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In his 1983 paper, Neal Wagner' defines a perfect f ingerprint  to be 
an identifying fingerprint added to an object in such a way tha t  any 
alteration to i t  that makes the fingerprint unrecognizable will also 
make the object unusable. A perfect fingerprinting scheme for binary 
data would seem difficult to  devise, since i t  would be possible to  dis- 
cover the fingerprints by comparing different fingerprinted copies of the 
same piece of data. In this paper we discuss a fingerprinting scheme 
which, although i t  does not surmount this problem entirely, at least 
specifies the number of copies an opponent must obtain in order to 
erase the fingerprints. 

The fingerprints involved will be rather lengthy, so we will restrict 
ourselves to what we will call long forgiving messages. A forgiving 
message is one which is still readily understandable and not jarring 
when up to  0.1% of i t  has been altered. Examples are voice and televi- 
sion. People can speak comfortably amid the noise of a cafeteria and 
can enjoy watching a television show with several pixels per frame 
altered. The idea in each case is that the support of the noise (the set 
outside which the additive noise must vanish) must have small 
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measure. We must also require that  our messages not be too forgiving, 
since otherwise i t  would be possible to erase the fingerprints by adding 
random noise and still have a usable message. 

Let P be a long forgiving message (for example, a digital TV show). 
We wish to protect P from piracy by adding a different fingerprint F to 
each copy of P in such a way that  a pirate who wishes to copy P+F 
and distribute i t  illicitly cannot erase the information about the origin 
of P contained in F unless he has obtained a certain predetermined 
number of different copies. W e  will d e h e  a d out of n fingerprint 
scheme to be one in which n objects are fingerprinted, and in which the 
pirate must obtain d copies in order to erase the fingerprint from one 

copy. A fingerprint F must also obey the following constraints: If we 
think of the M-tuples P and F as functions from the set {1,2, ..., M} to 
Z? then 

[a] Supp(F), the subset of {1,2,..-,M} outside of which F vanishes, must 
be small enough so that F does not interfere with the viewability of 
the program. 

[b] Supp(F) must be large enough so that F cannot be eradicated by 
random noise without affecting the usability of the message. 

We construct the n fingerprints, F1 through F,, in the following 
manner. Fix an integer k. For each subset A of {1,2, ..., n} of cardinal- 
ity Sk, choose a subset S(A) of {1,2, ..., M} such that  
X # B +S(A)nS(B) = 4. Then let 

Fi = C x(S!A)) 
i6.k 

where x denotes the characteristic function. Note that n must be equal 
to 
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fi: cy, 
j = l  

and so k must be relatively small. 

Suppose that  the pirate has obtained copies 1 through 1 ,  with 
fingerprints F, through F, ,  and that he wants to erase the fingerprint 
from P + F, by adding some function E to it so that the origin of 

P + F, + E is not ascertainable by the owner. (We use the word 

owner to  mean the owner of the pristine copy.) Ideally, of course, he 
would like E to be F,, but if not, a t  least he would like E to be the 

sum of some x(S(A))s such that  1 E A and some x(S(A))s such that 
1 -c A (where 7 denotes the logical not). The former will serve to  can- 
cel out various components of F,, and the latter will serve to  give the 

owner misleading information about the origins of the other copies that 
the pirate has obtained. Of course, the pirate would prefer, in order to 
give the  most misleading information possible, to add on characteristic 
functions of sets S(A)) such that  Ai7X = 4, Since he has absolutely no 
way of finding out  such an S(A) (except by obtaining more copies), he 
is reduced to adding on some random function R if he wishes to  do 
this. However, the support of R must be relatively small in order not 
to interfere with the usability of the message. It follows that the pro- 
bability that  the intersection of Supp(R) and any S(A) will be large 
enough to mislead the owner is small, and therefore that the addition 
of a random function will not be useful in hiding information. 

