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1. Introduction. It is well known that the RSA public-key cryptosystem can be 

broken if the composite modulus can be factored. It is nor known, however, whether 

the problem of breaking any RSA system is equivalent in difficulty to factoring the 

modulus. In 1979 Rabin [ 5 ]  introduced a public-key cryptosystem which is as diffi- 

cult to break as it is to factor a modulus 

large primes. Esaentially Rabin suggested that the designer of such a scheme first 

determine pl apd p2 , keep them secret and make R public. Anyone wishlng tO 

send a secure message H ( 0  < M < R )  to the designer would encrypt M as K ,  where 
2 K ! M (mod R )  

R = p1p2 , where p1,p2 are two distinct 

and 0 < K < R, then transmit K t o  the designer. 

The designer can determine ?! from K by solving the congruences 

x2 3 K (mod p , )  

(1.1) y2 K (mod p2) 

and for x and y. Since M Z ix (mod p 

Remainder Theorem he can  deduce four different possibilities €or M .  If M has some 

kind of internal redundancy,it should be possible to select the correct M from 

among the four candidates. 

M E *y  (mod p2) , by  using the Chinese 1 

There are two difficulties with this scheme. 

(i) 

(ii) 

Although there are O(log p) probabilistic methods for solving the 

quadratic congruence (see 0 5 )  

x2 5 M (mod p )  

when p is a prime, the solution of (1.1) and the subsequent use of the 

Chinese Remainder Theorem can still be quite time consuming. 

The 4 : l  aDbiguity in the decrypted messages can be a problem, especially 

if (as is often the case in transmitting keys) internal redundancy in N 

is to be minimized. 

Indeed, Rabin only advocated his technique as a signature scheme and not as an 

ercryption technique. He also pointed out that, if we insist that p1 = p2 - = 1 
3 (mod 3 ) ,  then we can replace the K ? M2 (mod k) step by K Z M (mod R )  and a l so  

get a scheme as difficult to break as it is to factor R .  However, in this case we 

get a 9 : l  ambiguity in the decrypted messages. 
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In 

problems 

theorem. 

Theorem 

10) Williams showed how a scheme like Rabin's could be developed in which 

(i) and (ii) could be eliminated. This technique made use o f  the following 

.1 If  p1 p2 Z -1 (mod 4 )  , R = p1p2 , and the Jacobi symbol (X/R) = 1 - 
For some X , then 

X(pl - 1)(p2 - 1 ) / 4  
*l (mod R). 7 

2 Corollary. If K X (mod R) and (X/R) = 1 , then , 

Kd E f X  (mod R )  , 
where d = ((p, - 1 ) ( p 2  - 1)/4 + 1 ) / 2 .  

In this scheme the designer determines R and d and a small S such that 

(S/R) = -1. (In [ l o ]  R was calculated in such a way that S = 2 . )  He makes R 

and S public and keeps d secret. Anyone wishing to send a secure message 

M t o  the designer 
bl (1) determines b (= 0 or 1) such that (M/R) = (-1) ; 1 

( 2 )  puts 
bl M S M (mod R )  , 0 

where 0 < Ma < R, and computes b2 (= 0 o r  1) such that b2 5 Mo (mod 2 ) ;  

( 3 )  computes 
2 (1.2) K Yo (mod R) , 

where O < K < R ;  

( 4 )  and then transmits L = {K,bl,b21. 

To decrypt L the designer 

(1) finds N K (mod R) , d 

where 0 < N < R ; 

( 2 )  puts No = R - N or N, whichever is even; 

where 0 < M < R 

This scheme, like Rabin's, is as difficult to break as it is to factor R. 

Actually, the scheme presented here differs from that given in (101 in two respects. 

First, it is more general in that it allows f o r  the utilization of  an arbitrary S 

such  that (S/R) = -1 instead of restricting S to 2 .  Also  in [lo] the designer 
could include a value of e such that gcd(e,b(R)) = 1 in his public key ':R,S,e). 

This allows for the combination o f  the above idea with that oE the RSA technique. 

This is e2sily done by replacing (1.2) above b y  

K Z >12e (mod R ) .  

Of course, the designer must now e v a l u a t e  h i s  v a l u e  f3 i .  d b y  solving the 
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linear congruence 

de f ((pl - l)(pz - 1)/4 + 1)/2 (mod @(R)). 

