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(Extended Abstract)

Abstract
We consider the communication complexity of secure multiparty computa-

tions by networks of processors each with unlimited computing power. Say
that an n-party protocol for a function of m bits is efficient if it uses a constant
number of rounds of communication and a total number of message bits that is
polynomial in max(m, n). We show that any function has an efficient protocol
that achieves (rclog n)/m resilience. Ours is the first secure multiparty protocol
in which the communication complexity is independent of the computational
complexity of the function being computed.

We also consider the communication complexity of zero-knowledge proofs
of properties of committed bits. We show that every function / of m bits has
an efficient notarized envelope scheme; that is, there is a protocol in which a
computationally unlimited prover commits a sequence of bits x to a computa-
tionally unlimited verifier and then proves in perfect zero-knowledge (without
decommitting x) that f(x) = 1, using a constant number of rounds and poly(m)
message bits. Ours is the first notarized envelope scheme in which the commu-
nication complexity is independent of the computational complexity of / .

Finally, we establish a new upper bound on the number of oracles needed
in instance-hiding schemes for arbitrary functions. These schemes allow a com-
putationally limited querier to capitalize on the superior power of one or more
computationally unlimited oracles in order to obtain f(x) without revealing its
private input x to any one of the oracles. We show that every function of m
bits has an (m/logm)-oracle instance-hiding scheme.

The central technique used in all of these results is locally random reducibil-
ity, which was used for the first time in [7] and is formally defined for the first
time here. In addition to the applications that we present, locally random re-
ducibility has been applied to interactive proof systems, program checking, and
program testing.
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1 Introduction 

h resilient, ,multiparty protocol allows a network of processors to compute a function 
of the processors’ private inputs in such a way that each processor learns the result, no 
processor learns anything about another’s private input (except what is implied by the 
result and its own private input). .>nd the protocol works even if some proper subset 
of the processors behave in an a,ditrary faulty manner. For example, a t-resilient 
protocol for majority-voting al!on.s all x;otcrs t,o learn who won, while preventing any 
coalition of t or fewer anarchists from learning the vote of an honest participant or 
disrupting the election. 

In this paper, we make no assumptions about the computing power of the individ- 
ual processors in our network. Because no such assumptions are made, all proofs of 
the security properties of protocols must, be argued on information-theoretic grounds. 
N o  complexity-theoretic hypothrw.;. ~ i i c h  as the existence of one-way functions, are 
relevant. 

Let n be the number of processors and m he the total number of input bits to  the 
function being computed. We focus on three criteria for evaluating a protocol: 

0 The resilience t (m ,  71) is the maximum number of faulty processors that can be 
tolerated. 

The round complexity p ( m ,  17.) is the maximumnumber of communication rounds 
in an execution of the protocol. 

The bit complexity b(m.n) is the maximum total number of message bits sent 
by all of the processors during an execution. 

Theorem: For any positive constant c .  every function of m bits has an n-party 
protocol that  achieves (cn log n ) / m  resilience, constant round complexity, and bit 
complexity that is polynomial in max(rn, n). 

That is, even functions whose circuit complexity is exponential have resilient mul- 
tiparty protocols whose communication complexity is polynomial. 

Our actual result gives a more general tradeoff and is stated precisely in Section 
5.3  below. 

In a resilient multiparty protocol, the processors are equally powerful, and they 
must cooperate in a computation because none of them alone has all of the necessary 
data. An alternative view of distributed computations with private data is considered 
in [l, 71. There one processor? who has all of the data, must cooperate with other 
processors becmse it lacks the power to carry out the computation. More specifically, 
a p-oracle instance-hiding scheme for a function f is a protocol in which a polynomial- 
time bounded querier consults p computationally-unlimited oracles in such a way that 
the querier learns the value f ( x ) ,  but none of the oracles learns the input z. Beaver 
and Feigenbaum [7] show that,  for every positive constant c, every function of rn bits 
has an (rn - clog m)-oracle instance-hiding scheme. In this paper, we improve this 
general upper bound. 
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Theorem: For every positive constant c, every function of m bits has an (rnlclog m)- 
oracle instance-hiding scheme. 

Zero-knowledge proof systems, as originally formulated in [25],  are two-party pro- 
tocols in which the parties have a common input x, and one party (the prover) con- 
vinces the other (the verifier) that ,  say, f ( z )  = 1, without revealing a proof. Notarized 
envelope schemes allow the prover to publish a commitment to its private input 2 and 
then prove in zero-knowledge to the verifier that f ( x )  = i without dtxornmitting X. 
Many of the cost criteria that apply to resilient multiparty protocols aiso apply to no- 
tarized envelope schemes. In this paper, we are most interested in the communcation 
costs of a scheme - that is, its round complexity and its bit complexit!-. 

