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1. INTRODUCTION 

The purposes of this paper are: (1) to  give appropriate definitions of robustly-perfect ciphers, linear ciphers 

and bilinear ciphers: (2)  to  give two general constructions of robustly-perfect bilinear block ciphers that do not 

expand the plaintext and tha t  have the smallest possible amount of secret key; (3) to give some isolated examples 

of robustly-perfect linear s t ream ciphers that  use less key than had been earlier conjectured to  be  necessary; and 

(4) to suggest some possible useful applications for robustly-perfect linear and bilinear ciphers. 

Section 2 introduces the notion of a robustly-perfect block cipher and shows the connection of such ciphers 

to Latin squares. Linear and  bilinear block ciphers are defined in Sections 3 and 4, respectively. Two general 

constructions of non-expanding, key-minimal robustly-perfect bilinear ciphers are also given in Section 4, and some 

as-yet-unanswered questions about such ciphers are raised. Section 5 gives a tentative general definition o f a  linear 

stream cipher, and exhibits some counterexamples to a conjecture by hlassey and Rueppel on the amount of key 

required in such ciphers. Finally, Section 6 suggests some possible practical applications for robustly-perfect linear 

and bilinear ciphers and  points out some further open questions about such ciphers. 

2. KEY-MINIMAL ROBUSTLY-PERFECT BLOCK CIPHERS 

In a deterministic secret-key cipher, the ciphertext Y can be written in terms of the plaintext X and the key 

2 in the manner 

y = f ( X ,  2 )  

where f is a mapping from S, x S; to S, where S, is the set of allowed plaintexts, 5, is the set of allowed keys a n d  

S, is the set of possible ciphertexts. The probability dirtribution Py of .Y is determined by the plaintext sauce, 

but Pz is chosen by the cryptographer. It is always assunied that I and 2 are statistically independent. The 

pair (i, pz) can be called the cipher system. The only essential reqirement on f is that the enciphering must be  

decipherable by one who knows the key, i.e., f ( . c ~ , z )  = f (z2 ,z )  must imply 21 = zz. 

D. Chaum and W.L. Pnce (Eds.): Advances in Cryptology - EUROCRYPT '87, LNCS 304, pp. 237-247, 1988. 
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Until further notice, we shall b e  concerned only with block ciphers, which can be defined as ciphers for which 

S,, S, and S, are all finite sets. 

Shannon [l, p.6791 has defined a cipher system (f, Pz) to  be perfect i fX and Y are statistically independent. 

In this definition, Px is assumed to  be  specifled. It is natural to extend Shannon's definition and to say that the 

cipher system (f,Pz) is robustly perfect if it is perfect for all probability distributions PX on the set S,. 

The Vernarn cipher or "onet ime pad", in which S, = S, = S, = {0,1,2, ..., m-l} .  

Y = f (X ,Z)  = x @z, 

where the addition is modulo m, and PZ is the uniform distribution on {0:1, ..., m-I}, is robustly perfect. This 

follows from the fact that  Py;x(jji) = $ for all i and j, and hence Pylx(jji) = h ( j )  = $ independently of the 

choice of Px. 

Shannon [l, p.6811 has shown that ,  in a perfect cipher system, the number of keys #is,) must be at least as 

great as the number of plaintexts with non-zero probability. Thus, a robustly-perfect cipher system must have 

#(S,) 2 #(S,). We shall say that  a robustly-perfect cipher system is key-minimal if #(S,) = #(S,). A block 

cipher is non-expanding if #(S,) = #(S,). The one-time pad is thus seen to  be a non-expanding key-minimal 

robustly-perfect cipher system. 

Shannon [I, p.6811 has s ta ted a proposition equivalent to the following: 

Proposition 1: A cipher system (f,Pz) with #(S,) = #(S,) = # ( S : )  is robustly-perfect i f a n d  only Z(1)  Pz is 

the uniform distribution on S, and (2) for every 2 and y in S, and S,, respectively, there is a unique L in S, such 

that y = f (z ,  2). 

