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Abstract

4 construction is given for perfect linear ciphers that uses two digits
of key per plaintext digit, which appears to be the minimum possible.
The construction utilizes two shift-registers that are clocked at dif-
ferent speeds, and suggests a new type of random sequence generator in
which two linear feedback shift-registers are clocked at different
speeds and their contents combined at the lower clock rate. The effects
of variable speed are analyzed, and the linear complexity of the se-

quences produced by such generators is determined.
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1. Introduction

We begin this paper by considering how much key is required in a per-
fect linear cipher. We show in Section 2 that two digits of key per
plaintext digit suffice, and we conjecture that this much key is also
necessary. The perfect linear cipher constructed in Section 2 utilizes
two shift-registers that are clocked at different speed, a "trick" that

we have borrowed from convolutional coding lore.

The perfect linear ciphers of Section 2 suggest a promising structure
for random sequence generation, which we propose in Section 3, that
utilizes two linear feedback shift-registers (LFSR's) clocked at differ-
ent speeds. In Section L, we investigate analytically the effects of
such variable speed in LFSR's. These results are then used in Section 5
to determine the linear complexity of the sequences produced by the pre-
viously suggested random sequence generator. We close the paper with

some additional observations and suggestions for generalizations.

2. Perfect Linear Ciphers and Convolutional Codes

Suppose that one wishes to use a ciphering system of the additive type
in which the ciphertext digit yj is determined by the plaintext digit

Xj in the manner (reminiscent of a stream cipher) that

V. = X. + z; j o= 0,1,2,... (1)

where the digit Zj is determined in some prescribed manner by the key X
and the previous plaintext digits. [All digits and operations are as-
sumed to be in Fq, the finite field of q elements, unless specified
otherwise.] Suppose further that, for whatever reason, one demands that

the enciphering be linear in the plaintext with memory M so that

ci(j,x)xj_i J o= 0,1,2,... (2)

[S]
1]
ne1=

i=1
where the coefficients c¢.(Jj,K) depend both on the time instant j and
o

the key K. {We suppose that the initial conditiocns x X

1 Xopscers Xy
required in (2) are dummy plaintext digits that may be chosen as con-
venient.) Suppose finally we demand that the enciphering be perfect in

the sense that, for some appropriate probability measure over the keys,
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one has, for every choice of B in Fq and every j 2z 0,

1
Pr(zj = Blzj—l""’ZO’xj—l""’xO""’X-M) =3 (3)

In other words, we require that, for each allowable plaintext segquence,

the additive sequence z be a completely random g-ary sequence.

02212250

From (2), it follows that

Priz; = Olx;_ 5 = ... = Xy @0 =1 (4)

so that perfect secrecy as specified by (3) is impossible without some

plaintext restriction. From (4), we see that the least plaintext re-

striction compatible with perfect secrecy in such a linear cipher is
T R I N (0,0,..,0], j=0,1,2,... (5)

which we hereafter assume to be the only restriction on the plaintext.
[for q=2and M = 1, we see that (5) implies xj =1, all j, so that
no interesting system is possible; for all M > 1, however, the plaintext

restriction admits interesting systems.]

We first make the quite trivial observation that perfect linear ciphers
exist for every M and every Fq. One can simply choose the coefficients
ci(j,K) independently at random from a uniform distribution over Fq;

the plaintext restriction (5) guarantees that one of the independent
"key digits" will then appear with a non-zero multiplier on the right

in (2) so that (3) will be satisfied. This perfect linear ciphering
system, however, reguires M digits of key for each digit of plaintext.
This large key requirement appears quite unsatisfactory (particularly
for large M as would be desirable to ease the restriction specified by
(5)) when one reflects that a perfect one-time system (which is an
additive cipher in which the additive sequence is itself the random key)
requires only one digit of key for each digit of plaintext. The guestion
we now pose is: What is the least amount of key (measured in digits of
key per plaintext digit) required for a perfect linear cipher as spe-

cified by (1), (2) and (3) with the plaintext restriction (5) ? We now
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show that two digits of key per plaintext digit is always sufficient,

and we conjecture that this much key 1is also necessary for all M 2 2.

