Fast Data Encipherment Algorithm FEAL

Akihiro Shimizu & Shoji-Miyaguchi

Electrical Communication Laboratories, NTT

1-2356, Take, Yokosuka-shi, Kanagawa-ken, 238-03, Japan

BACKGROUND

In data communications and information processing systems, c<ryp-—
tography is the most effective way to secure communicaticns and store
data. The most commonly used cryptogryphic algorithm is DES (1].
However, it is generally implemented with hardware, and the cost is
prohibitive for small scale systems such as personal computer com-
munications. Accordingly, an encipherment algorithm that has safety
equal to DES and is suitable for software as well as hardware implemen-
tation is needed. The FEAL (Fast data Encipherment ALgorihtm) fills

this need.

EVALUATION INDICES FOR ALGORITHM STRENGTH

In FEAL design, two evaluation indices, M and Ms, are adopted to
evaluate objectively the data randomization ability of the algorithm.
These indices express the approximation degree of ciphertext variation
to the binomial distribution B(n, 1/2), in which n is the ciphertext bit
length.

M is the average approximation degree of the distribution of

D. Chaum and W.L. Price (Eds.): Advances in Cryptology - EUROCRYPT *87, LNCS 304, pp. 267-278, 1988.
© Springer-Verlag Berlin Heidelberg 1988

268

ciphertext variations according to the plaintext or key variations from
one~bit to n-bit. Ms is the standard deviation of the approximation
degree. When M approaches one (100 percent) and Ms approaches zero, the
algorithm does not leave clues which could be: used to count backward to
the input plaintext or key in the ciphertext. M and Ms are definded
separately so that Mp and Mps are for plaintext variations and Mk and
Mks are for key variations.

To get the indices, many plaintexts or keys have to be used.
Nevertheless, the amount of data which can be treated is generally
small compared to the population. Thus, it is important to determine
the theoretical index values according to the amount of data by means
of statistical calculation. For example, the theoretical values for
16*16°16263 pieces of data, which are a combination of 16 plaintexts:
16 keys and 16+63 plaintext or key variations, are M = 96.5 percent and
Ms = 2.6 percent (Table 1). When the measured values of the indices are
close to the theoretical values, the randomness of algorithm cipher-

texts is considered saturated.

Table 1 Indices for FEAL and DES

Items FEAL DES Theoretical values

Mk 96.5 93. 4 96.5

Key indices

Mks 2.6 4.9 2.6
Plaintext Mp 96. 5 95.5 96.5
indices

Mps 2.6 3.4 2.6

Note: Data amount=16<16+16+63

269

DESIGN

FEAL consists of two processing parts. One is the key schedule
which generates the 256-bit extended key from the €4-bit secret key. It
is designed to generate different extended keys for different secret
keys (Fig. 1). The other is the data randomizer (Fig. 2), which gen-
erates 64-bit ciphertext from 64-bit plaintext under control of the ex-
tended key. The data randomizer uses combinations of inveolutions (3).
One program can perform two functions, enciphering and deciphering, ex-
cept for the extended key entry. Moreover, the setting of 64-bit ex-
tended keys by means of an exclusive-CR operation at the entrance and
exit makes attack on the algorithm difficult.

The construction of f (Fig. 3) is such that input bit variations
influence all output data. Experiments confirmed that FEAL's f function
randomization efficiency is two to three times that of DES.

The S function in the f function, a one-byte data substitution, is
as effeétive as DES’ s S-box.

The S fucntion is defined as:

S (x, y, delta) = ROT2(T): T=x+yt+delta mod256:;
X,y: one-byte data; delta:constant (0 or 1):

ROT2(T): 2-bit left rotation operation on T.

Example 1: Where x = 00010011, y = 11110010, delta=1, T = 00000110.

Example 2: ROT2(11011100) = 01110011.

The fk function (Fig.4) used in the key schedule is the same as the f

fucntion except for the entry positon of parameter beta.

270

FEAL VERSIONS

There is an earlier cryptoanalysis report (4) for FEAL(5). For this
reason, the iterative number of data randomizer in FEAL is increased
from 4 stages to 8 stages. FEAL described in (5) and (6) is called
FEAL version 1.00, and the modified FEAL referred to in this paper is
called FEAL Version 2.00. Details for FEAL versions are reported in

(7.

STRENGTH AND PERFORMANCE of FEAL (Version 2.00)

FEAL working with no parity in a key block is safe from the all-
key attack because it is controlled by a 64-bit key, which is more
secure than the 56-bit DES key. Regarding ciphertext randomization,
FEAL is considered safe because the randomization indices are cleser to
the theoretical values than those of DES.

When FEAL is implemented in assembly language on an i-8086 16-bit
microprocessor with 8 MHz frequency, it is confirmed that the program

size is 400 bytes and the excution time speed reaches 120 kbps.

