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Abstract .

We study a family of encryption functions , wich is particularly
adapted for the situations that arise in smart cards .

Probabilistic arguments show us that "big key" is not synonymous
of "good security" for these functions ,

We think that the security of such functions has to rely on other
criteria .,
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I. GENERALITIES

1. About protocols using smart cards .

The interest of smart cards not only 1lies in their intelligence
but their security performances concern us as Qell . These allow the
implementation of encryption functions , in order to perform authentica-
tion procedures, as those needed in long-distances payments or in chec=-
king acces control to buildings .

In this paper, we first show on a small example that smart cards al-
low us to design cryptographic protocols , In this example, it 1is as-
sumed that the cards are issued by an organisation on business purpose
and may accomplish long-distances operations .

They contain an encryption function ¥ depending on a secret key
S, wich is the same in all the cards .

Before each transaction with a customer at a sail's point, one has
to be sure that the customer's card is a valid one, therefore contains
| and S. So one connects the sail's point to a central by means of a
telecommunication network, This central has a valid card and a pseudo
random generator at his disposal.

After the insertion of the card in the terminal of the sail's point
it is proceed as follows:

a. The card sends any message to the center .

b. The center sends a random message E back to the card .

c. The card computes xS(E) and gives the result back .

d. The center computes XS(E) by means of its card and compares it

with the customer's result .
e. The communication is refused if the results are both different .

figure 1.
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This is just a simple example; but it is possible to design a simi-
lar protocol where each card has a different secret key, i.e. depen-
ding on a P,I.N., N . Here, the card has to send N in the phase a of
the protocol . It is also possible to add a password for the user , so
that one can authenticate a valid eard and its legal user .

Let's remark that all these protocols don't use the inverse func-

tion ofx,if it exists .

2, Introduction to the functions studied in this paper .

We have just seen that it is important to device one-way encryp-
tion functions for smart cards , The problem with these new objects
is that their ROM, wich contains the software (i.e. the code of the
encryption function X ), is relatively small . We have to design
"simple" functions that are "complicated" enough to be secure ! On
the other side, the RAM is exceedingly small, We are interested in al-
gorithms that, at any step of the computations, load the smallest part
of the data as possible in this RAM .,

Here, we describe a family of functions that satisfy these requi-
rements. We shall see that these functions can accept very big keys.
Therefore we shall study the security of these functions in term of

the length of these keys .

II. THE FUNCTION

1. Description ,

The set 1M of messages that we consider includes the plaintext and
enciphered messages . Let k be a small number (i.e. k = 8) and let X
be the set of k-bits blocks .

We first start considering a family of functions @ K e X, from

’
M to M . These functions are supposed to be easilyKimplemented
and they use a little key, but we do not ensure that they are bijec-
tive,

Now we choose an integer n , and S = (K1""’Kn) e X© and we set

XS =cuKno...ocuK1 .
The implementation of x uses a little more instructions that the W 's
one and its key can be as large as desired . Moreover, each step of the
computation of %(E), E¢M, consists of a calculation of w and so, uses

only a small part of the key S .
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2, The problem .,

We have to keep in mind that the user of a card will eventually
compute as many encrypted messages \(S(E), E ¢ M, as he wishes , So a
first question is :

"Is it possible to guess the secret key S from a big amount of cou-
ples (B, XS(E)) where E ¢ M 2" ,

However, it is easy to request that the cards compute XS(E) if
and only if E has a definite standard form (i.e. the last byte of E
represents the current year modulo 28). Then, the opponent user will
have to choose the messages E in a subset ' of standard messages
of M ., In fact, it will be seen that, if the functions w are not bi-
jective and satisfy some reasonable hypotheses, the following question
has an affirmative answer :

"Is it possible to guess the secret key S by means of a big amount
of encrypted messages XS(E) where E eM' 2" ,

3, Notations and hypotheses .,

The notations concerning M, M', XK, W and § g aTe kept on .,

As W is a "little" cipher function, its program uses a "small"
flow chart, It is therefore possible to go backward on it so that we
have a relatively fast algorithm, with a mean running time of T, wich
gives for each (F,K) ¢ Mx X the list of all the E in M such that
wK(E) = F. By means of a spanning tree algorithm, we determine and de-

fine the following numbers and sets :

a(F) = {Eem, w, (E) = F} ,
AKm""’K1(F) = {E €My wy ov..0wy () = F} ’

XK(E) = Card A.K(E) " .
% ...k (B) = caran o (E) .

m 1 m 1
The functions XK and X.K K have to be considered as random
yoo:’ ]
variables on the set I ., The hypotheses that are given

below give a reasonable model for \6

(H1) The random variables )%(, K e X, are pairwise independent and
have the same law as an integer random variable Y .
We set, for every n ¢ W, p, = Prob (Y =n) ,

