E. For 
this reason, it is not possible for them, in general, to eliminate Eve’s information with certainty. 

Theorem 17. No matter how Alice and Bob choose their function g : {O,l}N + {O,l}R, 
for any R > 0, there always is an equitable function e : { O , l } N  4 {O,l}K, for any K > 0, 
such that knowledge of e, g and e(x) yields information on g(x). 

Therefore, the best Alice and Bob can hope for is to reduce arbitrarily Eve’s information. There 
can be no analogue to Theorem 15. Nonetheless, if we restrict even further Eve’s choice of e,  so that 
she can only read a selection of K physical bits of x. it becomes possible again for Alice and Bob to 
eliminate her information entirely, as discussed in Section 5. 

For simplicity, let us assume that hansmission errors and tampering are not a wony for Alice 
and Bob, so that an error detection protocol is not carried out. This assumption is removed in Section 
4.3 of the full paper. Let x be the length N bit siring common to Alice and Bob, and let e(x) be the 
K-bit information known by Eve about x. Alice and Bob wish to publicly agree on some function 
g : {O,l}N + {O,l}R, for some R I N-K, such that knowledge of e, e(x) and g leaves Eve with an 
arbitrarily small fraction of one bit of infomation about g(x).  

Here again, we consider two approaches for the reduction of Eve’s information: one based on 
truly random functions and one based on universal hashing techniques. The first approach is only of 
theoretical interest, but the second one is efficient in practice. 

4.2.1. The case of truly random functions 

Theorem 19. Let e : { O , l } N  + {O,l}K be any function, let S < N-K be a security parame- 
ter, and let R = N-K-S. If g : {O,l}N + {0,ljR is chosen randomly. the expected amount 
of information on g(x )  given by knowledge of e ,  g and e(x)  is at most 2-’iln2 bit. 

4.2.2. The case of universal hashing 

Contrary to the error detection protocols of Secaon 3, it is no longer sufficient to consider 
universal2 classes: here, we use srrongly universal classes [WC]. 
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Theorem 21. Let e,  S and R be as in Theorem 19, let H be a publicly known smongly 
universal2 class of hash function from (0,l)” to {O,lIR and and let g be a function chosen 
randomly within H. The expected amount of information on g(x) given by knowledge of 
e, g and e(x) is at most T3/ln2 bit. 

The above theorem is true despite the fact that Eve already knows the class H ,  but of course not the 
specific function g,  when she gets to choose her function e. 

5. ELMINATION OF THE EAVESDROPPER’S INFORMATION 

The protocoIs of Section 4.2 should be sufficient for most applications, despite the fact that Eve 
still has an arbitrarily small fraction of one bit of infomation on the resulting shared random string. 
Although we were able to eliminate her information entirely in Theorem 15, the techniques used 
could only be applied because Alice and Bob had complete knowledge of Eve’s information. AS 
shown in Theorem 17, this cannot be extended whenever Eve is allowed to access infomation of her 
choice from the private channel transmission. 

In this section, we invescigate a protocol by which Alice and Bob can nonetheless wipc out 
Eve’s information, assuming that she obtained a maximum of K physicul bits 3f  her choice from the 
private channel h-ansmission. Although the value of K is h o w n  to Alice and Bob, they do not know, 
of course, which particular bits of their smng are compromised. Tlus protocol is expensive in the 
sense that the resulting string is generally substantially shorter than those resulting froin the protocols 
of Section 4.2; however, this is the unavoidable price to pay in order to make sure that Eve is left 
with no information at all. 

5.1. The notion of ( N ,  J ,  K)-functions 

For any integers N ,  J and K such that N 2 J+K, J > 0 and K > 0, a functionf: {O,l}M -+ {O,l}’ 
is said to be (h‘, J ,  K) if, no matter how one fixes any K of its input bits, each of the ZJ output bits 
can be produced in exactly 2N-’-K different ways by varying the remaining N-K input bits. Intui- 
tively, an (N,  J ,  K)-function compresses an N bit string into a J bit string in such a way that 
knowledge of any K of the input bits gives no information on the output This is equivalent to the 
notion of r-resilient functions independently intmduced by [CGHFRS]. 

Given such a function. Alice and Bob can apply i t  to their respective strings. thus producing a 
new (shorter) string on which Eve has no information. Notice that this still holds even if she already 
knows which function will be used by Alice and Bob in advance of her deciding which K bits to read 
from the private channel. Therefore, the subsequent public transmission between Alice and Bob is 
not necessary in this case, as it can be replaced by a standard protocol. 

The case J = N-K is the best possible because there is no hope to produce a completely secret 
string of length N-K+I if Eve knows K of the original N bits. A function f that is (N.  N-K, Q is said 
to be (A‘, K ) .  The following theorem shows how to build ( N ,  0-functions whenever key  exist. 