The use of this e values (especially if e is fairly large) will frustrate attacks 

like those mentioned by Lipton in [l]. 

The purpose of  this paper is to show how this 5ame idea can be extended to the 

MJ scheme suggested by Rabin. 

vious cryptosystem it was necessary that we 

We first point out that in order to develop our pre- 

I. have the Jacobi symbol and (in order that the scheme be useable) be able 

t o  determine the symbol rapidity, i.e. in O(10g R )  steps; 

11. have Theorem 1.1; 
KIT. and have a method f o r  the designer to identify t h e  actual message which 

was sent (decryption steps ( 2 )  and ( 3 ) ) .  

Our strategy for extending our idea,then,will be t o  extend each of  I., It., and 
111.). 

2 .  Arithmetic in Q ( P ) .  Let Z denote :he set of all rational integers and let 0 

be a primitive cube root of unity, that is Let K = Q ( P )  be the 

algebraic number field formed by adjoining p to the rationals Q. In this section 

we will review several of the well-known results concerning K and then develop a 

theorem analogous to Theorem 1.1. 

p 2  + p + 1 = 0 .  

We first denote by OK the set 

OK = {a + bp I a,b E Z]. 

OK is the set of all algebraic integers in K. If a E CK , then a = a + bp 
for some a,b E Z and the norm of a , N ( u )  , is ZF where = a + b p .  Thus 

N(a) = a' - ab + b . 

2 

2 

The primes in OK are given by 

(i) 1 - P i 

(ii) p, where p is a prime in ZZ and p 5 -1 (nod 3); 

(iii) a + bp, where a : -1 (mod 31, 3 ; b ,  and N ( a  + b o )  = p, where p is a 

prime in Z and p Z 1 (mod 3). 

Since OK is a unique factorization domain, €or any 5 t O K ,  we have 

t 

i=l 
( 2 . 1 )  .,miKi, 

where the 7 .  (i = 1 , 2 ,  . . .  ,t) are primes o f  OK and Y { l , - l , C , - P ] .  Also, 

this expression f o r  5 is unique (up  to order of :he 7 I s ) .  i 
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We also have 

Theorem 2.1 If a E OK and n is a prime of OK , then 
( N ( F )  - 1 ) / 3  = ,,), 

where h E { 0 , 1 , 2 } .  c 
If, with Jacobi, we define the symbol [ a / n ]  to be the value of  p i n  Theorem 2.1, 

we can get an extended Jacobi symbol by defining 

A .  

[ c r / B !  as 

I d 6 1  = ~~a/~il'i, 
i = l  

when 5 has the prime power decomposition given by (2.1). 

Let pl E p2 I 1 (mod 3 )  be two distlnct primes i n  Z ,  R = p1p2 , and let 

x1,n2 be primes o f  OK such that N ( T ~ )  = p 1  and N ( n  2 1 = p2. Such TI1 and TI 2 
always exist and in Algorithm 1 of section 5 we describe an expeditious method for 

finding them. If = a + b P and TI = a 2  + b2 P ,  (al, b l ,  a2, b2 E Z),  then 

where A = a a - blb2, B = bla2 - b2al - b l b 2  and gcd(B,R) = 1. 

Compute C E Z? by 

1 1  
v1n2 = A + Bp , 

1 
C E - A B  (mod R ) .  

Note that since 
2 

R = plp2 = N(r1T2) = A' - AB + B , 

C2 + C + 1 E 0 (mod R )  and C3 : 1 (mod R); 

we have 

indeed, 

C E p (mod ;I 'I ) .  
1 2  

We can now prove  a result analogous to Theorem 1.1. 

Theorem 2 . 2  If (pl - l)(p,, - l ) / 9  3 -1 (mod 3 )  and [X/71-,] = 1 fo r  some X E Z ,  

then 
- 
X(P1 - 1)(P, - 1 ) / 9  c' (mod R )  

where X E {O,l,Z). 

Proof. Let P' = ( K  E { 0 , 1 , 2 ] ) .  
3 -  c Since [X/T1n2] = 1, we must have [ X / T  1 = 3 . 2 

Now 

hence, 

(2.2) 

We have 

and 
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thus, if X Z "(p2 

and 

It follows that 

and 

3 Corollary. If n l  and n2 are defined as  above, K : X (mod R) and [ X / " l ~ 2 1  = 

then 

Kd Z CAX (mod R), 

where hs{0,1,2} and d = ( (P1  - 1)(p2 - 1 ) / 9  + 1)/3. 

