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Abstract . 
We study a family of encryption functions , wich is particularly 

Probabilistic arguments show us that "big key" is not synonymous 
adapted for the situations that arise in smart cards . 
of "good security" for these functions . 

We think that the security of such functions has to rely on other 
criteria . 
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I. GENERALITIES 

1. About protocols usina smart cards . 
The interest of smart cards not only lies in their intelligence 

but their security performances concern us as well . These allow the 

implementation of encryption functions , in order to perform authentica- 
tion procedures, as those needed in long-distances payments or in chec- 

king acces control to buildings . 
In this paper, we first show on a small example that smart cards al- 

low us to design cryptographic protocols . In this example, it is as- 
sumed that the cards are issued by an organisation on business purpose 
and may accomplish long-distances operations . 

They contain an encryption function y depending on a secret key 

Before each transaction with a customer at a sail's point, one has 

to be sure that the customer's card is a valid one, therefore contains 

1 and S. So one connects the sail's point to a central by means of a 

telecommunication network. This central has a valid card and a pseudo 
random generator at h i s  disposal. 

S, wich is the same in all the cards . 

After the insertion of the card in the terminal of the sail's point 

it is proceed as follows: 
a. The card sends any message to the center . 
b. The center sends a random message E back to the card . 
c. The card computes Is(E)  
d. The center computes 

and gives the result back . 
ys(E) by means of its card and compares it 

with the customer's result . 
e. The communication is refused if the results are both different . 

figure 1. 
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This is just a simple example; but it is possible to design a Simi- 
lar protocol where each card has a different secret key, i.e. depen- 
ding on a P.I.N., N . Here, the card has to send N in the phase a Of 

the protocol . It is also possible to add a password f o r  the user , SO 

that one can authenticate a valid card and its legal user . 
Let's remark that all these protocols don't use the inverse func- 

tion ofg,if it exists . 
2. Introduction to the functions studied in this paper . 

We have just seen that it is important to device one-way encryp- 
tion functions for smart cards . The problem with these new objects 
is that their ROM, wich contains the software (i.e. the code of the 
encryption function y ), is relatively small . We have to design 
"simple" functions that are "complicated" enough to be secure ! On 
the other side, the RAP1 is exceedingly small. We are interested in al- 
gorithms that, at any step of the computations, load the smallest part 
of the data as possible in this RAN . 

Here, we describe a family of functions that satisfy these requi- 
rements. We shall see that these functions can accept v e r y  big keys. 
Therefore we shall study the security of these functions in term of 
the length of these keys . 

11. THE FUNCTION 

1 .  Description . 
The set 3 1  of messages that we consider includes the plaintext and 

enciphered messages . Let k be a maJl number (i.e. k = 8) and let H( 
be the set of k-bits blocks . 

We first start considering a family of functions W K ,  K e X, from 
H to 3 4  . These functions are supposed to be easily implemented 
and they use a little key, but we do not ensure that they are bijec- 
tive. 

Now we choose an integer n , and S = ( K , ,  ... ,Kn) r Xn and we set 

IS = r J K n o *  . .O K 1  - 
The implementation of 1 uses a little more 
one and its key can be as large as desired . Moreover, each step of the 
computation of $ ( E ) ,  ErBE.I, 

only a small part of the key S . 

instructions that the 0 IS 

consists of a calculation of w and so, uses 
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2. The problem . 
We have to keep in mind that the user of a card will eventually 

compute as many 

first question is : 

encrypted messages y S ( E ) ,  E e M, as he wishes . So 8 
"Is it possible to guess the secret key S from a big amount of COU- 

ples 

and only if E has a definite standard form (i.e. the last byte of E 

represents the current year modulo 2 ). Then, the opponent user will 
have to choose the messages E in a subset Pi' of standard messages 
of M . In fact, it will be seen that, if the functions w are not bi- 

jective and satisfy some reasonable hypotheses, the following question 
has an affirmative answer : 

(E, y S ( E ) )  where E E M  7 "  . 
However, it is easy to request that the cards compute &(E) if 

8 

"IS it possible to guess the secret key S by means of a big amount 
of encrypted messages y s ( E )  where E € 2 4 '  7" . 
3 .  Notations and hypotheses . 

