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Abstract 

A construction is given for perfect linear ciphers that uses two digits 
of key per plaintext digit, which appears to be the minimum possible. 
The construction utilizes two shift-registers that are clocked at dif- 
ferent speeds, and suggests a new type of random sequence generator in 
which two linear feedback shift-registers are clocked at different 
speeds and their contents combined at the lower clock rate. The effects 
of variable speed are analyzed, and the linear complexity of the se- 

quences produced by such generators is determined. 
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1. Introduction 

We begin this paper by considering how much key is required in a per- 
fect linear cipher. We show in Section 2 that two digits of key per 
plaintext digit suffice, and we conjecture that chis much key is also 
necessary. The perfect linear cipher constructed in Section 2 utilizes 
two shift-registers that are clocked at different speed, a "trick" that 
we have borrowed from convolutional coding lore. 

The perfect linear ciphers of Section 2 suggest a promising structure 
for random sequence generation, which we propose in Section 3 ,  that 
utilizes two linear feedback shift-registers (LFSR's) clocked at differ- 
ent speeds. In Section 4, we investigate analytically the effects of 
such variable speed in LFSR's. These results are then used in Section 5 
to determine the linear complexity of the sequecces produced by the pre- 
viously suggested random sequence generator. We :lose the paper with 
some additional observations and suggestions for generalizations. 

2. Perfect Linear Ciphers and Convolutional Codes 

Suppose that one wishes to use a ciphering system of the additive type 
in which the ciphertext digit y is determined by the plaintext digit 
x in the manner (reminiscent of a stream cipher) that 

j 
j 

j = Oyly2,.., (1) j 
y . = x  + z  

J j 

where the digit z is determined in some prescrlbed manner by the key K 
and the previous plaintext digits. [All digits and operations are as- 
sumed to be in F the finite field of q elemenzs, unless specified 
otherwise.] Suppose further that, for whatever I-eason, one demands that 
the enciphering be linear in the plaintext with nemory M so that 

j 

9' 

j = C , L Y 2  y . . .  

where the coefficients ci(j,K) depend both on tFe time instant j and 

-M the key K. (We suppose that the initial conditions xWl, x - ~ , . . . ,  
required in ( 2 )  are dummy plaintext digits that nay be chosen as con- 
venient.) Suppose finally we demand that the enciphering be perfect in 
the sense that, fcr some appropriate probability measure over the keys, 

d 



76 

one has, for every choice of  B in F and every j 3 0, 
9 

Pr(zj = B ~ Z ~ - ~ ,  ..., Z~,X~-~,...,X~,...,X-~) = - 1 
q' ( 3 )  

In other words, we require that, for each allowable plaintext sequence, 
the additive sequence z o,z1,z2,.. be a completely random q-ary sequence. 

From ( 2 ) ,  it follows that 

Pr(z. = OIx = ... = x 0 )  = 1 ( 4 )  J j -1 j -M 

so that perfect secrecy as specified by ( 3 )  is impossible without some 
plaintext restriction. From ( 4 ) ,  we see that the least plaintext re- 
striction compatible with perfect secrecy in such a linear cipher is 

which we hereafter assume to be the only restriction on the plaintext. 
[For q = 2 and M = 1, we see that (5) implies x 
no interesting system is possible; f o r  all M > I, however, the plaintext 
restriction admits interesting systems .] 
We first make the quite trivial observation that perfect linear ciphers 
exist for every M and every F One can simply choose the coefficients 
ci(j,K) independently at random from a uniform distribution over F - 
the plaintext restriction ( 5 )  guarantees that one of the independent 
"key digits" will then appear with a non-zero multiplier on the right 
in ( 2 )  so that ( 3 )  will be satisfied. This perfect linear ciphering 
system, however, requires M digits of key for each digit of plaintext. 
This large key requirement appears quite unsatisfactory (particularly 
for large M as would be desirable to ease the restriction specified by 
( 5 ) )  when one reflects that a perfect one-time system (which is an 
additive cipher ir. which the additive sequence is itself the random key) 
requires only one digit of key for each digit of plaintext. The question 
we now pose is: What is the least amount of key (measured in digits of 
key per plaintext digit) required for a perfect linear cipher as spe- 
cified by (l), ( 2 )  2nd ( 3 )  with the plaintext restriction (5) ? We now 