We examine notarized envelope schemes in the ideal enaelope mode[: t.hat is, both 
prover and verifier have unlimited computational power. no  r r ~ ~ p t o ~ r a p h i c  assump- 
tions are made, and bit commitment is assumed as a prirni'ix-e. .4ny primitive that 
implements bit commitment in this model is called an enc&opc , > ? t i t  mf..  A natural 
question to ask is whether notarized envelope schemes exist in thi. model; that is, 
can notarized envelopes be built out of ordinary envelopes? This ( i~cs t ion  was an- 
swered in the affirmative by numerous authors (e.g., [lo: 321); a written account of 
one scheme appears in (111. 

All previously published notarized envelope schemes have the iollowing feature in 
common: They have bit complexity proportional to  the circnit Complexity of f .  Here, 
we achieve a more communication-efficient construction of general riotarized envelope 
schemes. 

Theorem: In the ideal envelope model, every function has a notarized envelope 
scheme that has constant round complexity and bit complexity polynomial in the 
number of input bits. 

The results given here first appeared in our Technical Memorandum [a]. In this 
abstract, some details of proof are omitted, because of space limitations; many of 
these details can be found in [6], and all will appear in our final paper. 

The rest of this abstract is organized as follows. Section 2 contains a brief account 
of previous work on secure, distributed computation, with emphasis on the results that 
do not involve complexity-theoretic hypotheses. Notation and terminology is given 
in Section 3, and several necessary building blocks are recalled from the literature. 
Section 4 gives a precise definition of locally random reducibility and recalls the 
reduction given in [7]. We present our main results in Section 5; the multiparty 
protocol result is given last, because it relies upon the other two. 

2 Previous Work on Secure Distributed Compu- 
tat ion 

Secure distributed computation was introduced by Yao [35]. His proofs of the se- 
curity properties of protocols are based on complexity-theoretic hypotheses such as 
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the existence of one-way functions. Further work along these lines can be found in 
[9, 18, 23, 24, 361. 

Previous results on secure distributed computation without complexity-theoretic 
hypotheses can be summarized as follows. 

a The approach was first taken by Ben-Or, Goldwasser, Wigderson [13] and 
Chaum, Cripeau, Damggrd [17]. Their n-party protocols for secure evalua- 
tion of a function f of m bits are based on distributed simulation of a circuit 
Cf for f .  Their protocols achieve ( n  - 1)/3-resilience, round complexity pro- 
portional to the depth of Cf, and bit complexity proportional to the size of 
Cf. 

a T. Rabin, Ben-Or [31] and Beaver [4] give protocols that achieve (n - 1)/2- 
resilience but have the same round complexity and the same bit complexity as 
those in [13, 171. 

a The protocol of Bar-Ilan, Beaver [3] achieves (n- 1)/2-resilience, constant round 
complexity, and bit complexity proportional to the size of Cf, if the depth of 
Cf is O(1ogrn). 

a Chaum [16] gives an interesting protocol that can be proven (n - 1)/2-resilient 
without complexity-theoretic hypotheses and (n - 1)-resilient with complexity- 
theoretic hypotheses. 

Throughout this paper, we use the term “secure protocol” to mean a protocol that 
is “resilient” against arbitrarily (i.e,, potentially malicious) faulty players. There 
is also a literature on a weaker notion of security - “privacy” against “honest but 
curious” players; refer to [5 ,  19, 271 for details. 

3 Preliminaries 
We use f to denote a function with domain (0, 1)”’. The range of f is contained in 
Krn>,, - a finite field that is large enough but still of size polynomial in max(m,n). 
The meaning of “large enough” will vary but will be clear from context. The field 
K,,,,,, will always be constructible in time polynomial in max(m, n). The constants 
al, az,. . . are distinct elements of Km,n \ (0). 

Consider g, the “arithmetization” of f  over K,,,+. For A = (al,, . . ,a,,,) E (0, l)“‘, 
let 

m 

6A(Xl,...,Xm) = n(xj - q ) ( - l ) G e  Km,+[X1, ..., xm]. 
j=1 

Then, for any 2 = (21,. . , ,zm) E (0, l}”’, ~ A ( x )  is 1 if A = z and it is 0 otherwise. 
Next, let 
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The multivariate polynomial g has the property that it agrees with f on all inputs in 
{0,1)”. 