The notations concerning Bl, M ' ,  M, W K  and x are kept on . 
As w is a "little" cipher function, its program uses a "small" 

flow chart. It is therefore possible to go backward on it so that we 
have a relatively fast algorithm, with a mean running time of T, wich 
gives for each ( F , K )  d B l x X  the list of all the E in H such that 
wK(E) = F. By 

fine the following numbers and sets : 
means of a spanning tree algorithm, we determine and de- 

+(F) = (EeB1, w K ( E )  = F ]  ' 

( E l  %,.,,, . . . , K  1 
(E) = Card 5,s , K ,  

The functions and have to be considered as random 

variables on the set lM . The hypotheses that are given 
below give a reasonable model for 

%m, . . ., K , 
\ ( .  

(HI 1 The random variables 5, X e X, are pairwise independent and 
have the same law as an integer random variable Y . 
We set, for every n G N, pn = Prob (Y = n) . 

(HZ) The number po is not null . 
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(H3) Let K, L be in X . Let's suppose that F and G are randomly 

and independently charen 

the one hand, there are no a priori correlations 

and X , - , ( G ) ;  on the other hand 
and % ( E )  . 
in IM and if F is selected at random in + , , . . . , K l  (E), there is no 

It is recalled here that the smart card accepts to perform the 

in PI so that w X ( F )  = w  (G) = E . On X 
between ).t(F) 

there is no correlation between %(F) 

(H4) Let K l  ,..., K,,L be elements of M . If E is chcsen randomly 

correlation between X,-,(F) and 5 ( E )  . m' ' K ,  
(H5) 

computation of 1 S(E)  if and only if E EM' . Moreover it is as- 
sumed that the law of r(,  K C M ,  is the same on IM' as on B . 

'( H5 1 This is a technical hypothese that says that p, is not null . 
Some remarks . 
- a. The hypotheses H 2 ,  which is obviously satisfied when4) is not bi- 
jective, gives the start point of the search of the key S . Let F I in 

&( M) ,be such that 
L # Kn . That gives a way to through little blocks of keys away . 
b. The hypotheses HI, H3, H4 are sound because W is presumed to mix up 
the bits contained in E and K . Moreover, an unsuspected dependence , 
which could invalidate one of these hypotheses, could as well result 

in a new way of attack against the secrecy of S . 
- C. The hypothese H6 is not fundamental but the search of S is faster 
with it . - d. The main task of H 5  is to prevent the kind of attack where one 

chooses many E in M and then analyses the so obtained couples 
(E, f S ( E ) )  . It is possible to show that, if H 5  is false, such a search 

X,-,(F) = 0, where L EX; then one clearly has 

of S is very easy for the owner of a card . 

%,,,,...,K1 4. Study of the random variables 

It is deduced from the hypotheses H 1 ,  H3, H4 that for every m € N* 
have the same and (X1,. . . ,Km) E lKm, the random variables 

law as a variable that will be noted Ym, from now on . The law of 

Y, is deduced f r o m  Ym,, 
"Ym is the sum of Y 

5m, . . . , K 1 

as follows : 
independent variables with the same law as m- 1 

Y," . 
Let f be the generating function of Y and fm be the one of Ym . 1 

The end of the paragraph 111.15 of "Calcul des probabilit6s" of Renyi 

(Dunod) gives : 

Proposition 1 .  The functions f satisfy fm+, = f,of, for every m E B*. 
rn 
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Let Q be the standard variation of Y and. for every r.v. Z, let E(Z) 
and c ( Z )  stand respectively for the mean value and the standard va- 

riation of Z . The proposition 1 allows us to study Ym and we obtain 

the following assertions : 

Proposition 2. 