1, all j, so that 
j 

9' 
9' 
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Plaintext 
Source 

show t h a t  two d i g i t s  o f  key p e r  p l a i n t e x t  d i g i t  i s  always s u f f i c i e n t ,  

and w e  c o n j e c t u r e  t h a t  t h i s  much key i s  a l s o  necessa ry  f o r  a l l  M 3 2 .  

j -M X .  
1-1 

X 

To prove o u r  c l a i m ,  w e  c o n s i d e r  t h e  s p e c i f i c  l i n e a r  c i p h e r  sys t em shown 

i n  F i g .  1 c o n s i s t i n g  of  a random key g e n e r a t o r  (whose o u t p u t s  are inde- 
penden t ly  chosen  from a un i fo rm d i s t r i b u t i o n  over  F ) t h a t  d r i v e s  a 
s h i f t - r e g i s t e r  t h a t  i s  c l o c k e d  a t  a r a t e  d times f a s t e r  t h a n  t h e  s h i f t -  
r e g i s t e r  d r i v e n  by t h e  p l a i n t e x t  s o u r c e .  

9 

Random Key 
Generator 

. . . . .  

Fig .  1: A p e r f e c t  l i n e a r  c i p h e r  system, con jec tu red  t o  u s e  a minimum 

of  random key d i g i t s  when d = 2 .  

To show t h a t  ( 3 )  h o l d s  f o r  t h e  system o f  F i g .  1 under t h e  r e s t r i c t i o n  

( 5 ) ,  c o n s i d e r  a t  t i m e  j t h e  l e f t m o s t  non-zero d i g i t  i n  t h e  u p p e r  s h i f t -  

From F i g .  1, w e  s e e  t h a t  i t s  m u l t i p l y i n g  c o e f f i c i e n t  r e g i s t e r  , 
c . ( j , K )  i s  j u s t  t h e  random d i g i t  rdj-i. But,  provided t h a t  d > 1 so t h a t  
t h e  lower s h i f t - r e g i s t e r  i s  s h i f t i n g  f a s t e r  t o  t h e  r i g h t  t h a n  i s  t h e  

upper  one,  i t  f o l l o w s  because  rdj-i h a s  j u s t  come a b r e a s t  o f  xj-i a t  
t i m e  j t h a t  t h i s  same random d i g i t  a t  e a r l i e r  time i n s t a n t s  c o u l d  have 

m u l t i p l i e d  o n l y  d i g i t s  t h a t  a r e  t o  t h e  lert of xj-i i n  t h e  u p p e r  s h i f t -  

r e g i s t e r .  Bu t ,  as a l l  t h e s e  l a t t e r  d i g i t s  must be z e r o e s ,  i t  f o l l o w s  

say x j - i *  
1 

t h a t  t h e  e a r l i e r  g e n e r a t e d  d i g i t s  Z ~ - ~ , Z ~ - ~ , . . .  a r e  a l l  i ndependen t  of 
r 

z i m p l i e s  t h a t  ( 3 )  i s  s a t i s f i e d ,  as was t o  be shown. The l i n e a r  c i p h e r  

. hence t h e  f a c t  t h a t  xjqi rdj-i w i t h  x .  $ 0 i s  a component of d j - i '  J -i 

j 



of Fig. 1 requires d digits of key per plaintext digit, and we have 
shown it to be perfect for all d 3 2. The least key, of course, is used 
when d = 2. 