3 .  The M" Scheme. In our M' scheme the designer selects two large distinct 

primes p1,p2 such that p1 p2 1 (mod 3 )  and (pl - 1)(p2 - 1)/9 1 - 1 (mod ' 

He then determines 

(by  trial) a value  f o r  S E Z  such that [S/nla,] = p and evaluates S (mod R ) .  

He makes his encryption key { A , B , S }  public. Since R = A' - AB + B , the key 
occupies the same amount of space as  that needed by our 

al, a 2 ,  bl, b2,  A ,  B, C ,  d as described in $ 2 .  He also selects 
-1 

2 

N2 scheme. 

TO encrypt a message M (0 < M < R )  the sender executes the following steps. 

Evaluate the extended Jacobi symbol 

Determine 

[M/A + B p ]  = p b l ,  where ble{0,1,2}. 

2b 
Mo : MS l ,  M 5 C?1 (mod R), 1 0  

where 0 < N M < R. Put II = R - M - M1. Since 

M + M + M = R E 1 (mod 3 ) ,  one o f  M o ,  MI, X2 is distinct modulo 3 

from the other two. If this is M i ,  p u t  b, = i. 

Compute 

0' 1 2 

0 1 2  

(3.1) 

where 0 < K < R .  

Transmit 

K i M; (mod  R ) ,  

E(X) = L = {K, b 1' b z L  

To decrypt the message L , the designer m u s t  per fo rm the following steps. 

(1) Determine 

N : Kd (mod R ) ,  

where 0 < N < R .  

(2) Calculate 

N o  = N ,  N1 Z CNO (mod R) ( 0  < N 1  < K), N2 = R - N1 - No. 
Let N .  be that one o f  N o ,  Nl, N2 wh;ch i s  distinct modulo 3 from the 

other two. 
3 
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( 3 )  Compute 
-bl 2b  

D(L) 5 S C 2N. (mod R ) ,  
J 

where 0 < D(L) < R. 

That D(L) = D ( E ( M ) )  = M follows easily from the corollary of Theorem 2 . 2  and 

the simple fact that C2 + C + 1 Z 0 (mod R ) .  Hence [No, N1, N2} = !Mo, M I ,  M 2 }  

and N. = M. 5 C’M (mod R). 

value of e such that gcd(e,+(R)) = 1 to the encryption key, we can do s o  easily 

by replacing ( 3 . 1 )  b y  

If, as in the case disccused in 61, we wish to add a 3 1  0 

3e K Z Mo (mod R ) .  

A l so ,  d must now be a solution of the linear congruence 

de I ( ( p l  - 1)(p2 - 1)/9 + 1 ) / 3  (mod $ ( R ) ) .  

There is, of course, one problem here that we have not discussed and that is the 

nethod of computing 

In 55 we describe an O(log R) algorithm for doing this. 
“/A + B p l  rapidly and without knowing how to factor A + B p .  

We conclude this section by pointing out that this idea can a l s o  be used to 

produce signatures in much the same manner as that used in [lo]; further, our encryp- 

tion scheme is an example of a claw- 

4 .  Security. In this section we wi 

system as it is to factor R in Z. 

the problem of factoring A + B p  in 

Lemma 4.1. Let K F Y 3  (mod R) for 

an X E Z such that 

ree permutation (see Goldwasser e t  al. 1211. 

1 show that it is as  difficult to break this 

This problem is equivalent in difficulty to 

OK. 
some Y E Z.  For any i ~[0,1,2} there exists 

We first require three lemmas. 

i X-) Z Kcmod R )  and [Xi m1 n21 = o [Y/T,.,I. 
Proof. Let j ,  k E {0,1,2] such that 

Since 

we must have 

then 

and 

j - k : i(pl - 1)/3 (mod 3) 

If we use the Chinese Remainder Theorem to f i n d  X s u c h  that 

X C’Y (mod p l )  

X C Y (mod p 2 ) ,  
k 
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by ( 4 . 1 ) .  

Lemma 4.2 For a n y  Y E 22 s u c h  t h a t  gcd(Y,R) = 1 and any b l ,  b 2  E { 0 , 1 , 2 }  t h e r e  

e x i s t s  a unique  M E iz ( 0  < M < R )  such  t h a t  f o r  t h e  e n c r y p t i o n  key (A,B,S ,  e) we 

have 

E(M) = ( K , b l , b 2 } ,  
3 where K Y (mod R )  and  0 < K < R. 