CONCLUSION

FEAL is an encipherment algorithm suitable for software implemen-
tation. It can be applied widely to small scale or other existing sys-
tems unable to use DES hardware because of cost. Moreover, FEAL is
suitable for hardware implementation, too. Implementated as an LSI, it
can be used as the cryptographic method in all data communication

fields.

271

ACKNOWLEGEMENT

We thank Dr. Bert den Boer for finding problems hidden in FEAL

Version 1. 00.

RERERENCES

(1) FIPS PUB 46, Data Encrypticn Standard (1977).

(2) s. Miyaguchi, M. Hirano:’Evaluation Criteria for Encipherment and
Authentication Algorihtms’, Trans. of IECE of Japan. Vol.J69-A,

No. 10. pp. 1252-1259 (Oct. 1986) (in Japanese).

(3) A.G. Kohnheim: ’'Cryptography: A Primer’', A Wiley Interscience Pub-
lication, pp. 236-240 (Jan. 1986).

(4) Bert den Boer, ' Cryptonalysis of FEAL', Crypto’ 87-Rump Session , Aug.
1987.

(5) A. shimizu, S. Miyaguchi, ’Fast Data Encipherment Algorihtm FEAL’,
ABSTRACTS of EUROCRYPT 87 AMSTERDAM, April 1987.

(6) A. Shimizu, S. Miyaguchi,’Fast Data Enciphement Algorihtm FEAL'.,
Trans. of IECE of Japan, Vol.J70-D No.7 pp. 1413-1423, July 1987 (in
Japanese).

(7) An Extension of Fast Data Encipherment Algorithm FEAL, SITA' 87, 19~

21, Nov. 1987 (in English).

(Ko,

(K2,

(K4,

(KG:

(Ksn

(Ka,

(Ke,

(Ke,

272

Key block (64 bits)

(32 bits) \1/ (32 bits)

A0

BoO

K1)
—’_——_—’-‘
Al D1] B1
=

L
fK T
K3)
”’——"
A2 Dz 7 Bz
fx AL
K5)
/
_\
A3 D3 B3
. \ .
fx < {A <
7 """
A4 D4 B4
fx <B4
K9)
Ny P
Y
fx <
Kb) &
\‘>—<
ASF D6 B6
fx € N
A7 ?—< 57
fx A ZA

KE) <

K2(r-1)

(32 bits)

: Left part of Br (16 bits)

K2(r-1)+1: Right part of B r (16 bits)

Fig.

1 Key processing part

273

Plaintext (Ciphertext} block(64 bits)
i/ (64 bits)

be——————— (K8, K9, Ka, Kb)
{ (Kc, Kd, Ke, Kf) }

(32 bits) “ (32 bits)
Lo {R8) < RO { L8}
Neh
A
P [K0 (K7)
L0 (RS} '3 RO { L8}
| O
K1 {K6}
Lt {R7} \2 R1 {L7}
& £
I K2 {K5)
L2 {R6)} R2 (L6}
B £ <
» K3 {K4)
L3 {R5) R3 {L5}
& £
L K4 {K3)
L4 (R4} R4 {L4)
B £ S
K5 {Kz2)
L5 {R3} N2 R5 (L3}
& £
K6 {K1}
L6 {R2} N2 R6 { L2}
& f A3
K7 (KO0}
L7 {R1} § ¥ R7 (L1}
€ £
,>
R8 { L0} r]LS { RO}

?(——— (Ke, Kd, Ke, Kf)

{ (K8, K38, Ka, Kb) }
Ciphertext {Plaintext} block { } :Deciphering

Fig. 2 Data randomizer

274

8
g e g1 (16 bits)
€~ Sa €
a8
Y VY
< S Q\CU\

f (e, B8) ‘ el @
— —
(32 bits) 3 (32 bits)

SB Fa N ><
A \, NN
a2
X1 al, B
X2 : 8 bits
<~ S
Y a?

Y=56 (X1,X2)=ROT2((X1+X2+ 45)nod2656)
Y:output, X1/X2:inputs, & :parameter(0 or 1)
ROT2:2 bit left rotation on 8-bit data

Fig. 3 Function f

@ J/(SZ bits)

o @ o ! a? a3
5 & o
S1 Kk &
Bl
3 8
X
7 7] Se —
82} (32bits)
y , 4 BQ
Se & L St

\JL J L l/ :a ’ B

8 bits
L(SZ bits)
fx (a, £)

Fig. 4 Function fx

275

Appendix FEAL Specifications

1 Notations

(1) Block: U, U~ are blocks of plural octets.

{2) Octet block: U, U+l are the j th octets in the blocks U ,U-r
where §j = 0, 1, -,

(3) Concatenation: (U, V., -« -) is a block concatenated with U, V,

in this order.