In fact, we have borrowed our answer to the linear cipher problem posed 
above from our earlier solution [la pp.19-211 t o  a problem in error- 
correcting codes. The problem there was to find the smallest ensemble 
of time-varying codes such that the codewords enjoy pairwise independ- 
ence -- this coding problem is formally identical to the linear cipher 
problem, and our  "double speed ensemble" solution to this coding pro- 
blem remains the smallest ensemble known to suffice. 

It is well known 12, pp. 680-6831 that the least mount of key required 
for perfect secrecy in any type of ciphering system is one key digit 
per plaintext digit (when the plaintext is irredundant). It would thus 
be interesting if one could prove that a perfect linear cipher requires 
at least two key digits per plaintext digit, as this would give some 
theoretical force to the rubric that "linearity is the curse of the 
cryptographer 'I . 

3. Variable Speed in Random Sequence Generation 

A perfect secrecy system of the additive type is of course an ideal 

random number generator, i.e., its additive sequence z o,z1,z2,... is a 
sequence of digits drawn independently at random from a uniform distri- 
bution over F This suggests that the basic structure of Fig. 1 may 
be of use in random sequence generation. For this purpose, it is natural 
to replace the plaintext source of Fig. 1 by an M-stage linear feedback 
shift-register (LFSR) started in some non-zero state, as this automat- 
ically enforces the "plaintext restriction" (5) as well as introduces 
some element of pseudo-randomness. It is a natural next step to replace 
the random key generator of Fig. 1 by a second LFSR of length L(L >/ M), 
also started in 5orr.e non-zero state but clocked at a speed d times that 
of the first LFSR to produce the pseudo-random sequence which further 
"randomizes" the "plaintext" to produce the desired "random" sequence 

zo,z1,z2, . . .  The resulting random sequence generar;or is shown in Fig. 2 

Such a device migiit be used as a random number generator or as a key 
stream generator I?. a conventional stream cipher. 

9' 
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. . . . .  

X 

z 
j 

r 
d-fold-speed 
shift-register 

- . - . .  . . . . .  

Fig. 2: A random sequence generator employing multiple speed 

shift-registers. 

In the following sections, we analyze the effect of  the speed factor d 
on the sequence produced by the generator of Fig. 2. Our interest is in 
the new phenomena that result when the speed factor is treated as an 
additional variable in shift-register sequence generation. 

4. The Effects of Variable Speed 

The sequence r = r 0,r1,r2,... of digits from F 
LFSR in Fig. 2 satisfies the homogeneous linear recursion 

produced by the lower 
9 

rk + cl~k-l + ... + c r k = 0,1,2, ... ( 6 )  L k-L' 

(where k denotes the time instants of the high speed clock for this 
LFSR) whose charac-eristic polynomial is 

( 7 )  L-1 c(x) = xa + c x + ... + CL. 1 
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In what follows, we shall assume (mainly for analytic convenience) that 

c(x) is irreducible in F [XI. The roots of c(x) then lie in the ex- 

tension field F L, or CF(q ) to use the more usual notation. Let u be 
a root of c(x), (which implies that c(x) is the sinimum polynomial over 
GF(q) of a). Then, for every A in GF(q ), the sequence ?? defined by 

q L  
4 

L - 
k = 0,1,2, ... ( 8 )  k r = Aa 

k 

is a solution of (6) as can be seen by direct substitution; however, 
the digits in F lie in the extension field GF(qL) rather than in GF(q) 
as required for r. One remedies this by introdxing the trace operator 
which maps GF(q ) into GF(q) in the manner 

- 
L- 

The trace is a linear operator with respect to the "scalar" field GF(q), 
i.e., for al and a2 in GF(q) and for B1 and B 2  in GF(q ) ,  L 

It now follows from (10) that the GF(q) sequence r with - 

r = Tr(Aak) k = 0,lY2, ... (11) k 

is a solution of (6) f o r  every A in GF(ql"). Ir, fact, since each choice 
of A gives a different sequence r, (11) gives all the GF(q) solutions 

L of (6), as there are exactly qL such solutions corresponding to the q 
choices of the initial conditions r- l J r - 2 J  ' * *>r-L in (6). It is con- 
venient to assocla;e A with the corresponding initial state [r-l,r-2,.., 

r-J of the lowe- L7SR i n  Fig. 2. 