For example, if f is the boolean function 

where @ denotes exclusive-or, the arithmetization is 

g (XI, xz , X3) = XI ( 1  - X2) ( 1 -X3) + ( 1  -X1)X2 ( 1  -X3) + ( 1 -X1) ( 1 -X2)X3 +Xl xzx3. 
Our model of computation is a synchronous network of computationally unlimited 

processors, PI, . . ., P,,, completely connected by private channels and a broadcast 
channel, acted upon by a dynamic adversary. In one round of the protocol, each 
processor can receive a message from each other processor, perform an unlimited 
amount of local computation, and send a message to each other processor. Each 
processor P, has a private input z, and a private random source. The correct outcome 
of the protocol is, roughly, that each P; receives the functional value while no P, 
receives any information about zj, j # i, except what is implied by the functional 
value and z;. Furthermore, the malicious players’ inputs do not depend on the honest 
players’ inputs. The protocol is t-resilient if the correct outcome occurs even if as 
many as t of the processors exhibit arbitrarily faulty behavior. 

The vector (q, . , . , z,,) of inputs contains a total of m bits, which we denote by 
z1, . . ., 5,. Thus the desired functional value is f(z1,. . . , zm). 

An envelope scheme is a protocol in which two computationally-unlimited proces- 
sors achieve information-theoretically secure bat commitment. That is, committer Pl 
can compute and send to the receiver Pz a sequence of commitments, say c1, . . ., h, 
to a sequence of bits b l ,  . . ., b,. The sequence c1, . . ., c, conveys no information (in 
the Shannon sense) to the receiver about the sequence bl, . . ., b, (except its length). 
At  any time after the commitment takes place, Pz may challenge PI to decommit any 
c,. The envelope scheme must have the properties that PI can always prove that c; 
is a commitment to b; and that Pi can never prove that q is a commitment to 1 - bi. 

Notice that, by definition, the security of an envelope scheme is two-sided: Pz cannot 
find out any information about b, unless PI decommits, and PI cannot ‘change its 
mind” about what it has committed. 

In Section 5.2 below, we present a result in the ideal envelope model, as opposed to 
the cryptographic model. That is, we assume that committer and receiver both have 
unlimited computational power and that an envelope scheme is given as a primitive. 

A notarized envelope scheme is a protocol in which a prover commits to a se- 
quence of bits 2 1 ,  . . ., x,,,, and then gives a zero-knowledge proof to a verifier that 
f ( z1 , .  . . ,xm) = 1, without revealing any information about 51, . . ., 2,. Since the 
verifier has unlimited computational power in the ideal envelope model, a natural 
question to ask is why it cannot simply compute f(s1,. . . , sm) without the help of 
the prover. The answer, of course, is that the verifier does not have r l ,  . . ., x,; rather 
it has the prover’s commitments to X I ,  . . ., 2,. 

The round complexity of a notarized envelope scheme or n-party protocol for a 
function f of m bits is the (worst-case) total number of rounds in an execution, as 
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a function of n and m. Similarly, the bit complexity is the sum, over all i ,  of the 
sum of the lengths of all messages sent by P; in a (worst-case) execution. We use the 
following results in our constructions in Section 5 .  

Theorem 3.1 ([lo, 11, 321) Iff is computable b y  a (possibly nondeteministic) 
boolean or arithmetic circuit of polynomial site, then it has a notarized envelope 
scheme with constant round complexity and bit complexity polynomial an the length of 
the input. 

Theorem 3.2 ([3]) Iff is computable b y  a boolean or arithmetic circuit of depth 
logm and size p o l y ( m ) ,  then f has an  ((2 - 1)/2)-resilient, n-party protocol with 
constant round compiexity and bit compiezity poly(max(rn, n ) ) .  

In Section 5, we refer to the constant-round, polynomial-bit notarized envelope 
schemes of [ l o ,  11, 321 for functions with poly-size circuits as the standard notarized 
envelope schemes. 