(H2) The number p, is not null .
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(H3) Let K, L be in X . Let's suppose that F and G are randomly
and independently chmsen in IM so that Q)K(F) =c.;K(G) =E . On

the one hand, there are no a priori correlations between XL(F)

and XL(G); on the other hand there is no correlation between XL(F)
and X, (E) ‘

(u4) Let K,,...,K ,L be elements of X . If E is chesen randomly
in M and 1f F is selected at random in A (E), there is no

ti
correlation between XL(F) and XK "K1(E)
(H5) It is recalled here that the smart card accepts to perform the

'-o-pK

computation of ¥ S(E) if and only if E € M' . Moreover it is as-
sumed that the law of XK’ KeIXK, is the same on IM' as on M .
(H5) This is a technical hypothese that says that P, is not null .

Some remarks ,

a. The hypotheses H2, which is obviously satisfied when® is mot bi-
jective, gives the start point of the search of the key S . Let F , in
Xs( M) ,be such that )CL(F) = 0, where L ¢ X; then one clearly has

1 # K_ . That gives a way to through little blocks of keys away .

b, The hypotheses Hi, H3, HA4 are sound because «J is presumed to mix up
the bits contained in E and X . Moreover, an unsuspected dependence ’
which could invalidate one of these hypotheses, could as well result
in a new way of attack against the secrecy of S .

c. The hypothese H6 is not fundamental but the search of S is faster

with it
d., The main task of H5 is to prevent the kind of attack where one

chooses many E in MM and then analyses the so obtained couples
(E, XS(E)) . It is possible to show that, if H5 is false, such a search

of 8 is very easy for the owner of a card .

4. Study of the random variables X K =
m’**" * 1

It is deduced from the hypotheses H1, H3, H4 that for every m & N*¥

and (Kl"”'Km) € X", the random variables > o K have the  same
law as a variable that will be noted Ym, from now 1on . The law of
Ym is deduced from Ym_1 as follows :

"Ym is the sum of Ym-l independent variables with the same law as
Y." .

Let f be the generating function of Y1 and fm be the one of Ym .
The end of the paragraph II1.15 of "Calcul des probabilités" of Renyi
(Dunod) gives :

Proposition 1. The functions f‘m satisfy fm_'_1 = fmof, for every m & WN¥,
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Let ¢ be the standard variation of Y and, for every r.v. Z, let E(Z)

respectively for the mean value and the standard va-

and o (Z) stand
obtain

riation of Z . The proposition 1 allows us to study Ym and we

the following assertions :

Proposition 2. .
a, For every m ¢ WN*, one has E(Ym) = 1 and O'(Ym) =Vmo .
b, The series Prob (Ym = 0) has 1 as limit when m— ® and

1 - Prob (Y =0) ~ 2/0%m .
c. For every ¢, O, there is a constant C > O such that, for every

m ¢ N* one has :
Prob (Ym =1) > C/m2+€ .

Demonstration .
First we compute E(Y1) . To do this, one has to compute E(XK) where

K is any element of X ., The numbering of M gives

Card M = Zk _k.(Prob(xK = k) . Card M) ,
and zk.pk = 1 . Therefore we have E(Y,) = 1 . Then, it is easy to see

that
m
E(Y,) = B(Y,)" =1 .
The calculation of c-(Ym) is done recursively on m , We use the

following formulas :
P(r)) = (1) + £1(1) - ()7 = (1),
fx;.(I) =1 ,
tr(z) = t(z). 6] (£(2)) + £'(2).£7_ (£(z)) ,

we obtain :
" 2 i
(1) = o7+ 7 _ (1),
and one has the part a of the proposition ,

Now the series (fm(o)) is strictly increasing and has 1 as limit

In order to obtain b, one shows the following fact:

For evary £>0, there exists an M ¢ IN such that, for every m>M ,

one has

%

2
a. 1
N O M=
Let m be an integer and set a2 = 1 - fm(O) . From the Taylor formu-
la, there is a real 8e]o,1[ such that ’
2

f(1-a)=1-a+2§f"(1-93).
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Therefore @

1 1 o_f£n(i-Fa) .

1
1-f__ {0y © T-f (0] T 2 1_% £ (1-6a)

m+1

The right hand side is a continuous function of (8, a) that takes the
value 02/2 at (0, O0) ; therefore there exists an integer m, such that
the left hand side lies in the interval ]¢2/(2+5/2) , 6‘2/(2—5/2)[ for
every m > mO . That gives b to us .
The demonstration of c¢ starts from the following formula ;

(o) = £ (f _ (0))...e0 (g, (0)).£7(0) ,
which 1is a consequence of the proposition 1 , Because of the hypothese
H6, this term is not null . One uses the estimation of fk(o) just giv-
en to apply the Taylor formula at f’(fk(O)) . One has then to find a
lower bound for the following product

(1 ~ a/x)
k=b

where a = 2+f and b > 0 , This last product is equivalent to

T{b+1 n?
I"{b=-a+1
(use the Stirling formula) , and one can conclude .

