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ABSTRACT

The complexity of a finite sequence as defined by Lempel and Ziv
is advocated as the basis of a test for cryptographic algorithms.
Assuming binary data and block enciphering, it is claimed that the
difference (exclusive OR sum) between the plaintext vector and the
corresponding ciphertext vector should have high complexity, with very
high probability. We may refer to this as plaintext/ciphertext com-
plexity. Similarly, we can estimate an "avalanche" or ciphertext/
ciphertext complexity. This is determined by changing the plaintext
by one bit and computing the complexity of the difference of the
corresponding ciphertexts. These ciphertext veectors should appear to
be statistically independent and thus their difference should have
high complexity with very high probability. The distribution of com
plexity of randomly selected binary blocks of the same length is used
as a reference. If the distribution of complexity generated by the
cryptographie algorithm matches well with the reference distribution,
the algorithm passes the complexity test. For demonstration, the test
is applied to modulo multiplication and to successive rounds
(iterations) of the DES eneryption algorithm. For DES, the plaintext/
ciphertext complexity test is satisfied by the second round, but the
avalanche complexity test takes four to five rounds before a good fit
is obtained.
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INTRODUCTION

A block enciphering algorithm may be regarded as a reversible
transformation which maps binary n-vectors into binary n-vectors, for
a given key. In modern cryptography it is usually assumed that the
eryptographic algorithm is known and only the key is kept seeret. In
prineiple, a eryptographic scheme can always be broken by an exhaus-
tive key search. However, if the key set is large, such a search
becomes computationally infeasible. On the other hand, if the crypto-
graphie algorithm is not well designed, the key may be discovered with
high probability by searching a much smaller set. Thus there is a
need to develop statistical tests to reveal such weaknesses. A recent
and interesting test is the complexity test. We will discuss some
properties of complexity in this paper and apply the test to modulo
multiplication and the DES encryption algorithm.

THE COMPLEXITY CRITERION

Lempel and Ziv [1] introduced the idea of the complexity of a
finite sequence and developed several of its important properties.
Fischer [2,3] recognised the application of complexity to erypto-
graphic algorithms. Spencer and Tavares [4] applied the complexity
test to a layered broadcast eryptographic system and found it to be
quite sensitive, Intuitively, the complexity of a sequence is a
measure of the rate at which new patterns emerge as we move along the
sequence, Starting at one end, say the left, we put a marker whenever
a new sequence appears. The complexity is the number of distinet
patterns which have been identified. To illustrate, consider the
sixteen bit sequence

X = 10011011100001171.
Inserting a marker after each new pattern, we have
X = 1100111011100 001114

and thus X has a complexity of 6. Lempel and Ziv showed that, in the
limit, almost all binary sequences of length n have complexity ex-
ceeding n/log n. Thus for sequences of length n, the expression Cn =
n/log n, may be regarded as a threshold of complexity. If we compute
the complexity of a large number of randomly selected binary sequences

of length n, we can determine an IDEAL distribution of complexity as
shown in Fig. 1 for sequences of length n = 64. The above sequences
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could also be generated by seleeting 64-bit blocks from a Binary
Memoryless Source (BMS) with equiprobable symbols. Lempel and Ziv [1]
showed that the distribution of complexity is related to the entropy
of the source generating the sequences and this is illustrated by the
other two curves in Fig. 1. The curve labelled BMS is generated by a
Binary Memoryless Source with p(0) = 0.7 and the curve labelled BSMS
is generated by a Binary Symmetrie Markov Source with p(0/0) = p(1/1)
= 0.7. These two information sources have the same entropy (.881
bits/symbol) but different structure and it is seen that they are
quite close together, but distinct from the ideal distribution. The
threshold of complexity is given by Cn = 64/log264 = 10 2/3.

In an ideal block cryptographic system the plaintéxt veetor P and
the corresponding ciphatext C should appear to be independent of each
other. Let

$=P®C
where () means the exclusive OR sum of the two binary n-vectors, term
by term. Then, for a well designed cryptographie algorithm,

C(S) > n/log n

with high probability, where C(S) is the complexity of the sequence S
(of length n). 1If we pick a large number of plaintext sequences P at
random and compute C(S) in each instance, then the distribution of
C(S) should appear as indicated by the 'IDEAL' curve in Fig. 1, where
n = 64 in this instance.