Now consider the sequence 

that appears at :he inputtap of t h e  lower LFSS at the (slower) clock 



times j of the sur-ounding logic. We see from (12) that rid] is just 
the d-th decimation of the sequence r and moreover that 

- 
- 

It is illuminating 20 wrice (13) as 

where B = c-. 

The period T of L;ke original LFSR is the smallest posi’ive integer t 
such that c(x) di-rides x -1; equivalently, T is the multiplicative order 
of a in GF(q ) anZ t h u s  a,a ,..,aT-’,aT = 1 are the T distinct r o o t s  
of xT-l. By prope? choice of d (1 & d 6 T) , it follows from ( l 4 b )  that 

t 
L 2 

m 

B can be selected 2s any root of xl-1 and h e x e  as a root of any nonic 
irreducible polynoaial that divides xT-l. The multiplicative order of B 
in GF(q ) will be ?/gcd(d,T). The following proposition, which is a mild 
generalization of known results for the decimation of maximal-length 
sequences, is now an immediate consequence of (14a). 
Proposition 1: If the sequence r produced by an L-stage LFSR of period T, 
whose characteristic polynomial is the minimum polynomial over GF(q) of 
the element a, is observed at intervals of d clock cycles, then this 
observed sequence ?[dI is a sequence producible by the LFSR of period 
T/gcd(d,T), whose cha-acteristic polynomial is the minimum polynonial 
over GF(q) of 6 = 3 . Xoreover, every sequer,ce producible by the latter 
LFSR is equal to r r d ]  for some choice of the initial state of the former 
LFSR. 

L 

- 

- 
d 

- -  

The practical i z~s? :  of lroposition 1 is that multiple-clocking provides 
a means by whicL 5 single LFS3 with fixed feedback connections can be 
used to generate Stquer.ces that aDpear to be produced by LFSR’s with 
different feedbacr concecticns. We shall c a i l  the LFSR, whose charac- 
teriscic polynoTLC is t n e  ninimum polynomial over G F ( q )  of f? = a z ,  the 
LFS? simulated b:; ;he 3752, vrhose characterlsttc polynomial is t3e mini- 
mum polynomial ~-;f.n GS(g: or’ a, when the lacter LFSR is shifted at d 
times the obser-rz;ion r a ~ e .  

----- --- 
-- - - _ _  
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i Now consider the sequence r [dl observed in the i-th stage of the lower 
LFSR of Fig. 2 at the slower clock times j of the surrounding 1ogic.Then 

- 

(ri[d])j = rdj-i = Tr(Aa dj -i ) - 

0 where is given by (l4b). (Note that rrd] = r [dl.) From (15), we see 
that this sequence is again a sequence producible by the LFSR simulated 
by the faster-shifting LFSR. We now consider the relationship between 
the sequences observed in adjacent stages of the faster-shifting LFSR. 

I f s _ = s  o,s1Js2,... is any periodic sequence, we shall call the sequence 
8 s = Sn,sn+l,sn+2,. .. the n-th phase of the sequence s .  If s can be 
described as 

-, - 

n - - - 

s = Tr(CyJ) 
j 

then it follows that 

j 0,1,2,.. 

(ens)j I = T Y ( C Y ~ ~ ~ )  j = 0,1,2,.. ( 1 6 )  

so that the phase shift n can be read off by comparing the multipliers 
of yj in the trace descriptions. 