A p(m)-oracle instance-hiding scheme for f is a p(m)-round synchronous pro- 
tocol executed by a polynomial-time Turing Machine Po (the querier) and p(m) 
computationally-unlimited oracle Turing Machines PI, . . ., P9 (the oracles). Querier 
Po has a private input 2 E ( 0 ,  l } m  as well as a private source of randomness. For 
each oracle P;, there is a private channel connecting Po to Pi. There are no commu- 
nication channels at all between pairs of distinct oracles. This model is analogous in 
one sense to the multiprover model of interactive proofs systems (see [2, 12, 221): The 
oracles (like the provers) can “meet to agree on a strategy” before the execution of 
the instance-hiding scheme begins, but they cannot collude during the execution of 
the scheme, and no oracle sees the communication between the querier and the other 
oracles. During one round of the scheme, Po can receive a message from each oracle, 
perform a randomized polynomial-time local computation, and send a message to 
each oracle. Also in one round, each oracle can receive a message from Po, perform 
an unlimited amount of local computation, and send a message to Po. In round p(m),  
PO uses the transcript of the execution to compute f(2). For 1 5 i 5 p(m),  the 
sequence of messages sent by Po to P, is independent of 2, given m.* Intuitively, PO 
uses the oracles to compute f(x) without telling any one of them what x is. 

4 Locally Random Reductions 
Intuitively, a locally random reduction from a function f to a function g is a random- 
ized polynomial-time mapping that takes an arbitrary instance 2 of f to a set {yl, 
. . ., yp} of random instances of g in such a way that f (x)  is easily computable from 
g(yl), . . ., g(y,). A function f is random self-reducible if there is a locally random 
reduction from f to itself. We now define this concept more formally. 

‘There is actually no need to restrict attention to instancehiding schemes that “leak at  most n.” 
Refer to [7, Section 21 for a detailed description of the general model. 
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Definition 4.1 A function f is (t(m), p(m))-locally random reducible to a func- 
tion g if there are polynomial-time computable functions 4, u1, . . ., and a 
polynomially-bounded function w(m)  with the following properties. 

0 For all m, all 2 E ( 0 ,  l}", and at least 3/4 of all r E (0, l}w(m), 

f ( x )  = #(z,r ,g(ul(z,r)) ,  .. . ,g(vp(rn)(X>r)))* 

0 If r is chosen uniformly from {0,1}"("), then, for any pair xl,  2 2  of distinct el- 
ements of {0 ,  l}"' and all {il, . . . , it(,)} c (1 , .  . . , p(m)},  the random variables 
(cii(zl, r ) ,  . . ., uiC(,,,)(q, r)) and ( o i l ( ~ z , r ) ,  . . ., ~ i ~ { ~ ) ( z ~ , r ) )  are identically dis- 
tributed. 

More succinctly, we say that f is ( t ,  p ) - h  to 9 .  

Informally, if T is a subset of the target instances (y1 = UI(Z,T), . . . ,yp(m) - - 

o,,(~)(z, r ) } ,  and IT1 5 t(m),  then T leaks no information about the original instance 
z, except its length rn. 

As in the definition of BPP, the fraction 3/4 can be replaced by 1/2+l/poly(m).  In 
theresults wepresent below, theequation f(x)  = #(~ , r , g (o l (x , r ) ) , .  . .,g(uM(,,,)(x,r))) 
can be made to hold for all r ,  by appropriate choice of the field Km,n. 

Note that a (l,,u)-lrr from f to g can be thought of as a one-round, p-oracle 
instance-hiding scheme for f. The querier Po chooses r ,  computes the target instances 
yi = o;(z,r), for 1 5 i 5 p, and sends each y; to a separate g-oracle Pi. Pi then sends 
back g(yi), for 1 5 i 5 p, and Po computes f(z) using 4, z, r ,  and the values {g(yi)}. 

The following special case of Definition 4.1 is important: f is (1 ,~ ) - l r r  to g, and 
each of the random instances ui(z,r) is distributed uniformly over all g-instances of 
the appropriate length (although, as usual, pairs of instances ui(z,  r )  and uj(x, r )  are 
dependent). In this case, the average-case complexity of g gives an upper bound (up 
to  polynomial factors) on the worst-case complexity of f .  This property of locally 
random reductions is used to prove that the permanent function is as hard on average 
as it is in the worst case (cf. [ZS]) and to show that, for every (finite) function f ,  there 
is a polynomial g such that g is as hard on average as f is in the worst case (cf. [7]). 

More precisely, it is shown in [7] that every function f of m inputs bits is (1 ,  m+l)- 
lrr to a polynomial g. We repeat this construction here and improve upon it in Section 
5.1 below. 

Let z = (11,. . . ,zm) be an element of (0, l}m. Choose rn coefficients cl, . . ., c, 
independently and uniformly from Km,,, . The univariate polynomial 

G ( Z )  = g ( ~ z + ~ ~ , . . . , k z  t zm) 

is of degree m and has the property that 

G(0) = g(X1, * , z m )  = f(z1, * .  ., z m ) .  