The complexity C(S) defined above may be referred to as plaintext/
ciphertext complexity, since S is the difference of P and C. 1In a
similar manner, we can define a ciphertext/ciphertext or 'avalanche'
complexity as follows. Let the plaintext vector P generage the
ciphertext C, and P' generate C' where P' is obtained from P by
complementing a bit in a designated location. Determine the n-vector

u=c@c
where U is a measure of the difference between the ciphertexts and
thus is also a measure of the avalanche effect. In an ideal crypto-
graphie algorithm, C and C' should appear to be statistically
independent and thus U should appear to be randomly selected from the
set of all binary n-tuples. Letting C(U) represent the complexity of
U, it should alsoc be true that

C(U) > n/log n
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with very high probability. The distribution of avalanche complexity
for a specified plaintext bit position can be estimated by selecting
plaintext vectors at random and complementing the designated bit. The
complexity of U, C(U), is determined in each case. If the erypto-
graphic algorithm is well designed, the distribution generated in this
way should match very closely with the ideal distribution generated

by the set of all binary vectors of length n. Note that the avalanche
complexity distribution may be a function of the bit location that is
complemented. Such variations would reveal eryptographic weaknesses.
Avalanche complexity can also be defined by complementing key bits
instead of plaintext bits. It should also be noted that the avalanche
effect can be generalized by complementing a specified combination of
bit positions. -

THE COMPLEXITY TEST APPLIED TO MODULO MULTIPLICATION

The operations A¥B mod 2" and A¥B mod 2“-1, where A and B are
binary n-vectors, are helpful for illustrating the complexity test.
The operation ® between A and B is binary multiplication, and reduc-
tion mod 27 is easily implemented since overflow high order digits
fall off the end. However, due to the fact that the carries propagate
from right to left and the overflow drops off the end, the mixing
effect is not uniform. To examine this more closely, we applied the
complexity test to the operation A*B mod 2", for n = 32. One of the
parameters, say B, is kept fixed and may be regarded as the key (B
must be an odd integer for invertibility). The other, A, is a random
32-bit binary vector which is selected many times. The plaintext/
eiphertext complexity test is performed for each choice of A and a
distribution of complexity is obtained. This is shown in Fig. 2 and
gives the average complexity averaged over the 32 bits. To exhibit
the non-uniformity, we can perform the complexity test on the left
half (high-order 16 bits) and right half (low-order 16 bits) separ-
ately. It can be seen from Fig. 3 that for the same choice of B (the
"key"), the left half is more complex than the right half.

The avalanche complexity test was also performed for the ope-
rations A*B mod 27 and A*B mod 2"-1. It can be seen from Fig. 4 that
the complexity distribution for the modulus PR differs quite sub-
stantially from the ideal distribution, but the fit is much better for
the modulus 2"-1. This can be seen by comparing Fig. 4 and Fig. 5,

where Fig. 5 gives the avalanche complexity for modulus 232-1. After
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a little reflection this should not be too surprising. For operations
mod Zn—1, the carries propagate around the end cyclically and the
effeecet of the carry is much more uniform.

APPLYING THE COMPLEXITY TEST TO DES

It would be expected that the DES encryption algorithm should do
well under the complexity tests, and this was found to be the case.
Wnat is also of interest is to observe how rapidly the DES algorithm
approaches the ideal complexity distribution as we include more of the
16 rounds or iterations. (The initial and final permutations are
ignored.) As shown in Fig. 6, the plaintext/ciphertext complexity
converges to the ideal after the second iteration. However, the
avalanche complexity requires four to five iterations befoée there is
a good fit. This indicates that the avalanche complexity test is more
demanding than the plaintext/ciphertext complexity test. The
avalanche complexity test is performed by complementing a plaintext
bit and a key bit as shown in Figs. 7 and 8, respectively.
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