In general, the sequences r [d], for i 1,2,.,,L, will not be phase 
shifts of one another; rather, they w i l l  be "cyclically distinct" se- 
quences producible by the simulated LFSR. However, when gcd(d,T) = 1 
so that the simulated and simulating LFSR's have the same period, the 
sequences r [dl will be phase shifts of one another. To see this, we 
note that gcd(d,T) = 1 means that d has a multiplicative inverse e 
modulo T, i.e., there exists an integer e (16 e < T) such that 

i - 

i - 

de QT + 1 

In this case, we can write (15) as 
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The following proposition now follows from (18) and (16). 
Proposition 2: When gcd(d,T) = 1, then the sequence rildl observed every 
d clock Cycles in the i-th stage of an LFSR of length L and period T 
with an irreducible characteristic polynomial over GF(q) and non-zero 
initial loading is the e-th phase of the sequence r i+l[d] observed 
every d clock cycles in the (i+l)-st stage, where e ( 1 4  e < T) is the 
multiplicative inverse of d modulo T. 

The practical import of Proposition 2 is that siaulating an LFSR by 
multiple-clocking of another LFSR gives simultaceous access to widely 
separated phases of the sequence produced by the simulated LFSR, rather 
than only to consecutive phases as when this sequece is produced by the 
actual LFSR being simulated. 
Proposition 3: The sequences r [dI, (i = 1,2,..,L), described in Propo- 
sition 2 are linearly independent over GF(q). 

To prove this propsition, it suffices to show that the initial constants 
AB-ie (i = l,Z,..,L) in the trace descriptions of the L sequences are 
linearly independent over GF(q). If not, there would exist ai (i = 1, 

and hence Be would be the root of a non-zero polynomial over GF(q) with 
degree less than L. But this is impossible since Be = a has a minimum 
polynomial of degree L. 

The practical import of Proposition 3 is that any sequence producible 
by the simulated LFSR can be obtained by a linear combination of the 
contents o f  the faster-shifting LFSR taken at the slower observation 
times. But this is not too surprising since any such sequence could also 
be produced b y  linear combinations of the contents of  the actual LFSR 

being simulated. It does show, however, that no flexibility is lost when 
the LFSR is simulated by a faster LFSR observed xnder a slower clock, 
rather than directly implemented. 

- 

- 

i - 

-Le - 2,..,L) in GF(q) not all zero such that alB-e + a2B-2e + ... + aLE -0, 

5.  Linear Complexity of the 3andom Sequence Gene-ator 

The linear c o r n p l e x t t y  A ( z )  of a periodic sequence z is the degree L Of 
the characteristic l;olynomial of smallest degree among those LFSR'S that 
produce the seqde-ce z, i.e., the length of the shortest LFSR that pro- 
duces z. Linear cxplexlzy is widely used in c-yptographic analysis 

- - 

- 
- 
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despite its limitations as a "true complexity" measure 
We now compute the linear complexity of the sequence z 

generator of Fig. 2 when the two component LFSF's have 
-, 

f o r  sequences. 
produced by the 
irreducible 

characteristic polynomials and relatively prime lengths L and M. 

As we shall be dealing with extensions GF(qn).of GF(q) f o r  different n, 
we shall denote the trace operator from GF(qn) to GF(q) by Tn so that, 
for y in GF(~"), 

n-1 i 

i=O 
T,(Y) = 1 yq . (19) 

We shall make keg use of the following identity, which is of some inde- 
pendent interest. 

Lemma 1: Ifyand 6 are in GF(q ) and GF(q'), respectively, where 
gcd(L,M) = 1, then 

L Y 

TL(~)TM(G) = TLM(yd). ( 2 0 )  

L M LM Note that GF(q ) and GF(q ) are both subfields of GF(q ) so that the 
product in (20) of y6 is well-defined in GF(q ) .  To prove(20),we first LM 

note from (19) that 

L M Next, we observe that, because YE GP(q ) and & E  GF(q ), 
i i mod L 

y q  yq (22a) 
and 

where "i mod nrr denotes the remainder when i is divided by n. Because 
gcd(L,M) = 1, t h e  Chinese remainder theorem ixplies that (i mod L, 
i mod M) takes ST. each pair ( j , k )  with 0 4 j < I, and 0 4 k < M exactly 
once as i ranges ?om C to LM-1. Thus (21) and (22) imply 
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which we recognize now from (19) to be the desire& identity ( 2 0 ) .  