Thus the pirate’s best options are either to add on various x(S(A))s 
that he knows or to  add on functions whose supports are randomly 
chosen subsets of the S(A)s. However, he usually cannot find out  the 
various S(A)s directly. What he can find are the sets at which the 
copies he possesses differ from each other. In particular, for each sub- 
set A of X = {1,2,.-. ,1} of cardinality #(A) 5 I / Z ,  he can compute 
the set B(A)= 
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{XCY I (P + Fi)(x) = (P + Fj)(x) <=> i ,  j E A or i, j 1 c A}. 

(There is no point in computing B(A) for #(A) > 1/2, since B(A) = 

B(X-A).) For example, B({l}) is the set of all points at which P + F, 
differs from all other of the P + Fis. An element x would either be in 

B((1)) because x E Supp(F1) and x TE Supp(F2) through Supp(F,), or 

because x T E  Supp(F,) but x E Supp(F1) through Supp(F1). Similarly, 
B({1,2}) is the set of all points at which P + F, and P + F, agree with 

each other but differ from the rest of the Fis, and so on. Thus, if 
1 E A, adding on x(B(A)) to P + F, is the same as changing P + F1 at 
all points at which i t  agrees with the copies in A and disagrees with the 
copies not in A. For example, adding x(B({1,2})) to P + F, is the 

same as changing P + F, at all points at which it agrees with P + F, 
and disagrees with all the other copies the pirate possesses. 

Lemma 1. I f#(A)  < I - kJ t hen  

B ( A )  = u { S ( C )  I # ( C ) l k  and CnX = A }  

and i f#(A) 2 1 - k, t hen  

B ( A )  = u { S ( C )  I # ( C ) L k  and [ C n X  = A or C n X  = X - A ] }  

where u{X I Y } denotes  the un ion  of alZ sets X with property Y. 

Proof. Suppose x E B(A). Then all the P+Fis such that i .c A agree 
Thus at x and disagree at x with all the P+Fjs such that j EX-A. 

either 

x E n{Supp(Fi) I i E A} = u{S(C) I #(C)<k and Cnx = A} 

or 

x E n{SIlpp(Fi) I i c X-A} 

= u{S(C) I #(C)<k and CnX = X-A}. 

Conversely, if x is in either of these sets, then all the P+Fis agree a t  x 
and disagree with all the P+Fjs such that j c X-A, and so x E B(A). 
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Thus the second part  of the lemma follows. However, if #(A) > I-k, 
then #(X-A) > k, and thus there is no C of cardinality 5 k such that 
C f E  = X-A. Thus the first part of the lemma follows. QED. 

The following corollary tells us that  if the number of copies the 
pirate possesses is large enough, then he has enough information to 
erase the fingerprints entirely. 

Corollary 2. If I > 2k, t h e n  

U{B(A)  I1  = suPP(F1). 

Proof. If 1 > 2k, then #(A) < 1 - k for all subsets A of X = 

{1,2, ..., I} of cardinality 5 1/2. It follows from Lemma 1 that 

B(A) = u{S(C) I #(C) 5 k and CnX = A}. 

We thus have 

u{B(A) I 1 c A and ACX} = 

u{S(C) I 1 E C and #(C) 5 k} = Supp(F,)- 

QED. 

Thus in the case I > Zk, the pirate can determine F, and add it to 
P + F, in order to obtain a pristine copy P. 

Suppose tha t  1 5 2k. We will show that in this case the pirate 
who seeks to  obtain a pristine copy of P by adding on various x(B(A)s 
not only cannot mislead the owner but risks giving him even more 
information then before. 

Lemma 3. L e t  E = F ,  + Q where Supp(Q) is the union  of some set 
of B(A)s. Suppose that there exists a t such that no S(A) where 
# ( A  ) 5 t appears an Supp(E). If some S(A) such that  #(A) = t + 1 
appears in Supp(E), then  A C X .  