Shannon observed that  condition (2 )  of the above proposition shows that the essential feature of a non- 

expanding key-minimal robustly-perfect cipher is that, with the rows indexed by the plaintexts and the columns 

indexed by the keys, the array of corresponding ciphertexts forms a Latin square. A Latin square [2] (of size n x n) 

is an n x n array, whose entries a re  drawn from an alphabet of n letters, with the property that  each letter of 

the alphabet appears exactly once in each row and once in each column. The name "Latin square" comes from 

the fact that their first systematic investigator, L. Euler, chose the first R Latin letters as his alphabet, but most 

investigators today use the alphabet {1,2, ..., n}. The following two examples of 7 x 7 Latin squares will be of 

interest in Section 3: 

1 2 3 4 5 6 7  

2 3 4 5 6 7 1  

3 4 5 6 7 1 2  

4 5 6 7 1 2 3  

5 6 7 1 2 3 4  

6 7 1 2 3 4 5  

7 1 2 3 4 5 6  

1 2 3 4 5 6 ;  

4 1 5 6 2 7 3  

5 3 6 2 7 1 4  

6 4 2 7 1 3 5  

7 6 1 3 4 5 2  

2 5 7 1 3 4 6  

3 7 4 5 6 2 1  
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If we take S. = S,, = S, = {I,& ..., 7}, then the second of these Latin squares specifies, for instance, that the 

ciphertext y corresponding to the plaintext z = 3 and the key z = 5 ean be found in the third row and fifth c o l ~ m n  

of this array and is thus y = 7, i.e. f (3 ,5 )  = 7. 

Because Pz must be the d o r m  distribution in a non-expanding, key-minimal, robustly-perfect (NEKMRP) 

cipher system (f,Pz), we can and will speak of the cipher f alone as NEKMRP. It is interesting to  note that if 

the roles of the plaintext t and the key z are interchanged in an NEKMRP cipher, then the new cipher is also 

NEKMRP, follows from the fact that the transpose of a Latin square is another Latin square. But 2 and y 

can also be interchanged in an NEKMRP cipher and the new cipher remains NEKMRP, as follows immediately 

from Proposition 1. Thus there is a complete interchangeability of variables in an NEKMRP cipher y = f (z ,  2) in 

the sense that any one of E. y and z can be taken as the “key” and either of the two remaining quantities can be 

taken as the “plaintext”. This interchangeability is quite obvious for the one-time pad, but rather less SO for the 

NEKMRP ciphers that will be given later. 

3. LINEAR BLOCK CIPHERS 

The notion of a “linear” cipher requires that the plaintext set, S,, and ciphertext set, S,, be vector spaces. 

The notion of a “block” cipher (to which our discussion is still restricted) demands that these same sets be finite. 

Thus, the notion of a “linear block” cipher demands that S, and S, be finite-dimensional vector spaces over a 

finite field. 

Here and hereafter, let F denote an arbitrary finite field and let F“ denote the vector space of n-component 

“column vectors” over F, i.e., vectors of the form y = (q, I??, ..,, u,) where 11; E F for all i. Then a linear cipher 

can be defined as a cipher f such that S, = F“, S, = F“, and, for each 3 E S,, 

for dl ci E F, c2 E F, cl E F“ and z2 E F“. A linear cipher is non-expanding if m = n 

Our interest will be in “robustly-perfect” linear ciphers. Some subtlety is required for an appropriate definition 

of a “robustly-perfect” linear cipher, however, for the reason made clear bp the following fact. 

Proposition 2: Iff is a linear ripher and if the cipher system (f, P z )  is perfect for the plaintext distribution P& 

(where Px(Q)  # 1 is assumed to avoid trivialities), then Px(Q) = 0. 

&f: Because the cipher system is perfect, 

p u ( Q . Q )  = J‘x(Q)&(Q). 

Because the cipher is linear, P ~ I ~ ( Q ! Q )  = 1 and thus 
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Hence it follows that 

Px(Q = Px(Q)%(Q), 

which, because %(Q) # 1, implies that Px(Q)  = 0. 

Remark: When P x ( Q )  = 1,  every cipher is trivially perfect since every y is then statistically independent of X. 
Thus, excluding the case Pz@) = 1 excludes only this triviality. 