To prove our claim, we consider the specific linear cipher system shown
in Fig. 1 consisting of a random key generator (whose outputs are inde-
pendently chosen from a uniform distribution over Fq) that drives a

shift-register that is clocked at a rate d times faster than the shift-

register driven by the plaintext source.

Plaintext
Source

X,

3

r

a4
Random Key J oy R PP
Generator 4j-1 M

d-fold-speed shift-register

Fig. 1: A perfect linear cipher system, conjectured to use a minimum

of random key digits when d = 2.

To show that (3) holds for the system of Fig. 1 under the restriction

(5), consider at time j the leftmost non-zerc digit in the upper shift-

. From Fig. 1, we see that its multiplying coefficient
aj-i° But, provided that 4 > 1 so that

the lower shift-register is shifting faster to the right than is the

register, say xj—i
ci(j,K) is just the random digit r

upper one, it follows because r has just come abreast of xj_. at

dj-i i

time j that this same random digit at earlier time instants could have

multiplied only digits that are to the left of xj—i in the upper shift-

register. But, as all these latter digits must be zerces, it follows

that the earlier generated digits Zj—l’zj—Z"" are all independent of
. .3 henc s s -

rdJ_l, e the fact that xJ_l rdJ_l

with X5 g $ 0 is a component of
Zj implies that (2) is satisfied, as was to be shown. The linear cipher
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of Fig. 1 requires 4 digits of key per plaintext digit, and we have
shown it to be perfect for all d > 2. The least key, of course, is used
when 4 = 2.

In fact, we have borrowed our answer to the linear cipher problem posed
above from our earlier sclution [1, pp.l9—21] to a problem in error-
correcting codes. The problem there was to find the smallest ensemble
of time-varying codes such that the codewords enjoy pairwise independ-
ence =-- this coding problem is formally identical to the linear cipher
problem, and our "double speed ensemble" sclution to this coding pro-

blem remains the smallest ensemble known to suffice.

It is well known [2, Pp. 680—683] that the least amount of key regquired
for perfect secrecy in any type of ciphering system is one key digit
per plaintext digit (when the plaintext is irredundant). It would thus
be interesting if one could prove that a perfect linear cipher requires
at least two key digits per plaintext digit, as this would give some
theoretical force to the rubric that "linearity is the curse of the

cryptographer”.

3. Variable Speed in Random Sequence Generation

A perfect secrecy system of the additive type is of course an ideal
random number generator, i.e., its additive sequence ZgsZ1sZgs e is a
sequence of digits drawn independently at random from a uniform distri-
bution over Fq. This suggests that the basic structure of Fig. 1 may

be of use in random sequence generation. For this purpose, it is natural
to replace the plaintext source of Fig. 1 by an M-stage linear feedback
shift-register (LFSR) started in some non-zero state, as this automat-
ically enforces the "plaintext restriction" (5) as well as introduces
some element of pseudo-randomness. It is a natural next step to replace
the random key generator of Fig. 1 by a second LFSR of length L{(L > M),
also started in some non-zero state but clocked at a speed d times that
of the first LFSR %o produce the pseudo-random sequence which further
"randomizes" the "plaintext" to produce the desired "random" sequence
ZO’Zl’ZE"" The resulting random sequence generator is shown in Fig. 2
Such a device might be used as a random number generator or as a key

stream generator in a conventional stream c¢ipher.
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Fig. 2: A random sequence generabtor employing multiple speed
shift-registers.

In the following sections, we analyze the effect of the speed factor d
on the sequence produced by the generator of Fig. 2. Our interest is in
the new phenomena that result when the speed factor is treated as an

additional variable in shift-register sequence generation.