For 1 5 i 5 rn + 1, the function u; of the locally random reduction maps 5 to 
yt = ( c ~ a ;  + 51,. . . , c,,,ai + zm). The function 4 recovers f (x )  by interpolating the 



69 

pairs ( c q , g ( y l ) ) ,  . . ., ( a m + t , g ( y m + , ) ) ;  these m+l points determinea unique degree-m 
polynomial in K,,,,,[Z] - namely G(Z),  which has constact term f ( x ) .  Finally, each 
y; is distributed uniformly over K,“,, and hence leaks no information about x .  

All of the results we present in Section j use locally random reductions in an 
essential way. This notion of reducibility has also been applied to interactive proof 
systems (cf. [2, 29, 34]), and to program checking, testing, and self correcting (cf. [14, 
15, 281). An extensive treatment of the complexity-theoretic aspects of random self- 
reducibility can be found in [20, 211. 

5 Results 

5.1 Instance-Hiding Schemes 
Theorem 5.1 For every function f and every polynomial t (m) ,  there is a polynomial 
h such that f is ( t (m) ,  1 + t (m)m/ 1ogm)-lrr to h.  

Proof (sketch): Clearly, it suffices to prove the following two lemmas. 

Lemma 5.1 Every function f is polynomial-time, many-one reducible to a multi- 
variate polynomial h over K,,,,,, of degree m/ log m.  

Lemma 5.2 For every polynomial t (m) ,  every multivariate polynomid h over Km,n 

is ( t ,  1 + dt)-locally random self-reducible, where d is the degree of h .  

Let f be a function that maps (0, l}” to Assume without loss of generality 
that logm divides rn; if it does not, then x can be “padded” with dummy input 
bits. Divide the input bits 21,. . . , rm into consecutive “blocks” of length log rn. For 
example, if m = 4, then the first block is { 2 1 , 2 2 }  and the second is (23, zq}. 

Proof of L e m m a  5.1: The crux of this construction is a change of variables that 
allows us to use a degree-(m/ log m) polynomial h in m2/ log m variables in place of 
the degree-m polynomial g in m variables that was used in Section 4. 

Let { ~ j } ~ = ~ ~ - ~ ) ~ ~ ~ ~ + ~ ,  for each 1 5 k 5 m/logrn, be a block of input bits, and 
let { X ; } ~ ~ ~ l l  be the corresponding block of indeterminates over K,,,, that 
are used to define the arithmetization g of f .  For each subset 5’ of the indices 
{ ( k  - I )  log m + 1 , .  . . , k log m}, let the variable WS represent the monomial IIjEsX;. 
There are rn/ log m blocks, and hence a total of rn2/ log m variables Wl, . . ., Wmz/logm. 

Each monomial in g can be represented as a monomial in m/ log rn of the W’s. Let 
h(W1,,. . , Wmz/logm) be the degree-(rn/ log rn)  polynomial that results from summing 
these representations of all of the monomials in 9 .  

Proof of L e m m a  5.2: Let h(W1,. . . , W8) be a degree-d polynomial over Km,,,, and 
let w = (q, . . . , w,) be an element of K;,,. We show how to reduce w to a collection 
of 1 + dt  elements of K;,, with an appropriate distribution. For each 1 5 I 5 S, 

choose t elements C ~ J ,  . . ., cl,t of K,,,,,, independently and uniformly at random, and 
let q(2) = q t Z t  + I . . + C ~ J Z  + W I .  Then the univariate polynomial 

k log m 

I 
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is of degree at most t (m)  - d and has the property that 

H ( 0 )  = h(w1,.  . . , wS) .  

For 1 5 i 5 1 + td ,  the function CT~(T,  r )  maps z to y ;  = (ql(a,), . . . , q,(a;)). The func- 
tion 4 recovers h ( w )  by interpolating the polynomial H ( 2 )  from the pairs (ai, h(y;)) .  

The second requirement of Definition 4.1 is satisfied for the same reason that 
Shamir’s secret-sharing scheme works (cf. [33]): For every I, t or fewer valucs of the 
random degree-t polynomial q1 reveal no information about its constant term 201. I 

The relationship between the multivariate polynomial g and the univariatc poly- 
nomial G in Section 4 is a special case of the relationship between the polynomials h 
and H that we use here; in that sppcial case, t = 1. I 

Remark 5.1 This can be improved to  a ( t (m) ,  l+t(m)m/clogm)-lrr, for any positive 
constant c ,  b y  increasing the block size to clog m (and the number of wi’s per block 
to m‘). 