For every m EN*, one has E(Y,) = 1 

The series Prob (Ym = 0) has 1 as limit when m + c D  and 
1 - Prob (Ym = 0 )  N 2 / C 2 m  . 

b(Ym) = GU . 
- b. 

I& For every € 7  0, there is a constant C > 0 such that. f o r  every 
m c N* one has : 

Prob (Ym = 1)  > C/rn*+€ . 
Demonstration . 

First we compute E(Y1) . To do this, one has to compute E(Q) where 

K is any element of X . The numbering of Pi gives 

Card M = lk k.(Prob(s = k) . Card PI) 

and zk.pk = 1 . Therefore we have E(Y1) = 1 . Then, it is easy to see 
that 

, 

E(Ym) = E(Yl)m = 1 . 
The calculation of r(Y,) is done recursively on m . We use the 

following formulas : 

&Y,) = f"(1) + f'(1) - f'(1)* = f"(1) , 
f;(l) = 1 , 
f$4 = f"(4.f;-1 (fLz)) + f'(4.f;-l(f(Z)) , 

we obtain : 

2 f#p) = Q + f;-,(l) . 
and one has the part a of the proposition . 

Now the series (fm(0)) is strictly increasing and has 1 as limit . 
In order to obtain b, one shows the following fact: 

For evrryf,O, there exists an M 6 IN such that, for every m > M  9 

one has 

Let m be an integer and set a = 1 - fm(0) . F r o m  the Taylor formu- 

la, there is a real 8€]0,1[ such that 
2 a f(1 - a) = I - a + 7 fW(1 - B a )  . 
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Therefore : 

The right hand side is a continuous function,of (8, a) that takes 
value Q / 2  at ( 0 ,  0) ; therefore there exists an integer mo such that 

the left hand side lies in the interval 76 / ( 2 + € / 2 )  , c /(2-€/2)[ for 

every m > mo . That gives b to us . 

the 
2 

2 2 

The demonstration of c starts from the following formula ; 

fA(0) = f'(f,-,(O)> ... f'(f,(O)).f'(O) , 
which is a consequence of the proposition 1 . Because of the hypothese 
H6, this term is not null . One uses the estimation of fk(0) just giv- 

en to apply the Taylor formula at f'(fk(0)) . 
lower bound for the following product 

One has then to find a 

TJ ( 1  - a/k) 
where a = 2 + €  and b > 0 . This last product is equivalent to 

(use the Stirling formula) , and one can conclude . 
We end this section with the study of the random variables 

o as, where m (n . Let Y m o l  be that variable . It is met 
'n* *Kn-m+l 
when one takes E 15 MI at random and then computes F = & ( E )  by means 

of the card to observe (F) . 
'n* *Kn,m+l 

Proposition 3. For every r m, one has 
Prob (Xmo#= r) = r . P r o b  (Urn = r) . 

The generating function of the r.v. r,oX is z-z.f,'(z) . 
The second assertion is directly deduced from the first one and 

gives with the proposition 2 : 

Corollary . 
- a. F o r  every E >  0, there is a constant c > O  such that, for every in , 
one has 

Prob (Xmo 8 = 1 ) > c/ m2+' . 
E @ ~ o ~ )  = 1 + m u  2 b. - 

In order to show the proposition 3 ,  we have to give an estimation 
of Prob (Ymo# = r) . First we start numbering the elements x d M 

such that y,( 8 ( x ) )  = r , which is the same as to sum the Yn(y) whe- 

re Y e Si and y, (y) = r . Therefore 
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1 Prob (Tmo = r) 

= 1.Prob (Ym = r and Yn = 1) 

- - l.Prob(Yn = 1 . Tm = r)  .Prob (Tm = r) . 
1 

Let's keep in mind that Yn and Ym represent respectively li( 
and . Therefore Yn is the sum of r indepegdent r.V. 

with the same law as 'P when it is known that Ym = r . n-m 
The conditional mean value if Y n  is then equal to r when Ym = I' . The- 
refore , we obtain the proposition 3 . 