(4) Exclusive~or: U@ V is bitwise exclusive-or of block U and V.

(5) © is a null block,four octets long.

(6) Assignment: The value of the left side of =sign is assigned

the value of the right side.

2 Functions

2.1 Function S

S (X1,X2,8) = ROT2 (T)
T = X1 + X2 + & nwmod 256
where X1, X2 and T are blocks of ome-cctet,d = 0 or 1

(constant value), and ROT2 (T) is the result of a 2 bit left

rotation operation on T.

Example 1 : Where X1 = 00010011, X2 = 11110010, 8 = 1,T = 000001190

Example 2: Rot2 (11011100) = 01110011

2.2 Function f«x
Inputs of function fk, o and B, are divided into four l-octet

blocks as:

276

= (a®, al!, a2, a?)

g = (g%, 8!, g2, B3%)

fx (a, B8) is shortened to f .

f = (f9, £1, £2 f£3) are calculated in order.
fk! = a! @ af

fr2 = 2% @ a?

fk! = 8 (f«x?', fx2gBe, 1)

fk2 = S (fx2, fx'@8!'!, 0)

fx?® = 5 (a? , fx'@82, 0)

fk? = 8 (e? , fx2BB3, 1)

2.3 Funmction f

f (&, B) 1is shortened to f .

f = (f£9%, f£1', £2, F£3%) are calculated in order.
£1 = a!' @ B8 @ o

£2 = o2 @ B! P o

£ = 8§ (ft', £2, 1)
£2 = s (f£2, £', 0)
£t = s (a«?, £', 0)
£ = s (a«®, £2, 1)

3. Key processing
Let Aa be to the left of the key K and Bs to the right, i.e.,

K= (As, Ba) and DO = ¢ .

Then calculate Ki(i =0 to 15) for r =1 to 8,
Dr = Ar-1

Ar = Br-t

Ber = fx (Ar-1 , Br-1 & Dr-1)

Kzir-1) = (B-%, Br!)

Kz(r-13+1 = (B2, B3)

277

where Ar, Br and Dr are auxiliary variables.

4, Enciphering and deciphering

4.1 Enciphering procedure
P is separated into La, Re of equal lengths, i.e.,P= (Lue, Rae)
Thus,
(Le , Ra) = (Le, Re) & (Ks, Ks, Ki1a, K11)
(Le , Re) = (La, Ra) & (&, La)
Then calculate r =1 to 8 in that arder,
Rer = Le-t @&@f (Rr-1, Kr-1)
L = Rr-1
Lastly, calculate:
(Rs , Ls) = (Rs, Ls) @ (¢, Rs)
(Rs , Le) = (Re, Ls) @ (Kiz2, K13, K14, Kis)

Ciphertext is (Rs, Ls) .

4.2 Decipehring procedure
Ciphertext is separated into Rs, Le of equal lengths. Then,
(Rs , Ls) = (Rs, Lg) & (K12, Kis, Kia, Kis)

(Rs , Ls) = (Rs, Le) @ (¢, Ra)

Then calculate r = 8 to 1 in that order,
Le-1t = Rref (Lr. Kr—i)
Re-1 = L«

Lastly, calculate:
(Le , Re) = (Lo, Ra) & (@, La)
(La , Ra) = (Le, Re) @ (Ks, Ks, Kiue, Ki11)

Plaintext is (La, Ra)

278

5 Parity bits

If parity bits are requested in a key block, the following rule is
applied.
Rule: At the begining of key processing, bit positions 8 X i of key

block are set to zero where 1 = i S16.

6., Working data

is shown in hexadecimal notation.

6.1 When no parity bits exist in a key block
(1) Eey = 01 23 45 67 89 AB CD EF
(2) Extended value of the key
(Ko, K1, K2, K3, K4, K5, K6, K7) =

DF 3B CA 36 F1 7C 1A EC 45 A5 BS C7 26 EB AD 25
(K8, K9, K10, K11, K12, K13, K14, K15) =

8B 2A EC B7 AC 50 9D 4C 22 CD 47 8B A8 D5 0C B5S
(3) Plaintext = 00 00 00 00 00 00 00 00

(4) Ciphertext= CE EF 2C 86 F2 49 07 52

6.2 When parity bits exist in a key block
(1) Key = 01 23 45 67 89 AB CD EF
(2) Extended value of the key
(KO0, K1, K2, K3, K4, K5, K6, K7T) =

EF 37 FE DD 04 C3 E3 1D F3 22 B3 A0 C7 AA F6 A6
(K8, K9, K1lo, K11, K12, K13, K14, K15) =

6A B2 D3 24 F5 DC 72 76 Al 7A 0C 04 B4 E7 CC 8D
(3) Plaintext = 00 00 00 00 00 00 00 0O

(4) Ciphertext= 6A 72 2D 1C 46 B3 893 36