Proposition 2 shows the appropriateness of defining a linear cipher to be robustly-perfect if it is a robustly- 

perfect cipher for the restricted plaintext set F'" - {Q}. In any linear cipher, the required decipherability of the 

enciphering transformation y = f(z, z )  for every key z is equivalent to the requirement that 3 = Q implies z = Q. 
Thus, the plaintext restriction to the set F"- {Q} automatically implies a corresponding ciphertext restriction to 

the set F"- {Q}. 

If F = G F ( q ) ,  the finite field of q elements, then there are qm - 1 plaintexts in the restricted plaintext set 

F"-(Q}. A robustly-perfect linear cipher is thus appropriately defined to be key-minimal if also #(S,) = qm - 1. 

It follows that in a non-expanding key-minimal robustly-perfect (NEKMRF') linear cipher, the restricted plaintext 

set, the restricted ciphertext set, and the key set all have cardinality qn - 1. It thus follows from Proposition 

1 that the array of restricted ciphertexts for an NEKMRP cipher. with the rows indexed by the keys and the 

columns indexed by the restricted plaintexts, forms a (2m - 1) x (2" - 1) Latin square and, conversely, that any 

linear cipher for which this array is a Latin square becomes an NEBMRP cipher when the keys are chosen to 

be equiprobable. Because (1) implies that the enciphering transformation - y = f(z, z) of a linear cipher can be 

written as 

y =  M * z  (2 )  

where M ,  is an n x m matrix determined by the key t, and because decipherability implies that M, must have 

rank m, the Latin square characterization of an NEBMRP linear cipher is equivalent to the following matrix 

characterization. 

Proposition 3: The linear cipher - y = M z z ,  where E F" - {Q} and F = G F ( q ) ,  is non-expanding key-minimal 

and robustlv-perfect if and  only if (I)  there are q"' - 1 different keys : and these are chosen to be equiprobable 

and (2) every matrix Mz is a nonsingular m x m matrix and, for each I 5 F"-{Q} and every 2 E Fm-{Q}, there 

is exactly one matrix 'Ifz such that y = M,z. - 

The following example shows that NEKMRP linear ciphers exist. 

Example 1: F = G F ( 2 ) .  m = 2,  SL = {1 ,2 ,3} ,  

For L = (LO), ~tfiz = ( l . O ) ,  .WZz = ( 0 , l )  and M 3 g  = ( 1 , l ) .  For r = (0 ,1) ,  ici,~ = (0 ,1 ) ,  .V2z = (1,l) and 

M3z = ( 1 , O ) .  For z = (1,l). M1g = ( l , l ) ,  A l 2 z  = (1,O) and M3z  = (0.1). Thus, by Proposition 3, this linear 

cipher is NEKibIRP when the keys each have probability 1/3. 

This example is the q = 2, m = 2 special case of the first of two general constructions of NEKMRP linear 

ciphers that will be given in the next section. 
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4. BILINEAR BLOCK CIPHERS 

In order to define a LLbilinear” cipher, we must require that S,, as wen as S, and S,, be a vector space. It 

would seem natural then to  define a “bilinear” cipher as a cipher such that (i) S, = F“‘, S, = F and Sz = Fk, 
(ii) f satisfies (l), i.e., f is a linear cipher, and (iii) for every 2 E F 

for all c1 E F, c2 E F, E Fk  and r ,  E F k .  However, (3) implies that f(c,Q) = Q for all z E Fm so that 

the decipherability condition cannot be satisfied for g = Q. Thus, the key ; must belong to the restricted key set 

Fk - {Q} in order to have a valid cipher; hereafter, we assume this restriction to hold and we then take conditions 

(i), (ii) and (iii) above together with the condition (iv) that the mapping y = f ( z , r )  be invertible for every fixed 

I, I # Q, as our definition of a bilinear cipher. 