1 ,...,K 

Kn-m+ 1 

5.  The search of the key . 
It is shown here how some elements of cJL( 34') can be used to find 

L ; wich directly applies to searchKn . Let (Fi)i be a random series 
of elements of 3M and, for every L 6 M, let J(L) be the smallest index 
i such that %(Fi) = 0 . The mean value of J(L) is 
that we have chosen the F in 0 

re Lo # Li ( l g i  < h) . We want to guess that 
mum number of F 
We know now that, for every Li, 

there will be some j such that 

eliminate Li with less than J tries (cf. the remark after the hypothe- 
se H2) . If we compute, for every F 
member that IK is a relatively small set), J vectors are enough for 
the elimination of all the Li ( 1 i < h) . An easy computation 
shows that the mean value of J is O(Log h) . 

l/po . 
Let h be an integer and L1,  ..., Lh be elements of M . We suppose 

( MI), for some unknown LoeX , whe- 
mini- j LO Lo # Li, using the 

Let J be the maximum of the values J(L,), ..., J(Lh). 
if we compute ]i. ( F ~ )  ,.., %,(F~) ,... , j -  

Z.(Fj) = 0, withi j 5 J . So we can 

the vector (%(Fi))KhH<, (re- i' 

Now, the search of the key S is done step by step . 
To find Kn, as we have lS( mf)CU ( M), we pick at random messages 

We 

. T h i s  elimination process is 

F c  Is( 3 4 ' )  and, for every such F, we cgmpute the vector (r((F))K . 
through each X such that %(F) = 0 away 
complete after O(Log Card M) = 0 (k) vector computations . 

Now let m # n ; the main difficulty here is to find random messages 
F € W K  ( 34) . W e  proceed recursively and we suppose that Kn..,Knmm+, 

are known . First of all, we look for messages E EN' such that the 

set 
of the proposiFfin 3 says that we must perform a mean value of 
0(m2+&) tries 

ned method at about O(k) messages F 

n-m 

( X ~ ( E ) )  has exactly one element F .  he corollary 
%n, , Kn- 

to find such a message . We then apply the above mentio- 
to find Kn-m . 



F i a r e  2 .  

unknown 
blocks 
of 
S 

. _ _ . I  . . . . . . I .  - - . -  

, Known 
blocks 
o f  
S 

If %(G) = 0 
then K # K p  

Before giving the  r e s u l t  of t h i s  paragraph, we have t o  perform the 

estimation of t h e  mean number of operations needed t o  compute 

a t  any E E lM . Let G be the  mean number of operations needed t o  com- 

pute c3 ; Ys(E) needs about nG operations when computed a t  any (E, S) 
i n  . L e t ' s  r e m e m b e r  that the mean number of operations needed 

Ym0& 

(F) P one for the  ca lcu la t ion  o f  Y, is T . To obtain 
'n,. * K n - m + l  

has t o  develope a t r e e  whose depth is m . The root,  of depth 0, is 
F; the sons o f  every node o f  depth p a r e  i t s  antecedents by O K . 
Every node 

which means about T operat ions . The mean number of these nodes is 

n-p F' o f  depth p induces the calculation of a n  +(F), 

2 E (Xpo 1) = 0 (m2) . Therefore 0 (m T + nG) operations a r e  appro- p= 1 

=m0 8 ximately needed t o  compute 

Figure  3. 
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Now, we apply these results and the corollary of the proposition 3 
with & 0.1 to conclude this paper with the following proposition : 

Proposition 4. With the above mentionned hnotheses, there exists an 

algorithm that allows the owner of a smart card using v ,  who is allo- 
wed to compute enciphered messaKes of IM' at will, to find the secret 

key of 8 with a mean number of 
0 ( kTn5*1 + Gn4*l + kpkTn ) 

operations . 