4, The Effects of Variable Speed

The sequence r = TysTysT of digits from Fq produced by the lower

2’
LFSR in Fig. 2 satisfies the homogeneous linear recursion

T+ c,T, + ... + cCc.r =0 k = 0,1,2,... (6)

(where k denotes the time instants of the high speed clock for this

LFSR) whose characteristic polynomial is

e(x) = re e v (7)
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In what follows, we shall assume (mainly for analytic convenience) that
e(x) is irreducible in Fq[xI. The roots of c(x) then lie in the ex-
tension field FqL, or GF(qL) to use the more usual notation. Let a be
a root of c(x), (which implies that c(x) is the minimum polynomial over
GF(q) of a). Then, for every A in GF(qL), the sequence f defined by

Kk

Ek = Aa k = 0,1,2,... (8)

is a solution of (6) as can be seen by direct substitution; however,
. e m as . . . L, .
the digits in P lie in the extension field GF(g~) rather than in GF(q)

as required for r. One remedies this by introducing the frace operator

which maps GF(qL) into GF(q) in the manner

-1 i
Tr(g) = § 8% . (9)

1=0

The trace is a linear operator with respect to the "scalar" field GF(q),

i.e., for a, and a, in GF(q) and for Bl and 82 in GF(qL),

1 2

Tr(als1 + a282) = a2 Tr(Bl) + a, Tr(BE). (10)

It now follows from (10) that the GF(q) sequence r with

v, = Tr(Aa’) K =0,1,2,... (11)

is a solution of (€) for every A in GF(qL). n fact, since each choice
of A gives a different sequence r, (11) gives all the GF(q) scolutions

of (6), as there are exactly qL ;uch solutions corresponding to the qL
choices of the initial conditions r

.oyr_; in (6). It is con-

-1°F-2 L
venient to associate A with the corresponding initial state [r_l,r_z,..,

r_;] of the lower LFSR in Fig. 2.
Now consider the sequernce

r[d] = » ST g (12)

that appears at the input tap of the lower LFSR at the (slower) clock
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times j of the surrounding logic. We see from (12) that r[d] is just

the d-th decimation of the sequence r and moreover that

o]
hat¥}

(?[dl)j:r .= Tr(Aadj). {13)

It is illuminating to write (13) as

(E-[dl)j:Tr(ABj) (14a)

where B = ad. (14p)

The period T of the original LFSR is the smallest positive integer t
such that c(x) divides xt—l; equivalently, T is the multiplicative order
of a in GF(q ) and thus a,a2,..,aT_l,aT = 1 are the T distinect roots

of xT-l. By proper choice of d (1 £ d ¢ T), it follows from (14b) that

B can be selected =z2s any root of xT—l and hence as a root of any monic
irreducible polynomial that divides xT-l. The multiplicative order of B
in GF(qL) will be T/ged(d,T). The following proposition, which is a mild
generalization of xnown results for the decimation of maximal-length
sequences, is now an immediate consequence of (14a).

Proposition 1: If the sequence r produced by an L-stage LFSR of periocd T,
whose characteristic polynomialkis the minimum polynomial over GF(q) of
the element a, is observed at intervals of d clock cycles, then this
observed seguence ZEdI is a sequence producible by the LFSR of period
T/ged(d,T), whose characteristic polyncomial is the minimum polynomial
over GF(g) of B8 = ad. Moreover, every sequence producible by the latter
LFSR is equal to ;Edl for some choice of the initial state of the former
LFSR.

The practical impcrt of Proposition 1 is that multiple-clocking provides

a means by which & single LFSR with fixed feedback connections can be
used to generate sequ s that appear to be produced by LFSR's with
different feedbac« connecticns. We shall cail the LFSR, whose charac-

~
“

teristic polynomizl is the minimum polynomial over GF(g) of g = a™, the
LFSR simulated by the LFSR, whose characteristic polynomial is the mini-
mum pelynomial over GF(g) of o, when the latter LFSR is shifted at d

times the obserwvazion rate.
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Now consider the sequence rl[dl observed in the i-th stage of the lower

LFSR of Fig. 2 at the slower clock times j of the surrounding logic.Then

dj-1i
374

Tr(Aa

(=" [ 4Dy = ra5-5

Tr(aated) (15)

where B is given by (1Ub). (Note that r[d] = rOEiI.) From (15), we see
that this sequence is again a sequence producible by the LFSR simulated
by the faster-shifting LFSR. We now consider the relationship between

the sequences observed in adjacent stages of the faster-shifting LFSR.

