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ABSTRACT 

The complexity of a finite sequence as defined by Lempel and ZiV 
is advocated as the basis of a test for cryptographic algorithms. 
Assuming binary data and block enciphering, it is claimed that the 
difference (exclusive OR sum) between the plaintext vector and the 
corresponding ciphertext vector should have high complexity, with very 
high probability. We may refer to this as plaintext/ciphertext com- 
plexity. Similarly, we can estimate an "avalanche" o r  ciphertext/ 
ciphertext complexity. This is determined by changing the plaintext 
by one bit and computing the complexity of the difference of the 
corresponding ciphertexts. These ciphertext vectors should appear to 
be statistically independent and thus their difference should have 
high complexity with very high probability. The distribution of com 
plexity of randomly selected binary blocks of the same length is used 
as a reference. If the distribution of complexity generated by the 
cryptographic algorithm matches well with the reference distribution, 
the algorithm passes the complexity test. For demonstration, the test 
is applied to modulo multiplication and to successive rounds 
(iterations) of the DES encryption algorithm. For DES, the plaintext/ 
ciphertext complexity test is satisfied by the second round, but the 
avalanche complexity test takes four to five rounds before a good fit 
is obtained. 
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I N T R O D U C T I O N  

A b l o c k  e n c i p h e r i n g  a l g o r i t h m  may b e  r e g a r d e d  a s  a r e v e r s i b l e  
t r a n s f o r m a t i o n  w h i c h  m a p s  b i n a r y  n - v e c t o r s  i n t o  b i n a r y  n - v e c t o r s ,  f o r  
a g i v e n  k e y .  I n  m o d e r n  c r y p t o g r a p h y  i t  i s  u s u a l l y  assumed t h a t  t h e  
c r y p t o g r a p h i c  a l g o r i t h m  i s  known and  o n l y  t h e  k e y  i s  k e p t  secret .  I n  
p r i n c i p l e ,  a c r y p t o g r a p h i c  s c h e m e  c a n  a l w a y s  b e  b r o k e n  by  a n  e x h a u s -  
t i v e  k e y  s e a r c h .  H o w e v e r ,  i f  t h e  k e y  se t  is  l a r g e ,  s u c h  a search 
becomes c o m p u t a t i o n a l l y  i n f e a s i b l e .  On t h e  o t h e r  h a n d ,  i f  t h e  c r y p t o -  
g r a p h i c  a l g o r i t h m  is n o t  we l l  d e s i g n e d ,  t h e  key  may b e  d i s c o v e r e d  w i t h  
h i g h  p r o b a b i l i t y  b y  s e a r c h i n g  a much smal le r  s e t .  Thus t h e r e  is a 
n e e d  t o  d e v e l o p  s t a t i s t i c a l  tests t o  r e v e a l  s u c h  w e a k n e s s e s .  A r e c e n t  
and i n t e r e s t i n g  t e s t  i s  t h e  c o m p l e x i t y  t es t .  We w i l l .  d i s c u s s  some 
p r o p e r t i e s  of  c o m p l e x i t y  i n  t h i s  p a p e r  and  a p p l y  t h e  t e s t  t o  m o d u l o  
m u l t i p l i c a t i o n  a n d  t h e  D E S  e n c r y p t i o n  a l g o r i t h m .  

THE COMPLEXITY CRITERION 

Lempel  a n d  Z i v  111 i n t r o d u c e d  t h e  i d e a  o f  t h e  c o m p l e x i t y  of a 
f i n i t e  s e q u e n c e  a n d  d e v e l o p e d  s e v e r a l  of  i t s  i m p o r t a n t  p r o p e r t i e s .  
F i s c h e r  [2,31 r e c o g n i s e d  t h e  a p p l i c a t i o n  of c o m p l e x i t y  t o  c r y p t o -  
g r a p h i c  a l g o r i t h m s .  S p e n c e r  and  T a v a r e s  C41 a p p l i e d  t h e  c o m p l e x i t y  
t e s t  t o  a l a y e r e d  b r o a d c a s t  c r y p t o g r a p h i c  s y s t e m  and f o u n d  i t  t o  b e  
q u i t e  s e n s i t i v e .  I n t u i t i v e l y ,  t h e  c o m p l e x i t y  of a s e q u e n c e  is a 
m e a s u r e  of t h e  r a t e  a t  which new p a t t e r n s  emerge  as w e  move a l o n g  t h e  
s e q u e n c e .  S t a r t i n g  a t  o n e  e n d ,  s a y  t h e  l e f t ,  we p u t  a m a r k e r  w h e n e v e r  
a new s e q u e n c e  a p p e a r s .  The c o m p l e x i t y  i s  t h e  number of d i s t i n c t  
p a t t e r n s  w h i c h  h a v e  b e e n  i d e n t i f i e d .  To i l l u s t r a t e ,  c o n s i d e r  t h e  
s i x t e e n  b i t  s e q u e n c e  

x = 1001101110000111. - 
I n s e r t i n g  a m a r k e r  a f t e r  e a c h  new p a t t e r n ,  we h a v e  