We end this section with the study of the random variables

XK ""’Kn-m+1° XS' where m¢n . let Ymoxlxathat variable . It is met
when one takes E € M' at random and then computes F = XS(E) by means
of the card to observe A e (r) .

n-m+1
Propesition 13, For every r 1IN, one has

Prob (xmox= r) = r.Prob (xm =7r) .

The generating function of the r.v. ¥ oy is zr——z.f!(z) .

The second assertion is directly deduced from the first one and

gives with the proposition 2 :

Corollary .
a, For every & 0, there is_a constant ¢ >0 such that, for every m ,

one has
Prob (Imox =1)> ¢/ m2*é

2
b. E(‘fmox) =1 + ¢ .
In order to show the proposition 3, we have to give an estimation
of Prob (Ymox = r) . First we start npumbering the elements xeM

such that Ym(x (x)) = r , which is the same as to sum the Yn(y) whe-

Te ¥y € M and Ym(y) = r . Therefore



477

1
Prob (Tmo =) = TR E 1

lelN yMY(y)rY(y)l

Z_ 1.Prob (Y =r and Y =1)
1 N m n

i 1,Prob(Y =1 Y = r).Prob (Y =1} .,
1 n - m m

Let's keep in mind that Yn and Ym represent respectively XK ,...,K1
and XK ..,k . Therefore Yn is the sum of r independent r.v.
with T the same law as Yn-m when it is known that Ym =T .
The conditional mean value if Yn is then equal to r when Ym =z r o The-

refore , we obtain the proposition 3 ,

5. The search of the kev .

It is shown here how some elements ochL(}f) can be used to find
L ; wich directly applies to search Kn . Let (Fi)i be a random series
of elements of MM and, for every L € X, let J(L) be the smallest index
i such that XL(Fi) = 0 ., The mean value of J(L) is 1/pO .

Let h be an integer and L1""’Lh be elements of 1K . We suppose
that we have chosen the Fj in @y ({M'), for some unknown Lo
re L, # L, (1¢i ¢h) . We want to guess that L # L., using the mini-
mum number of FJ . Let J be the maximum of the values J(Ll)""’J(Lh)'
We know now that, for every Li’ if we compute XL (F‘),..,XL (Fk),... ’
there will be some j such that XL (F ) = 0, with® j¢J . So° we can
eliminate Li with less than J trie3 (cf. the remark after the hypothe-
se H2) , If we compute, for every F,, the vector (XK(Fi))Kéix'
member that X is a relatively small set), J vectors are enough for
the elimination of all the L, (1 ¢ i ¢h) . An easy computation
shows that the mean value of J is O(Log h) .

eX , whe-

(re-

Now, the search of the key S is done step by step .

To find X_, as we have XS( IU)C&J ( M), we pick at random messages
Fe XS(]M') and, for every such F, we compute the vector (XK(F)) We
through each K such that XK(F) = 0 away , This elimination process is

complete after O(Log Card XK) (x) vector computations .

Now let m £ n ; the main difficulty here is to find random messages

F ew (™M) . We proceed recursively and we suppose that Kn"’K

Kn m n-m+1
are known . First of all, we look for messages E ¢ M' such that the
set AK K (XS(E)) has exactly one element F , The corollary

s0e ey

of the proposi¥1on 3 says that we must perform a mean value of
O(m2+£) tries to find such a message , We then apply the above mentio-

ned method at about O(k) messages F  to find Kn-m .
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Before giving the result of this paragraph, we have to perform the
estimation of the mean number of operations needed to compute Ymo&S
at any E € M . LlLet G be the mean number of operations needed to com-
pute <J ; \JS(E) needs about nG operations when computed at any (E, S)
in 'Mx]Kn . Let's remember that the mean number of operations needed

for the calculation of Y,| is T ., To obtain XKn e (F), one

has to develope a tree whose depth is m . The root, of depth O, 1is

,-.o'K

F; the sons of every node of depth p are its antecedents by “"K .
Every node F' of depth p induces the calculation of an AK(F), n=p
which means about T operatiomns . The mean number of these nodes is

; E (Xpo x) =0 (mz) . Therefore O (m2T + nG) operations are appro-
ximately mneeded to compute Ymox .

Figure 3. R ’ *
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Now, we apply these results and the corollary of the proposition 3
with € = 0.1 to conclude this paper with the following proposition :

Proposition 4, With the above mentionned hypotheses, there exists an
algorithm that allows the owner of a smart card using ¥ » ¥ho is allo~

wed to compute enciphered messages of IM' at will, to find the secret

key of 8 with a mean number of

0 ( km3' + en**! 4 x2Fm )

operations .