Proof. Suppose that A -C X .  Then #(AnX) 5 t and so S(AnX) 
does not appear in Supp(E) by hypothesis. By Lemma 1, we have 
S(A)cB(AnX) and S(A)nB(C) = g5 for any other C X. Therefore 



185 

B(AC1X) appears in Supp(E). We thus have only two possibilities. 
Either 1 E A and B ( m )  does not appear in Supp(Q), or 1 1 6  A and 
B(AnX) does appear in Supp(Q). In either case we have 
S(AfK)c Supp(E), contradicting our assumption that no S(C) where 

#(C) 5 t appears in Supp(E). QED. 

Lemma 4. Then the pirate who attempts t o  
era-se in format ion  about the origin of P + F ,  by adding to  it various 
x(B(A))s must add on all x(B(A)) such that 1 E A and # ( A )  5 [ I  /2] . 

Suppose that 1 5 2 k .  

Proof. The proof is by induction on the size of A. First, suppose 
that A = {I}. The pirate must add x(B(1)) to P + F,. For he must 

remove x(S(1)) from P + F, , since, if i t  were left in, the fact that  

S((l}) is contained in Supp(F,) but in no other Supp(Fi) would tell the 

owner that  that  the  pirate had had access to copy 1. But, since S((1)) 
is contained in B((1)) and no other B(A), the pirate has no way of 
knowing which elements of B((1)) are in S({l}) and which aren’t. 
Thus the only way the pirate can remove S((1)) is by adding 

X(B((1))). 
Next, assume tha t  the pirate has added on all x(B(A)) for all A 

such that 1 E A and #(A) 5 t, for some t < [ 1 / 2 ] .  Let E = F, + Q, 
where Q is the function that the pirate has added on. We will show 
that the support of E contains no S(A) such that #(A) 5 t. Clearly, 
the pirate has erased all x(S(A)) such that 1 E A C X and #(A) 5 t. 
Moreover, he has not added on any x ( S ( C ) )  such that #(C) 5 t. For 
by Lemma 1 the only way he could have done this would be if XflC = 

X-A, where A is one of the sets of cardinality 5 t such that x(B(A)) 
was added on. But  this would imply that #(X-A) 5 t, and hence I = 

#(X) 5 2t, which contradicts our assumption that t < [ I  /a]. 
The owner can now conclude from Lemma 3 that if x(S(A)) appears 

in the support of E, and #(A) = t + 1, then A & X. Moreover, such 
sets A exist, since t + 1 5 [1/2] and 1 5 2k. Now all he has to  do is 
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take the union of all A such that  #(A) = t + 1 and x(S(A)) appears in 
the support of E in order to find out which copies the pirate had access 
to. 

Thus the pirate must do something further if he wants to hide the 
origin of his copy. He has two options. First, he can add on various 
x(B(A)) where 1 E A. But he can’t add on any x(B({a})), or the owner 
will be able to tell, by the appearance of S({a})  in the support of E, 
that the pirate had access to copy a, However, if he doesn’t add on 
any X(B({a})), there is some q 5 [1/2] such that no S(A) such that 
#(A) < q appears in the support E but some S(A) such that #(A) = q 
does appear. The owner can then use Lemma 3 as before to  find the 
other copies the pirate had access to. 

The pirate’s other option is to  add on some or all of the x(B(A>)s 
such that #(A) = t + 1 in order to erase some or all of such x(S(A))s 
appearing in F,. But  he must erase all such x(S(A))s since if there was 
even one that he did not erase, the owner would again be able to con- 
clude, using Lemma 3, that  the pirate had had access to every copy a 
such that a E A. QED. 

Theorem 5. Suppose that 1 5 2k. Then a pirate cannot erase infor- 
mation about the origin of P + F ,  b y  adding various x(B(A))s without 

revealing in format ion  about the  origins of the other copies he has access 
to. 

