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Extended Abstract 

The ADFGX cryptographic system, invented by Fritz Nebel, was introduced by Germany during World 
War I on March 5, 1918. The names ADFGX and ADFGVX for the successor system refer to the use of 
only five (and later six) letters A, D, F, G ,  (V,) X in the ciphertext alphabet. Kahn [KAI suggests that  
these letters were chosen because differences in Morse International symbols . 

aided the prevent misidentification due to transmission noise. 

The ADFGVX system is historically important since it combined both letter substitution and fractiona- 
tion (transposition). Although Allied cryptanalysts did not develop a general method for the solution of 
ADFGVX ciphertext, Georgea Painvin of the French Military Cryptographic Bureau found solutions 
which significantly effected the military outcome in 1918. This paper proposes a new method lor the 
cryptanalysis of ADFCVX-type systems. 

Let A denote an alphabet of rn = "letters" which we henceforth identify with the set of integers 
Z I = { 0, 1, . . . , m-1 ). The ADFGVX key (SUB , r) has two components; the first, an M by M array 
SUB containing an  arrangement of the letters of Z ,,,. For example, with m = 25 

SUB = 

C R Y P T  
O C A H B  

D E F I K  

L M N Q S  

u v w x z  
The second is a transposition 

on N places. 
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2 :  

The steps in an ADFGVX encipherment are  as follows: 

ADFCVX(1) : Plaintext of n m-letters 

z = ( 2 0 ,  21 . . . . .  2 4 )  2; E 2, 

. . . . . .  20 21 ZN-1 

ZN ZN+1 . . . . . .  Zm-, 

. . . . . . .  
. . . . . . . .  

. . . . . . .  
z(r- l )N z(r-I)N+I . * . . . .  &N-1 

&,V . . .  ZrNcr 

ADFGVX(3) : The ciphertext TJ = (yo, y,, . . , yzn-J is the concatentation 
of the columns of the z-array in the order defined by T. 

We assume the length N of the transposition T is known, although the method will suggest a procedure 
to test a value N as a presumptive transposition length. The ciphertext 

7 = (YO I Y1 9 . . .  T Yzn-I) 2n = rN -I- 8 

is the concatention of segments {$"I  } of TJ which correspond to the entries in a single column of the Z- 
array. We call $I' a column vector. The cryptanalysis will follow these steps: 

Step 1 : 

Step 2 : 

Determine which column vectors { ~ ' )  } are adjacent in the z-a-&ay. 

Determine the relative order of the pair $"'I $'I' of adjacent column vectors 

-J'"" +@A Or +a,,  Tfd') 
Step 9 : Recover the substitution SUB. 

Step 4 : Recover the transposition R. 



To carry out Step 1, we detect the "dependence" between the marginal "letter counts" N J i )  , N,(i) and 
N,$j) for a pair of column vector $ )  @) where 

and N!(/j) is equal t o  the number of solutions k = 0 , 

.Yir+t = 3 Yjr+t  = f 

1 ,  . . .  of 

0 5 s  , t  < M 

Dependence will be detected by a variant of the X2- fcs f .  

Having identified and ordered (Step 2) adjacent column vectors J'"" , f'), the sum 

(a, . f l , )  
Ns,t = C N#3t , 

is the count of rn-letters (s , t )  E 2 M X Z M = 2 111 characteristic of a monalphabetic substitution. SUB 
may then be recovered by standard techni ues. Having removed the erect of the substitution, the ar- 
rangement of the column vector pairs { ($ ' , $'") } to reconstitute the r-array requires the solution of 
a pure transposition system. 
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The analysis requires an  examination of several cases: 

Cwe 1 : N = 0 (modulo 2) 

Case 2 : N = 0 (modulo 2) 

Cwe 3 :  N = 1 (modulo 2) s = O  

Cwc 4 : N E 1 (modulo 2) 

s = 0 

0 < s < N 

0 < 8 < N 

Details and proofs will appear in a paper submitted to the IEEE Tramadom on Information Theory. 