Theorem 23. 

1) For any N > 1, there are ( N , l )  and ( N ,  N-1)-functions 

2) For any N > 3, there are no (N ,  K)-functions whenever 1 < K < N-1. 
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j.2. How to build (N,  J ,  K)-functions 

We wish to answer the following question: given N and K, what is the maximum value for J 
such that an (N, J ,  0-function exists? In other words, what is the longest secret random string on 
which Nice and Bob can a p e e  if they start from a random string of length N, of which K bits are 
compromised. Theorem 23 shows that J must be strictly smaller than N-K unless K = 1 or K = N-1. 

We were unable to answer the above question in its full generahty. For this reason, we restrict 
our attention to the special class of (N ,  J ,  K)-functions for which every output bit is produced as the 
exclusive-or of some of the input bits. Such functions are referred to as xor-(N, 1, K)-functions. We 
conjecture that these functions are as efficient as possible, in the sense that if no xor-(N, J ,  a- 
functions exist for given values of N ,  J and K, then no general (N,  J, K)-functions exist either. This 
Xor-Conjecture is proved in [CGHFRS] for the case J = 2, but it is not believed in general by all 
members of [CGHFRS]. 

The following characterization, known as the Xor-Lemma, allows to establish an equivalence 
between xor-(N, J ,  K)-functions and binary linear codes [MS]. 

Lemma 25 (independently discovered by [CCWRS]). Let IM be a J x N  Boolean matrix. 
Let f: {0 , l lN --$ {O,l)’ be the function represented by M in the natural way (i.e. 
f(x)’ = Mn’, all operations being performed modulo 2) The function f is (N, J ,  K) if and 
only if the exclusive-or of any non-empty set of rows of M contains at least K+l ones. 

The equivalence is now stated: 

Theorem 26 (independently discovered by [CGHFRS]). For given values of N ,  J and K ,  
there exists an xor-(N, J, K)-function if and only if there exists an [NJI binary linear code 
with minimum distance at least K+1 between any two codewords. 

Consequently, our problem is equivalent to a classical problem of algebraic coding theory. 
Unfortunately, no efficient algorithms are known, much less closed formed formulae, to determine the 
largest possible minimum codeword &stance among all [N ,  JJ binary linear codes. There are, how- 
ever, several classical lower and upper bounds on this value WS], and these bounds apply just as 
well to our problem. 

For instance, Hamming codes tell us that xor-(2L-l, 2L-L-1, 2)-functions exist for every L 2 2. 
Conversely, Hamming’s upper bound show that no x0r-(2~-1, 2L-L, 2)-functions can exist. Elimina- 
tion of Eve’s information in this case (K=2) costs L-2-S more bits than if we had been satisfied to 
reduce her information below T S h 2  bit, as in Section 4.2. Similarly, Griesmer’s upper bound and 
the simplex code allow to build xor-@-l, L, 2L-’-l)-functions for any L 2 2, whereas neither xor- 
@-I, L, 2G’)-functions nor xor-(ZL-l, L+1, 2L-’-l)-functions can exist. Finally, Varsharmov- 
Gilbert’s lower bound together with McEliece’s upper bound allow to construct xor-(N, J ,  Q- 
functions such that J is at  leas^ half the optimal (xor) value, as long as KIN < 0.3 and N is large 
enough. We encourage the reader to consult [CGJXFRS] for additional results on ( N ,  J ,  K )  (alias 
t-resilient) functions. 

6.  CONCLUSIONS 

If no eavesdropping occurred ovrr thr private channel, it is possible for Alice and Bob to pub- 
licly verify that no transmission errors nor tampering occurred either. with a ZK error probability, 
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.nd end up with an entirely secret final string that is only K bits shorter than the original private 
ransmission. This is optimal. A somewhat shorter common string, on which Eve still has no informa- 
ion, can also be obtained with high probability despite transmission errors over the private channel. 

If partial eavesdropping occurred over the private channel, lealung up to K bits of information to 
3ve, in Shannon's sense, it  is still possible for Alice and Bob to publicly verify that no transmission 
:rrors nor tampering occurred, with a 2" error probability, and end up with a final string that is 
K+L+S bits shorter than the original private transmission, on which Eve has less than 2-'/ln2 blt of 
information. Here again, transmission errors can be handled at the cost of reducing some more the 
length of the final common string. 

Finally, if partial eavesdropping over the private channel is restrcted to K physical bits secretly 
chosen by Eve, it becomes possible again for Alice and Bob to venfy with high probability that no 
errors nor tampering occurred, and end up with a new string on which Eve has no information what- 
soever. However, the new string is substantially shorter than if Alice and Bob had tolerated 
knowledge by Eve of an arbitrarily small fraction of one bit of information. 
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