Proof. By Lemma 4 the pirate must add on all x(R(A)) such that 
1 E A and#(A) <[1/2]. It follows from Lemma 1 and the fact that  
1 5 2k that  he has also added on all x(S(X - A)) such that 1 E A _C X 
and #(A) = [ 1 / 2 ] .  In other words, he has added on all x(S(A)) such 
that 1 E A C X and #(A) = 1 -[1/2]. Once again the owner can tell, 
from the absence of any x(S(A)) such that #(A) < 1 - 11/21, tha t  the 
owner has eliminated all such x(S(A)). Moreover, once again the owner 
can use Lemma 3 to can reason that, if any x(S(A)) such that  



#(A) = 1 - [l/2] appears in the altered function, then A s X. The 
owner takes the union of all such A to find X - (1). QED. 

Thus if 2k 2 1, the pirate cannot erase information about the ori- 
gin of P + F, by adding various x(B(A))s to it without giving away 

information about the other copies he’s obtained. But what if he adds 
on some x(D) where D is a randomly chosen subset of some B(A)? If 
the pirate were lucky, such a D might contain all or most of the sets 
S(C) such tha t  CfiX = A and none or few of the sets S(C) such that 
C r X  = X-A. This can be made less likely by choosing the sets S(C) 
large enough so tha t  the chance that such a D would either miss any 
S(C) entirely (if D is large) or contain an entire S(C) (if D is small) or 
miss some S(C)s and contain others, (if D is medium-sized) is negligible. 

We are thus led to conclude that the fingerprint scheme described 
above is a 2k + 1 out of n fingerprint scheme. 

The construction of such a fingerprint scheme now seems easy. We 
simply choose the level of protection we desire and construct the 
appropriate sets S(A). We are faced with one problem, however: the 
size of the fingerprints grows exponentially with the level of protection 
desired. As a matter of fact, since each fingerprint Fi is made up of all 

S(A) such that #(A) 5 k and i E A, we have, if #(S(A)) = s for each 
such A, that 

j = l  

where M is the total number of messages. Thus the size of the finger- 
prints could easily grow to the point at  which they start interfering 
with the messages. 

We can get around the problem of exponential growth somewhat by 
using several less ambitious fingerprint schemes concurrently. For 
example, suppose that an owner wishes to protect about 27,000 copies 
of his message. If he used a 31 out of 27,000 fingerprint scheme, each 



fingerprint would take up more than s1050 bits. However, suppose that 
he constructs three 31 out of 31 fingerprint schemes {F,, . . . , F31}, 
{GI, . . . , G,,}, and {H17 . . . , Hs1}. Each of these three fingerprint 
schemes takes up 

bits per fingerprint. Such fingerprint schemes will still take up a rela- 
tively small amount of space in something as large as a digital TV 
show. (If this number is still considered unmanageably large, the 
owner could instead construct, say, three 13 out of 31 fingerprint 
schemes, each of which would take up about ~200,000 bits per finger- 
print, as opposed to a 13 out of 27,000 fingerprint scheme, which would 
take up about lo2' bits per fingerprint.) The owner divides his distribu- 
tion area into 31 geographic areas, each with 31 outlets selling 31 
copies each. The ith copy in the j th outlet in the kth geographic area 
is fingerprinted by Fi + Gj t Hk. Thus if a pirate obtains all his copies 

from one outlet and attempts t o  erase the fingerprints we know exactly 
which copies he has obtained, if he obtains copies form different outlets 
in the same geographic area we no longer know exactly which copi.es 
they are, but we know the outlets they came from, and if he obtains 
copies fom different geographical areas, we know the areas he visited, 
although we no longer know the individual outlets he obtained the 
copies from. Even in this last case, however, we still retain some infor- 
mation about the individual copies. Suppose, for example, that  a 
pirate obtains copies P + F, + G, + H, and P + F, + G, + H,. The 
owner who retrieves a tampered-with copy can determine that the 
pirate must have had access to a t  least two copies of the form 

= {kl,k2,} = {l ,Z}l  as shown in the following graph. 
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Thus he knows there are only eight possibilities’ for the origins of the 
two shows. 

We have written largely in terms of discrete messages, i. e., mes- 
sages with finitely many symbols taken from a finite alphabet. But i t  
is clearly possible to do something analogous with continuous messages. 
A reader who deals with these matters can fill in the details in the 
obvious way. 
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