If s = 539575550 is any periodic sequence, we shall call the seguence

e“s = 5,8 s
2 T "n’"n+l’"n+2’°

described as

the n-th phase of the segquence s. If s can be

55 = Tr(Cy?) j =0,1,2,..

then it follows that

(6%, = Tr(Cy™yd) i=0,1,2,.. (16)

so that the phase shift n can be read off by comparing the multipliers
of yJ in the trace descriptions.

In general, the sequences Ei[dl’ for i m 1,2,..,L, will not be phase
shifts of one another; rather, they will be "cyclically distinct"” se-
quences producible by the simulated LFSR., However, when ged(d4,T) = 1
so that the.simulated and simulating LFSR's have the same period, the
sequences fl[dl will be phase shifts of one another. To see this, we
note that ged(d,T) = 1 means that d has a multiplicative inverse e

modulo T, i1.e., there exists an integer e (1 &« e < T) such that

de B QT + 1

and hence

Be _ ade - OLQT+1 _

(17)

In this case, we can write (15) as

(r'[a]); = Tr(as™ %) (18)
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The following proposition now follows from (18) and (16).

Proposition 2: When ged(d,T) = 1, then the sequence gi[dl observed every
d clock cycles in the i~th stage of an LFSR of length L and period T
with an irreducible characteristic polynomial over GF(q) and non-zero
i+1[d] observed

(L e <T) is the

initial loading is the e-th phase of the sequence r
e

every d clock cycles in the (i+l)-st stage, where

multiplicative inverse of d modulo T.

The practical import of Proposition 2 is that simulating an LFSR by

multiple-clocking of another LFSR gives simultaneous access to widely

separated phases of the sequence produced by the simulated LFSR, rather

than only to consecutive phases as when this seguece 1s produced by the

actual LFSR being simulated.
Proposition 3: The sequences rlfdl, (i =1,2,..,1.), described in Propo-

sition 2 are linearly independent over GF(q).

To prove this propsition, it suffices to show that the initial constants
AB_ie (i =1,2,..,L) in the trace descriptions of the L sequences are
linearly independent over GF(q). If not, there would exist ay (i = 1,
2,..,L) in GF(g) not all zero such that alB-e + 328~2e + ...+ aLB-Le=0,
and hence 8% would be the root of a non-zero polynomial over GF(g) with
degree less than L. But this is impossible since 8% = o has a minimum

polynomial of degree L.

The practical import of Proposition 3 is that any sequence producible

by the simulated LFSR can be obtained by a linear combination of the
contents of the faster-shifting LFSR taken at the slower observation
times. But this is not too surprising since any such sequence could also
be produced by linear combinations of the contents of the actual LFSR
being simulated. It does show, however, that no flexibility is lost when
the LFSR is simulated by a faster LFSR observed under a slower clock,

rather than directly implemented.

5. Linear Complexity of the Random Sequence (Generator

The linear complexity A(z) of a periodic sequence z is the degree L of
the characteristic polynomial of smallest degree among those LFSR's that
produce the sequence z, i.e., the length of the shortest LFSR that pro-

duces z. Linear complexity is widely used in cryptographic analysis
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despite its limitations as a "true complexity" measure for sequences.
We now compute the linear complexity of the seguence z produced by the
generator of Fig. 2 when the two component LFSR's have irreducible

characteristic polynomials and relatively prime lengths L and M.

As we shall be dealing with extensions GF(qn)'of GF(q) for different n,

we shall denote the trace operator from GF(qn) to GF(q) by Tn so that,
. n

for vy in GF(q ),

. 7.4
Ty = 1y (19)

We shall make key use of the following identity, which is of some inde-

pendent interest.

Lemma 1: Ifyand § are in GF(qL) and GF(qM), respectively, where
ged(L,M) = 1, then

TLNT(8) = T (v8). (20)

Note that GF(qL) and GF(qM) are both subfields of GF(qLM) so that the
. . . . M .
product in (20) of yé is well-defined in GF(qL“). To prove (20),we first

note from (19) that
M-1 i i

v - q .4
Tu(Y8) = yo 87 . (21)

1N~

i=0
Next, we observe that, because ye GF(qL) and §e GF(qM),
qi i mod L

¥ oy (22a)

and
i _i mod M

s = % (22b)

where "i mod n" denotes the remainder when i is divided by n. Because

gcd (L ,M)

1, the Chinese remainder theorem implies that (i mod L,
i mod M) takes on each pair (j,k) with 0§ J < L and 0 % k < M exactly

once as 1 ranges from 0 to LM-1. Thus (21)and (22) imply

L-1 ¥-1  § ok
P aq
T (¥8) = ] EO v3 s
iz K=
-1 qj M-1 qk
= Z Y 8

(S8
(&)
~

"

(]
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which we recognize now from (19) tc be the desired identity (20).