- x = 1 ~ 0 ~ 0 1 ~ 1 0 1 ~ 1 1 0 0 ~ 0 0 1 1 1 ~  

and t h u s  5 h a s  a c o m p l e x i t y  of 6 .  Lempel  and Z i v  showed t h a t ,  in t h e  
l i m i t ,  a lmost a l l  b i n a r y  s e q u e n c e s  o f  l e n g t h  n h a v e  c o m p l e x i t y  ex- 
c e e d i n g  n / l o g  n .  T h u s  f o r  s e q u e n c e s  o f  l e n g t h  n ,  t h e  e x p r e s s i o n  C n  = 
n / l o g  n ,  may b e  r e g a r d e d  a s  a t h r e s h o l d  of c o m p l e x i t y .  I f  we Compute 
t h e  c o m p l e x i t y  of a l a r g e  number  of r a n d o m l y  s e l e c t e d  b i n a r y  s e q u e n c e s  
o f  l e n g t h  n ,  we c a n  d e t e r m i n e  an I D E A L  d i s t r i b u t i o n  o f  c o m p l e x i t y  as 

shown i n  F i g .  1 f o r  s e q u e n c e s  o f  l e n g t h  n = 6 4 .  The a b o v e  s e q u e n c e s  
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Fig. 1: 
p l e x i t y  f o r  64-bit  sequences from a 
s e l e c t i o n  of b i n a r y  sources .  
cu rve  is der ived  from a Binary Memory- 
less Source (BMS) w i t h  equ ip robab le  
symbols. The cu rve  l a b e l l e d  BMS i s  
based on a BMS w i t h  p(0)=0.7 and t h e  
dashed cu rve  i s  based on a Binary 
Symmetric Markov Source  (BSMS) w i t h  
p(O/O)=p(l/l)=O. 7. 

D i s t r i b u t i o n  of sequence com- 
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Fig.  3: Distribu' t ion of complexi ty  f o r  
r i g h t  ha l f  (low o r d e r  1 6  b i t s )  and l e f t  
ha l f  (high o rde r  16 b i t s )  f o r  32-bi t  
m u l t i p l i c a t i o n s ,  modulo 2 32 . 
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Fig. 2 :  P l a i n t e x t / c i p h e r t e x t  d i s t r i b u -  Fig.  4 :  D i s t r i b u t i o n  of ava lanche  
t i o n  of complexity f o r  32-bi t  modulo 

m u l t i p l i c a t i o n ,  modulo Z32. It can be 
seen tha t  t h e  d i s t r i b u t i o n s  f a l l  s h o r t  
of t h e  i d e a l  d i s t r i b u t i o n .  

complexity f o r  32-bit  m u l t i p l i c a t i o n ,  

modulo Z3'. 
which p l a i n t e x t  b i t  is complemented t o  
gene ra t e  t h e  avalanche e f f e c t .  

The d i s t r i b u t i o n  depends on 
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could also be generated by selecting 64-bit blocks from a Binary 
Memoryless Source (BMS) with equiprobable symbols. Lempel and Ziv [11 
showed that the distribution of complexity is related to the entropy 
of the source generating the sequences and this is illustrated by the 
other two curves in Fig. 1. The curve labelled. BMS is generated by a 
Binary Memoryless Source with p(0) = 0.7 and the curve labelled BSMS 
is generated by a Binary Symmetric Markov Source with p(O/O) = p(7/1) 
= 0.7. These two information sources have the same entropy (.881 
bits/symbol) but different structure and it is seen that they are 
quite close together, but distinct from the ideal distribution. The 
threshold of complexity is given by Cn = 64/10g264 = 10 2/3. 

In an ideal block cryptographic system the plaintext vector 1 and 
the corresponding ciphatext C should appear to be independent of each 
other. Let 

- s = _pas 
where@means the exclusive OR sum of the two binary n-vectors, term 
by term. Then, for a well designed cryptographic algorithm, 

C C Z )  2 n/log n 
with high probability, where C(2) is the complexity of the sequence 
(of length n). If we pick a large number of plaintext sequences 2 at 
random and compute C ( S >  in each instance, then the distribution of 
C(s) should appear as indicated by the 'IDEAL' curve in Fig. 1, where 
n = 64 in this instance. 