Proof .  Le t  f e  : 1 (mod b ( R ) )  

and put  T S Y3f (mod R ) .  

By L e m m a  4 . 1  t h e r e  must  e x i s t  

Def ine  X .  ? CiX ( m o d  R)  , where 0 < X < R ,  i = 0 ,1 ,2 ,  and l e t  X .  be t h a t  o n e  Of 

Xo,X1.X2 

X E 72 such  t h a t  X 3  : T (mod R) and [ X / ~ l ~ 2 T 2 ]  = 1. 

1 
which i s  d i s t i n c t  modulo 3 from t h e  o t h e r  t w o .  S e t  

k 5 2 ( b 2  - j) (mod 3 ) ,  k E {0,1,21 

and put  
-2b 

M S S k k X  (mod R ) ,  

where 0 < M < R .  

Now 

a l so ,  
. 2b 

M .  : CIS : C h X  (mod R ) ,  

where h = 2(b  - j) t i a n d  0 < Mi < R .  Hence, we ge t  {M0,M1,M2} = { X o , X 1 , X 2 }  2 
and when i = b2 , t h e n  

M .  E CjX (mod R )  

I t  fo l lows  t h a t  Mi = X .  and M .  i s  d i s t l n c t  modulo 3 f r o m  t h e  o t h e r  t v o  Mm Values  

when i = b 2 .  A l s o  

Hence E ( H )  = { K , b l , b 2 j .  S i n c e  D ( E ( M ) )  = H , M must a l s o  be unique .  
3 

Lemma 4 . 3  I f  X ,  Y E 22 , X3 : Y (mod R ) ,  and [ X / T l ~ 2 1  # [ Y / n l n 2 1 ,  t h e n  

gcd ( X  - C I Y , R )  = p1 

Proof. S i n c e  x 3  = Y (mod R),  w e  have 

J 

33e - x  = 3e = - Te  5 y3ef  1 Y3 1 K (mod R ) .  

for some i E {O,l,Z]. 

2 ( K  - Y)(X - CY)(X - C Y) 5 0 (mod p p 1. 1 2  
i If p1p2 I X - C Y , t h e n  

[xi. TI 1 = [ C ' Y / .  I.,  = [ ~ : 7 ~ 7 ~ 1 ,  1 2  1 2 ,  
which i s  n o t  so. T h u s ,  t h e r e  must e x i s t  some X - CiY with i E { 0 , 1 , 2 /  s u c h  t h a t  

p I X - CIY and p 2  1 X - C'Y. I t  f o l l o w s  t h a t  gcd (X - C L Y , R )  = p l . c  1 

Now suppose  t h a t  we have some a l g o r i t h m  F which we w i l l  d e c r y p t  l / k  o f  a l l  

messages.  I f  a n  a r b i t r a r y  Y i s  s e l e c t e d  such  t h a t  [ Y /  - 1 v 2 ]  # 1 and 

gcd(Y,R) = 1 (Note  t h a t  S is a p o s s i b l e  v a l u e  o f  Y . ) ,  then p u t  K Y3 ( m o d  R )  
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with  0 < K < R and se lec t  any  b l , b 2 E  { 0 , 1 , 2 ] .  By Lemma 4.2 t h e r e  e x i s t s  a u n i q u e  

M such t h a t  

E ( M )  = { K , b l , b 2 } .  

A f t e r  k t r i a l s  a t  a v a l u e  f o r  Y w e  would e x p e c t  t h a t  F would de termine  t h e  

cor responding  M f rom {K,bl ,b2} .  P u t t i n g  M 5 MS (mod R )  and X E Me (mod R), 

w e  have 

2b 
0 0 

X3 5 Y3 (mod R) 

and 

1 = Ix/.1.21 f [Y/.1.21. 

I t  fo l lows  from Lemma 4 . 3  t h a t  w i t h  knowledge of M and Y , w e  c a n  e a s i l y  f a c t o r  R .  