Equations (1) and (3) and condition (iv) imply that the enciphering transformation r = f(z, t) of a bilinear 

cipher can be written as 

2 = M z z  (4 )  

where M= is an n x m matrix of rank m when 2 # Q such that 

Mc1g1+c2g, = CiMz, + cz-if:2- ( 5 )  

But ( 5 )  is just the condition that each entry in M L  where r = ( z , ,  z2 ,  ___, z k )  be a linear combination of the key 

components q, L ~ ,  ..., zL. 

Example 2: q = 2, m = n = k = 2, 

defines a bilinear cipher because 

all have rank 2, i.e., are all nonsingular matrices. We see in fact that this bilinear cipher is precisely the NEKMW 

linear cipher of Example 1 with an  obvious mapping between the key space F Z - { Q }  and the key set {1,2,3}. 

For any F = G F ( q )  and any m, an NEKMRP bilinear cipher may be constructed as follows. 

Construction 1: 

(1) Let ( 2 1 . ~ 2 ,  ..., z,) he the initial state of an m-stage q-ary maximal-length (ML) linear feedback shift-register 

(LFSR), i.e., an  LFSR whose output sequence has period q“ - 1 when started in any nonzero initial state. 

( 2 )  Compute symbolically each of the next m- 1 digits L,+~, z,,2, .... zZm-l of the LFSR output sequence as a 

linear combination of the variables zl, 2 2 ,  ..., z,. 
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(3) Choose the i-th column of MI. to  be the column vector (z,, z;+~, ..., where each z, for j > m is written 

as the linear combination determined in  step (2). 

Example 3 The two-stage binary LFSR 

is an MLLFSR such that  z3 = z1 + zz- Thus, Construction 1 uses the sequence (q, z2,23) = ( q r q , z l  f z z )  to 

obtain the matrix 

which is that of the NEKMRP bilinear cipher of Examples 1 and 2. 

Example 4: The three-stage binary LFSR 

is an MLLFSR such tha t  ( z ~ .  z z ,  zg, z4, 2 5 )  = ( L,, 2 2 ,  23, z1 t 23, z1 t i2 + 23). Construction 1 thus gives the bilinear 

ciuher with 

The reader is invited to  check that  with the mapping from the binary vector (q, cz, CQ) to the integer c1 t 2c2 -I- 4c3, 

this bilinear cipher corresponds exactly t o  the second of the two 7 x 7 Latin squares exhibited in Section 2, and 

is thus an NEKMRP cipher when the 7 keys are chosen to be equiprobable. 

That the bilinear cipher produced by Construction 1 is indeed NEKSlRP (when the qm - 1 keys are equally 

likely) can be seen as  follows. In  one period of the output sequence of an rn-stage q-ary MLLFSR, the state of 

the shift-register takes on  each of the  qm - 1 possible non-0 values exactly once. But the columns of h1,, by 

construction, consist of m consecutive states of the MLLFSR. For any &xed g # Q, by the well-known shift-and- 

add property of ML sequences, cf. [3, Theorem 4.31, MLr is a state a t  a h e d  number of shifts later on the same 

MLLFSR state sequence as  t h e  s ta te  ( z l ,  2 2 ,  ..., zm) corresponding to  the fust column of MI.  Thus, as r runs over 

all values in F"-{Q} ,  so &o does M,r. Thus, for each 2 # Q and every g # Q, there is exactly one choice for 
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r = ( 1 1 . ~ 2 ,  ..., 2,) such that y - = Mgg. That this bilinear cipher is thus NEKMRP now follows from Proposition 

3. 

Because the finite field GF(q") can be  considered as a vector space of dimension rn with respect to the "scalar" 

field F = GF(q)  [4, p.541, the elements of GF(q") can be represented as vectors in F" in the manner that if 

and PZ in GF(2m) are represented by gl and yz, respectively, in F", then p1 t p2 is represented by v, t EZ. 

If Q is an element of GF(qm)  whose minimal polynomial over G F ( q )  has degree m, then a commonly used such 

representation of GF(q") takes the representation of the so-called "canonical basis" l ,a ,  a*, ..., om-' in GF(q") 

tobethe"unitvectors"(1,0,0 ...., 0), (0,1,0 ,..., O), ._. , (O,O,O ,..., 1). 