The following result is proved in [3] and is a simple consequence of
the fact that the degree of the minimum pglynomial over GF(q) of v is
the least positive integer t such that y& = Y.

Lemma 2: If the minimum polynomials of 8 and y over GF(gq) have degrees
L and M, respectively, and ged(L,M) = 1, then the minimum polynomial of

By over GF(q) has degree LM.

Now suppose that the characteristic polynomials c¢{x) and b(x) of the
two LFSR's of Fig. 2 are irreducible, that a is a root of c(x) and ¥
is a root of b(x), that 8 = ad has the same multiclicative order in
GF(qL) as a, and that the degrees L and M satisfy gcd(L,M) = 1. Then
the i-th input sequence w' to the adder forming z in Fig. 2 is given
according to (18) by

(w'), = T_(ag" %81, (By Ty, (23)

T3 L M
where A and B are non-zerc elements of GF(q”) and GF(qM) if, as we now
assume, the initial states of the LFSR's are both non-zero. Using (20),
we obtain

i _ -ie

(y )j = TLM(ABB
It now follows from Lemma 2 and (11) that yl is a non-zero sequence

y ey, (2b)

produced by an LFSR with an irreducible characteristic polynomial of

degree LM, and hence that the linear complexity cf wt is

pwty = o (25)

In fact, we see from (24) that each sequenc;ewl is produced by this same

LFSR of length LM and hence so also is their sum

M 3
2= T wh. (26)
2L

To show that

Alz) = 1y, (27)

o

it remains only tc show that z is not the all-zero sequence 0. Now (10),

(24) and (26) shcw that z = 0 only if
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(av)* = 0,
1

(8%y)* =
1 .4

[T e =4
[T e B4

i
where we have made use of (17), which would require ay to be the root

of the polynomial L, M2

+ ... + x+1 over GF(q). But this cannot
be the case since Lemma 2 shows that the minimum polynomial of ay over
GF(q) has degree LM. We have thus proved our desired result, namely:
Proposition 4: When the two LFSR's in Pig. 2 have relatively prime
lengths, irreducible connection polynomials and non-zerco initial states,
and when the speed factor d is relatively prime to the period T of the
faster-shifting LFSR, then the output sequence z will have linear com-
plexity LM as will also each of the input sequences to the adder that

forms z in Fig. 2.

6. Remarks

One could of course utilize the sequence z produced by the generator of
Fig. 2 as the sequence "§“ in another such "Fig. 2 generator", where
the second LFSR would now be shifted at another speed factor d'. If this
second LFSR has length N and gecd(ILM,N) = 1, we see from Proposition 4
that we could obtain output sequences of linear complexity LMN. This

process could be iterated as many times as desired.

One could also modify the Fig., 2 generator by also shifting the uppér
LFSR at another speed factor d'. The analysis of such generators is an
obvious modification of that presented in this paper.

Finally, the reader may wonder why, in light of Proposition 4, one does
not save hardware by using one of the yi sequences as the generator out-
put since its }inear complexity equals that of z. The answer 1s that

the sequence yl may have a gross imbalance of Q0's to 1's (when q = 2)
and/or other short term "non-random" features. The intuitive argument

of Section 3 that suggested the structure of the Fig. 2 generator also
suggests that the short term statistics of z will be much more "random"
than those of yl. It appears feasible to carry out an analysis to verify
this suspicion, tu®t such an analysis is beyond our aim in this paper,
which was to show the many interesting features that mulitple clocks can
introduce in sequence generators. When such sequences generators are

used for cryptographic purposes, the various speed factors can be put
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under control of the secret key. Thus, such multiple-clocking gives

an added "dimension" to secure sequence generator design.
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