It might be  f e l t  t h a t ,  i n  r e v e a l i n g  t h e  v a l u e s  of X and B , t h e  d e s i g n e r  i n  
2 some way a i d s  his opponent  t o  f a c t o r  

were a b l e  t o  f i n d  G , H  s u c h  t h a t  G # L4, *B, * ( A  - B )  and R = G' - GH + H , t h e n  h e  

could f a c t o r  R by using h i s  knowledge of A,B,G,H. We p o i n t  out, however, t h a t  i f  w e  a r e  

g iven  C such  t h a t  C + C + 1 : 0 (mod R )  , then  ( 2 C  + 1)* 5 - 3  (mod R )  and i t  

can be shown t h a t  by u s i n g  A l g o r i t h m  1 w e  can  compute A and B such  t h a t  

R = A' - AB + B . For example,  i f  h i s  opponent  
2 

2 

2 R = A2 + AB + B 

i n  O(1og R )  o p e r a t i o n s .  Thus, knowledge of  C i s  e q u i v a l e n t  t o  t h e  knowledge o f  

A and B. Now C3 E 1 ( m o d  R )  a n d  i f  we could  f i n d  X such t h a t  X3 Z 1 (mod R )  

and [ X / n  p 1 # 1, w e  c o u l d  f a c t o r  K .  But t h i s  i s  r e a l l y  no d i f f e r e n t  from t a k i n g  

an a r b i t r a r y  Y, d e t e r m i n i n g  K E Y (mod R )  and t h e n  f i n d i n g  some X such  t h a t  

X3 f K and [ X / n l n 2 ]  # [Y/nln2] ,  a problem e q u i v a l e n t  i n  d i f f i c u l t y  t o  f a c t o r i n g  R. 

That i s ,  u n l e s s  t h e r e  i s  s o m e t h i n g  s p e c i a l  sbout  a v a l u e  of K = 1, knowledge o f  C 

seems, f o r  t h e  problem of f a c t o r i n g  R ,  t o  g i v e  no more i n f o r m a t i o n  than  t h e  know- 

ledge  o f  a n  a r b i t r a r y  Y.  

3 1 2  

We s h o u l d ,  n e v e r t h e l e s s ,  emphas ize  h e r e  t h a t  t h e  method of  showing t h e  e q u i v a -  

l e n c e  of b r e a k i n g  o u r  s y s t e m  t o  t h e  problem of  f a c t o r i n g  R i s  c o n s t r u c t i v e ;  t h a t  i s ,  

t h i s  e n c r y p t i o n  t e c h n i q u e  is v u l n e r a b l e  t o  a known c i p h e r  t e x t  a t t a c k ,  i f  such  an 

a t t a c k  can be mounted. W e  r e f e r  t h e  r e a d e r  t o  t h e  r e l e v a n t  comments i n  [ l o ]  c o n c e r n -  

ing t h i s .  

The problem o f  e x t e n d i n g  our method f u r t h e r  t o  an ?Ir e n c r y p t i o n  scheme, where  

r i s  a prime and p1 : p2 E 1 (mod r )  i s  r a t h e r  d i f f i c u l t .  I n  t h e  f i r s t  p l a c e ,  i t  

i s  necessary  t o  be  a b l e  t o  f u r t h e r  e x t e n d  t h e  J a c o b i  symbol and be a b l e  t o  e v a l u a t e  

i t  i n  O(1og R )  t i m e .  T h i s  would mean, a s  f a r  a s  i s  known today ,  t h a t  t h e  c y c l o t o m i c  

ex tens ion  of  t h e  r a t i o n a l s  

b e  Eucl idean .  As K r  c a n  be  E u c l i d e a n  o n l y  when t h e  c l a s s  number of  K is 1,  t h i s  

means t h a t  r c o u l d  o n l y  be 2 ,  3 ,  5, 7 ,  11, 13,  1 7 ,  19. Of t h e s e  i t  i s  known t h a t  

i f  r = 2 ,  3 ,  5 ,  7 ,  11, t h e n  K is E u c l i d e a n .  The o t h e r  v a l u e s  13, 1 7 ,  1 9  h a v e  n o t  

t h  Kr  = !?.(a), where p i s a p r i m i t i v e  r r o o t  of u n i t y ,  must  
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been investigated (see Lenstra [ & I ) .  While it may, in principle, be possible to 

extend the algorithms in 55 to the cases of 4 = 5 ,  7 ,  11 , the details would be very 
onerous and the corresponding computations would be concomitantly slowed. Possibly, 

the case of r = 5 might be worthwhile investigating. 