Example 5: Let Q beanElement ofGF(2')  whoseminimalpolynomialoverGF(2)isXZi-Xtl,i.e.,aZ+at1 = 0 

and thus a* = a -t 1. Representing 1 and a by ( 1 , O )  and (0, l), respectively, the multiplication rule for GF(2') is 

readily checked to be 

which can be written more suggestively as  

For any F = GF(q)  and any rn, an NEKMRP bilinear cipher may be constructed as follows. 

ction 2: 

(1) Take z = ( + I ,  E Z .  ..., E,.,,), y = (yl, yz ,..., ym) and 4 = ( q , z 2 ,  ..., :,,,) to be the representations of non-zero 

elements 2,  y and I, respectively, of GF( q"') as described above. 

(2)  Take the ciphering rule - y = f(z,z) to  correspond to the GF(q")  equation 

y = EL.  

Example 6: Taking F = GF(2),  m = 2, and using the representation of Example 5 ,  Construction 2 gives the 

bilinear cipher 

which we now recognize to be (accidentially) the NEKMRP cipher of Example 4. 

That Construction 2 always gives an NEKMRP bilinear cipher can be seen as follows. Eom (6) and the fact 

that 

( 2 1  t Z I T ) =  = 21: t Z I I Z  

and 

X ( Z 1  + III) = I ; ]  t X Z I I ,  

it follows that the cipher is indeed bilinear. For each t E GF(q")-{Q} and every y E GF(q")- {Q} ,  there is a 

unique Z E GF(q")-{Q} such that ( 6 )  is satisfied. It thus follows from Proposition 3 that the cipher is NEKMW. 
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If one t d e s  F = GF(2) ,  m = 3, and uses the mapping from G F (  23) - (0) to {1,2,3,4,5,6,7} such that ai is 

mapped to i + 1 where a is a primitive element of GF(23), then the bilinear cipher (6) corresponds to the f i s t  of 

the two Latin squares exhibited in Section 3. 

Construction 2 can be generalized somewhat as follows. Let A, B and C be nonsingular m x m matrices over 

GF(q) ,  let 5, i and i be the elements of GF(q”) represented by Az, Eg and CE, respectively, and replace equation 

(6) by 

(7) 
~ .. 
y = E Z .  

It is easily seen that this new cipher is again NEKMRP and, in fact, corresponds just to a change in basis for the 

representations of GF(q”) used for z, g and 1. We s h d  call any bllinear cipher constructed in this manner a 

multiplication cipher. 

Some questions that as vet we have not been able to answer are: (1) Is an NEKMRP bilinear cipher obtained 

from Construction 1 always a multiplication cipher? (2) Is every NEKMRP bilinear cipher a multiplication cipher? 

(3) With an appropriate representation of the set of keys, is every NEKSlRP linear cipher a bilinear cipher? 

5. LINEAR AND BILINEAR STREAM CIPHERS 

In this section we will be  concerned with stream ciphers, which can be defined as ciphers for which S, and s, 
(and also generally S,) are infinite sets. We shall take S,, S, and SL to be F”, the vector space of all one-sided 

infinite sequences 6 = (vo,ulrw2, ...) with v, E F = G F ( q ) .  We define a non-expanding additive stream cipher to 

be a cipher such that the ciphertext sequence = (Yo,Yl,Y*, ...) is determined as 

y , = x , + w , ,  i20 (8) 

where F%’ = (WO, W,, W,, ...) is the running key sequence and where we allow W, to depend both on the secret key 

d (as is customary) and on the plaintext digits X, with j < i (as is not customary but is required for interesting 

definitions of “linear” and “bilinear” stream ciphers). Equation (8) ensures the decipherability of the cipher since 

x, = y,  - u; 

and W, can be found with knowledge of the secret key d and the previously deciphered plaintext digits. For 

later convenience, we take the plaintext sequence X to be X = ( X - u  ...., X - ~ , X O , X I  ,... ), where X - M  ,... ,X-I 
are “dummy plaintext digits- known in advance at  the receiving site, and we take the secret key to be 2 = 

(2-L, ..., Z-I,ZO, 21, ...). The parameters M and L will soon be specified. 