The following result is proved in [3] and is a single consequence of 
the fact that the degree of the minimum polynomial over GF(q) of y is 
the least positive integer t such that yq 

Lemma 2: If the minimum polynomials of I3 and y over GF(q) have degrees 
L and M, respectively, and gcd(L,M) = 1, then the minimum polynomial of 
By over GF(q) has degree LM. 

Now suppose that the characteristic polynomials c ( x )  and b(x) of the 
two LFSR's of Fig .  2 are irreducible, that a is a root of c ( x )  and y 

is a root of b(x), that 5 = cia has the sane mu1ti;licative order in 
GF(q ) as a ,  and that the degrees L and M satisfy gcd(L,M) = 1. Then 
the i-th input sequence w to the adder forming z in Fig. 2 is given 
according to (18) by 

t 
= y .  

L 
i 

- -. 

M where A and B are non-zero elements of GF(qb) ac:! GF(q ) if, as we now 
assume, the initial states of the LFSR's are both non-zero. Using ( 2 0 1 ,  

we obtain 

It now follows from Lemma 2 and (11) that y' is a non-zero sequence 
produced by an LFSR with an irreducible characteristic polynomial of 
degree LM, and hence that the linear complexity of w is i - 

( 2 5 )  i A ( w  ) = X .  - 
i In fact, we see f ~ o r n  (24) that each sequemw is produced by this same 

LFSR of length Li4 an2 hence so also is their sum 
- 

To show that 

A ( a )  L:*T, - 
is remains only :c show that z is not the all-zers sequence 0. Tiow ( 1 O ) a  

(24) and (26) shcx that  z = 0 only if 
" - 

- -  
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where we have made use of (17), which would require ay to be the root 
... + x+l over,GF(q). But this cannot of the polynomial x'-l + x 

be the case since Lemma 2 shows that the minimum polynomial of ay Over 
GF(q) has degree LM. We have thus proved our desired result, namely: 
Proposition 4 :  When the two LFSRIs in Fig. 2 have relatively prime 
lengths, irreducible connection polynomials and non-zero initial States, 
and when the speed factor d is relatively prime to the period T of the 
faster-shifting LFSR, then the output sequence z will have linear com- 
plexity LM as will also each of the input sequences to the adder that 
forms z in Fig. 2 .  

M-2 + 

- 

- 
6. Remarks 

One could of course utilize the sequence z produced by the generator of 
Fig. 2 as the sequence "XI' in another such "Fig. 2 generator", where 
the second LFSR would now be shifted at another speed factor d'.If this 
second LFSR has length N and gcd(LM,N) = 1, we see from Proposition 4 
that we could obtain output sequences of linear complexity LMN. This 
process could be iterated as many times as desired. 

One could also modify the Fig. 2 generator by also shifting the upper 
LFSR at another speed factor d'. The analysis of such generators is an 
obvious modification of that presented in this paper. 

Finally, the reader may wonder why, in light of Proposition 4, one does 
not save hardware by using one of the w 
put since its linear complexity equals that of z. The answer is that 
the sequence w may have a gross imbalance o f  0 ' s  to 1's (when q = 2 )  

and/or other shoyt term "non-random" features. The intuitive argument 
of Section 3 that suggested the structure o f  the Fig. 2 generator also 
suggests that the short term statistics of z will be much more "random" 
than those of w - . It appears feasible to carry out an analysis to verify 
this suspicion, L L Z  such an analysis is beyond o u r  aim in this paper, 
which was to show the many interesting features that mulitple clocks Can 
introduce in sequence generators. When such sequences generators are 
used f o r  cryptographic purposes, the various speed factors can be put 

-, 

- 

i sequences as the generator out- 

i - 

i -. 
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under control of the secret key. Thus, such multiple-clocking gives 
an added "dimension" to secure sequence generator design. 
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