The complexity Cts) defined above may be referred to as plaintext/ 
ciphertext complexity, since 2 is the difference of and C. In a 
similar manner, we can define a ciphertext/ciphertext or 'avalanche' 
complexity as follows. Let the plaintext vector! generage the 
ciphertext 5 ,  and generate C' where IT is obtained from 1 by 
complementing a bit in a designated location. Determine the n-vector 

- u = _ c o g '  
where is a measure of the difference between the ciphertexts and 
thus is also a measure of the avalanche effect. In an ideal crypto- 
graphic algorithm, 5 and 5' should appear to be statistically 
independent and thus should appear to be randomly selected from the 
set of all binary n-tuples. Letting C(u) represent the complexity Of 
- U ,  it should also be true that 

C t U )  1 n/log n 
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with very high probability. The distribution of avalanche complexity 
for a specified plaintext bit position can be estimated by selecting 
plaintext vectors at random and complementing the designated bit. The 
complexity of LJ, C ( g ) ,  is determined in each case. If the crypto- 
graphic algorithm is well designed, the distribution generated in this 
way should match very closely with the ideal distribution generated 
by the set of all binary vectors of length n. Note that the avalanche 
complexity distribution may be a function of the bit location that is 
complemented. Such variations would reveal cryptographic weaknesses. , 
Avalanche complexity can also be defined by complementing key bits 
instead of plaintext bits. It should also be noted that the avalanche 
effect can be generalized by complementing a specified combination of 
bit positions. 

THE COMPLEXITY TEST APPLIED TO MODULO MULTIPLICATION 

The operations A*B mod 2" and A * B  mod 2"-1, where A and B are 
binary n-vectors, are helpful for illustrating the complexity test. 
The operation between A and B is binary multiplication, and reduc- 
tion mod 2" is easily implemented since overflow high order digits 
fall off the end. However, due to the fact that the carries propagate 
from right to left and the overflow drops off the end, the mixing 
effect is not uniform. To examine this more closely, we applied the 
complexity test to the operation A*B mod 2", for n = 32. One of the 
parameters, say B, is kept fixed and may be regarded as the key (B 
must be an odd integer for invertibility). The other, A, is a random 
32-bit binary vector which is selected many times. The plaintext/ 
ciphertext complexity test is performed for each choice of A and a 
distribution of complexity is obtained. This is shown in Fig. 2 and 
gives the average complexity averaged over the 32 bits. To exhibit 
the non-uniformity, we can perform the complexity test on the left 
half (high-order 16 bits) and right half (low-order 16 bits) separ- 
ately. It can be seen from Fig. 3 that f o r  the same choice of B (the 
"key"), the left half is more complex than the right half. 

The avalanche complexity test was also performed for the ope- 
rations A*B mod 2" and AfB mod 2"-1. 
the complexity distribution for the modulus 2" differs quite sub- 
stantially from the ideal distribution, but the fit is much better for 
the modulus 2"-1. 
where Fig. 5 gives the avalanche complexity for modulus 2 32 -1. 

It can be seen from Fig. 4 that 

This can be seen by comparing Fig. 4 and Fig. 5, 
After 
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Fig. 5: D i s t r i b u t i o n s  o f  ava lanche  con- Fig.  7:  Avalanche complexity f o r  
p l e x i t y  f o r  32-bit  modulo m u l t i p l i c a t i o n ,  

modulo 2321. 
t o  t h e  i d e a l  d i s t r i b u t i o n  t h a n  f o r  modulo 

success ive  l a y e r s  of DES produced by 
complementing t h e  32nd bit of p l a i n t e x t .  
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Fig. 6: P l a i n t e x t / c i p h e r t e x t  complexi ty  Fig.  8: Avalanche complexity f o r  
f o r  success ive  rounds ( l a y e r s )  o f  DES. 
From t h e  2nd l a y e r  on, t h e  c u r v e s  a r e  
i n d i s t i n g u i s h a b l e  from t h e  i d e a l  d i s t r i -  
but ion. 

success ive  l a y e r s  of DES produced by 
complementing t h e  f i r s t  b i t  of key. 
The curves a r e  v e r y  c l o s e  t o  t h e  i d e a l  
d i s t r i b u t i o n  by t h e  f o u r t h  l a y e r .  
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a little reflection this should not be too surprising. For operations 
mod 2"-1, the carries propagate around the end cyclically and the 
effect of the carry is much more uniform. 

APPLYING THE COMPLEXITY TEST TO DES 

It would be expected that the DES encryption algorithm should do 
well under the complexity tests, and this was found to be the case. 
What is also of interest is to observe how rapidly the DES algorithm 
approaches the ideal complexity distribution as we include more of the 
16 rounds or iterations. (The initial and final permutations are 
ignored.) As shown in Fig. 6 ,  the plaintext/ciphertext complexity 
converges to the ideal after the second iteration. However, the 
avalanche complexity requires four to five iterations before there is 
a good fit. This indicates that the avalanche complexity test is more 
demanding than the plaintext/ciphertext complexity test. The 
avalanche complexity test is performed by complementing a plaintext 
bit and a key bit as shown in Figs. 7 and 8 ,  respectively. 
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