We shall say that a non-expanding additive stream cipher has plaintext-memory M and key-rate r ,  where f is 

a nonnegative real number, if each digit of the running-key sequence can be written as 

wt = g * ( x t - l , . . . , x t - M ,  zi.,l,z[7,1-1,..-. 2 - M ) ,  (9) 

where 1.1 denotes the smallest integer equal to or greater than the enclosed number. We shall further say that 

such a cipher is linear if, when d is fixed, each function g ,  is linear in its plaintext variables, and to be bilinear if 

it is linear and, when ,f is fixed, each function g z  is also linear in its key variables. 
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A non-expanding additive stream cipher is robustly-perfect if, for any choice of statistics for the plaintext 

sequence 8, the running-key sequence ti/ is statistically independent of the plaintext sequence x, and k is a 

sequence of statistically independent uniformly-distributed (i.u.d) random variables. 

Because (9) implies tha t  W; = 0 when X,-1 = ... = X t - ~  = 0 and the cipher is Linear, it  follows that  

a linear additive stream cipher with plaintext memory M cannot be robustly-perfect unless we enforce the 

plaintext M-restriction that  no M consecutive digits in X can all be zeros. We shall later consider a somewhat 

more severe plaintext restriction. 

By an easy argument based on the entropies of the W and Z sequences, one sees that if the cipher (9) is 

robustly-perfect then the  key-rate r is a t  least 1; we shall say the cipher is keyminimal if r = 1. Massey and 

Rueppel [5] have constructed linear ciphers of the form ( 9 )  that are robustly-perfect for the plaintext M-restriction 

and have key rate r = 2. Their ciphers are given by 

W, = X1-1Z2*-1 t x*-222,-2 t . . .A X,-,MZZ,-.M (10) 

where 2 is i.u.d.; we see &om (10) tha t  this Massey-Rueppel robustly-perfect additive stream cipher is in fact 

bilinear. Massey and Rueppel 151 also conjectured that no robustly-perfect linear cipher (9) exists (for the plaintext 

M-restriction) with 7 < 2 for a n y  M 2 2, (which implies that key-minimal robustly-perfect ciphers of this type 

do not exist). We will show this conjecture to  be false by exhibiting key-minimal (i.e., r = l), robustly-perfect 

for the plaintext M-restriction, additive bilinear stream ciphers for M = 2 and M = 3, namely, the binary [i.e., 

F=GF(P)] ciphers 

w, = Xz-l(Z*-1 t Z Z 4 )  t X,-2(Zr-2 f Z , - 3 )  

w, = x,-iz,-i + x,-zZ,-3 -f x,-3(Z1-2 t z1-3) 

(11) 

(12) 

and 

when d is i.u.d.. To show that  these ciphers are robustly-perfect we require two additional facts, the first of which 

should be quite obvious. 

Proposition 4: A bilinear additive stream cipher satisfying (9) is robustly-perfect for a specified plaintext restriction 

if and only it for every admissible plaintext sequence 2 .  an i.u.d. key sequence .L? produces an i.u.d. running-key 

sequence *. 
Because in a bilinear additive stream cipher satisfying (9) ,  given that = 3, we can write for every i 1 0 

(U.6, Wl, ..., W 2 )  = M,t(Z-L,Z-L-l .  .... Zrr,l) (13) 

where M,, is an ( i +  1) Y ( L  i [rzl + 1) matrix whose components are each a linear combination of the digits 

r-nf,r-,w+,, . . . ,r ,- l ,  it  follows that  Proposition 4 is equivalent to the following proposition. 

Proposition 5: A bilinear additive stream cipher satiscving ( 9 )  is robustly-perfect for a specifiedplaintext restriction 

if and only i t  for every i 2 0 and  for every adiiiissible plaintext sequenre i., the matrix MLZ of (13 )  bas linearly 

independent rows. 

This equivalence follows from the facts that  if the t + 1 rows of M,* are linearly dependent then the column 

space of caxnot take on all q z + I  possible values; and has dimension less than i + l  and hence (Wo, W,, .... 
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conversely, if the i+l rows are linearly independent then (Wo, Wl, ..., W;) takes on all q'+' value5 and, by linearity, 

the same number of keys produce each possible value so that the random variables W,, Wl, ..., W; are i.u.d. when 

Z - L , Z - Z + ~ ,  ..., Zr.;l are i.u.d.. 