5. Algorithms. In this section we describe two algorithms. The first of these is 

a method of determining a and b , given m and x such that x2 : - 3  (mod m), for 

which 2 m = a2 - ab + b . 

If m is a prime we can find x in O(1og m) operations by using either the 

algorithm described by Lehmer [ 3 ]  or that of Shanks [7]. This often requires that 

we know in advance a quadratic non-residue of m. There is no O(log m) deterministic 

way known for  doing this, but in practice one finds such a non-residue by trial very 

easily. An O(log m) deterministic method f o r  finding x vhen m is prime has been 

given recently by Schoof [ 6 ] ,  but as Schoof himself says, no one would ever use this 

very complicated technique. 

The algorithm we present here is a simple adaptation of the method described by 

Wilker [ 8 1  to solve u2 + 5v2 = m. There is no loss of generality in assuming m is 

n o t  a perfect square and m 5 1 (mod 3 ) .  

Algorithm 1. (Find s,t such that m = s2  + 3t2 when m f 1 (mod 3 ) . )  

(1) Use the Euclidean algorithm to find ro,rl,r2, ..., where 

0 0  x = q m + r  O < r o < m  

rn = qlrO + r1 0 < rl < r 

ro = q2rl + r 
0 

O < r 2 < r  1 - - - - - - - - - - - _ _  
2 2 2 If ro < m, then m = ro + 3 and we are d0r.e. If ro  > m, then find rn 

such that 

> m and r 2  < m. 2 
rn - 

Only O(1og m) operations are needed to do this. 

< 9m , put t = +r / 3 ;  2 
n -  n - 1  ( 2 )  Put s = fr . When 3 I rn - and r 

otherwise,put t = i(r - k )  , where 

k z ( ( 3 r  E - 2 r  ) / 6  (mod r ).  

0 < i < rn , rl - = c i  (mod 3 ) ,  and I E  1 5 1 .  
n n - 1 - ‘nEn - t r n  n - 1 

Here 

We have 2 m = s 2  + 3 t 2  = ( s  + t)’ - 2t(s + t )  + 4t . 
If m is a prime p and we want a prime 7 = a + bo such that N(T) = p ,  

then we select the sign of s such that a = s + t 5 -1  (mod 3 )  and put b = -2t 

when 3 I t. If 3lt , we select the s i g n  o f  t such that a = 2t 5 -1 (mod 3 )  and 

put b = s + t. 
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The next algorithm we present is one which can be used to evaluate the extended 

Jacobi symbol [a /B]  without requiring the factorization of 8 .  This algorithm was 

undoubtedly known to Jacobi and is given in Williams and Holce 191. We assume that 

a = A + Bp , B = C + D p .  Here the symbols A,B,C,D do not  have the meanings assigned 

to them previously b u t  oerely denote rational integers such that 

Algorithm 2. (Determine g and y such that [ a / 6 ]  = pg[S/,] and N(y)  < N(6)). 
3 I D  and 3 I D. 

(1) Find E = A - XC -t yD , F = B - yC - xD + yD , vhere 

x = Ne((AC + BD - AD)/N(E)], 
y = Ne[ ( B C  - AD)/N(B)], 

N(B) = C 2  - CD -L D2 , Ne{a} denotes the nearest integer to a. 

( 2 )  I f  E -F  (nod 3 1 ,  divide E + Fp by 1 - p k times until 
- 

(E + F p ) / ( l  - P ) ~  = E + F p  

tated by making use of the observation that if E = - F  + 30 , then 
and E $ -? (mod 3 ) .  This process is facili- 

(E -t Fp)/(l - 0 )  = 2Q - F + Qp. 
- - - - - -  

( 3 )  If 

if 

g 

3 1 F , put j = 0 ,  G = E, H = F; i f  

3 1  FE,  put j = 2 ,  G = -F, H = E - F. 
(2k  + j ) ( C z  - 1)/3 - jCD/3 (mod 3 ) .  

~ I E ,  put j = 1, G = F - E, H = - E ;  
- - 

Then y = G + Ho and 

We have [dB] = pg[B,’y] and N ( y )  < 3 / 4  N(B). Clearly ve can repeat this 

algorithm until we get a symbol of the form [&1/X] = 1 ; the accumulated power of  0 

will then be the value of [ a / B ] .  Since N ( y )  < 314 N ( B )  , ve see that this algorithm 
must terminate in O(log “ 6 ) )  operations. 
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