For the binary bilinear ciphers of (11) and (12) ,  

and 

respectively. The M-restriction on E in both cases is equivalent to the condition that the matrix M;, has no 

all-zero rows. By a straightforward but somewhat tedious induction, one shows that the matrices in (14) and (15) 

do indeed have linearly independent rows when the plaintext M-restriction is satisfied, which by Proposition 5 

proves the claim that these binary bilinear additive stream ciphers are key-minimal robustly-perfect. 

It is quite easy, as we now show, to construct key-minimal robustly-perfect bilinear addjtive stream ci- 

phers if one relaxes the plaintext M-restriction somewhat. Choose a positive integer m and define X, = 

(Xjm,XJm+i,...,X,m+m-i) to be an m digit segment of 1. Define z,? W', and r, in a similar fashion. NOW 

consider the bilinear additive stream cipher such that 

where M z  is the matrix of a BEKMRP bilinear block cipher as discussed in Section 4. This cipher has plaintext- 

memory M = 2m - 1 as follows from the fact that Yjm+m-l, the "newest" digit in rJ, depends on XI,,,-,,,, the 

"oldest" digit in We now claim that, for the "strong plaintext restriction" that f contains no run of rn 

consecutive zeroes (and hence that .Y, # 0 for all j ) ,  this bilinear additive cipher is key-ininimal robustly-perfect. 

To prove this claim, we suppose that X = 2 where 2 is some admissible plaintext sequence. We recall from 

Proposition 3 that then Z,-l # Q in (17)  implies lVJ # 0. But zj- l  = 0 implies by bilinearity that Mg>-, is the 

zero matrix and hence that EJ = 0. Thus because 2 is i.u.d., w, equals with probability q-"' independent 

of the value of Wo,Kl, . . . ,Ej- l .  Proposition 3 further implies that !V, equals all 9"-1 non-zero values with 

equal prohability, which must also be q - m ,  independent of the values of &,lVl,...,LVj-l. It now follows from 

Proposition 4 that this b h e a r  additive stream cipher is robustly-perfect and, since the key-rate r = 1, it is also 

key-minimal. 
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6. POSSIBLE APPLICATIOXS AND SOME REMARKS 

AS any experienced cryptographer is aware, ‘%nearityn in a cipher is generally one of the greatest assists to 

the enemy cryptanalyst who attacks it. Thus, we would not seriously propose using directly any of the linear 

or bilinear ciphers developed in this paper for any practical application where generally only a s m a l l  amount of 

secret key (compared to the amount of plaintext) can be tolerated. The real point of this work is the fact that 

a robustly-perfect linear or bilinear cipher provides a mechanism by which one sequence ( the “key”) effectively 

randomizes another sequence (the “plaintext”). Indeed, Massey and Rueppel j5] used their robustly-perfect bilinear 

additive stream cipher (10) as a mechanism to combine two LFSR sequences to produce a cryptographically strong 

running-key sequence. The key-minimal robustly-perfect bilinear additive stream ciphers constructed in Section 5 

should be even better sequence combiners. The key-minimal robustly-perfect bilinear block ciphers constructed in 

Section 4 might make excellent component ciphers, when interleaved with nonlinear transpositions, in a product 

cipher. 

It is still a very open question whether, for any t < 2, one can for every ill construct a plaintext-memory 

1cf bilinear (or just linear) additive stream cipher that is robustly-perfect for the plaintext M-restriction and has 

key-rate at least T .  Although, we have not yet succeeded for any 1l.i > 3. our intuition now is that r = 1 is possible 

for every M .  The possibly great potential of such t = 1 ciphers as sequence combiners suggests that this open 

question deserves some serious attention. It is also far from clear that our definitions of “linear” and “bilinear” 

additive stream ciphers are the most appropriate ones, and some attention should be paid to alternative definitions 

that might be still more natural. 
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