Remark 5.2 More generally, one can use block site k, which is not necessarily 
O(1ogm). This will result in a (t(m),  1 + t(rn).  [ m / k 1 ) - h  from f t o  a polynomial h 
of degree [m/kl in 2k. [rn/kl variables, but the reduction will take time 2k .poly(m).  

By taking t (m) = 1, we get the desired result on instance-hiding schemes. 

Corollary 5.1 For every positive constant c, every function has an (rnlclog rn)-or- 
acle instance-hiding scheme. 

5.2 Notarized Envelope Schemes 
In this section, we show how to build a notarized envelope scheme with low commu- 
nication complexity, starting with an ordinary envelope scheme. The notation f and 
g is as in Section 3. 

Let P and V denote the prover and verifier of the notarized envelope scheme, 
In most of the literature on interactive proof systems, V denotes a probabilistic, 
polynomial-time verifier. Therefore, we stress that, in a notarized envelope scheme, 
no limitation is placed of the computational power of V .  

Intuitively, player P in our notarized envelope scheme plays the roles of t h e  querier 
and all of the oracles in the instance-hiding scheme of [7]. Player V then challenges the 
prover to  demonstrate that it played both roles faithfully. In the following protocol, 
the quantifiers (‘for 1 5 i 5 m + 1” and “for 1 5 j 5 m” are implicit in each step in 
which the subscript a or j occurs. 

Notarized Envelope Scheme to show that f(z1,. . . , z,) = 1 

Step 1. P commits to xj. 

Step 2. P selects random cj uniformly at random from Km,n and lets q j ( 2 )  = c j Z  + 
x3. Then P computes ( Y I , , ,  . . . ,ym,i)  = (q1(ai), . . . , qm(ai))  and 2): = g(y l , , ,  . . . , Y ~ , , ) .  
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Step  3. P commits to q j ,  (y1,*, . . . , y m , , ) .  and 2';. 

Step 4. P uses a standard notarized envelope scheme to prove to V that q j ( 0 )  = xj,  
that p 3 ( m ; )  = y j , i ,  and that {(mi, ui)) interpo' +e a degree-m polynomial with constant 
term 1. V rejects (and terminates the protoLa1) if any of these proofs fail. 

Step 5 .  V chooses I;  uniformiy from (1.. . . . m + 1) and sends it to P. 
S t e p  6. P decommits ( y l , k , .  . . ,ym,kj, and U k .  

Step  7. V accepts if and only if g ( y l , k , .  , . .ym,i ; )  = u k .  

Theorem 5.2 T h e  protocol j u s t  gaven zs a notarized envelope scheme  and  h a s  t h e  
following properties.  
( A )  If f ( x 1 , .  . . , x,) = 1 and P IS honesi. [ h e n  V always accepts. 
(B) Iff ( 5 1 , .  . . , I,) .f 1 and  P cheats, t h e n  V' rejects wzth probabdity a t  least l / (m + 
( C )  Repet i t ions can  be performed in parallel. ThzLa the  rejection probability in (B) can  
be amplified while retaining constant  round complexi ty  and  polynomial  bit  complexity.  

1). 

Proof (sketch): The fact that this protocol satisfies the requirements of a notarized 
envelope scheme follows from the fact that qj(a,) is uniformly distributed over A',,,,, 
the properties of the standard notarized envelope schemes, the definition of envelopes, 
and the fact that V has the power to compute g. We first argue that this protocol 
satisfies the necessary security requirements. That is, we claim that no information 
about 2 1 , .  . . ,x, (but for the value of m) is revealed to V. By the properties of 
the standard notarized envelope schemes, the bits revealed during any of these zero- 
knowledge proofs are independent of the values of z l , .  . . , 2,. It also follows from 
a straightforward analysis that these revealed bits are independent of the values of 
y l , k , .  . . , Ym,k for 1 5 k 5 m + 1. By the properties of our locally random reduction, 
we have that Y l , k , .  . . , ym,k is uniformly distributed over K,", and is thus independent 
of 21,. . . , Z m .  Finally, we note that Vk is completely determined by Y l , k , .  . . , ym,k, and 
thus contributes no additional information about xl,. . . ,x,. 

Part (A) follows from the properties of the older notarized envelope schemes, and 
the fact that the prover never makes an untrue assertion. 

To prove (B), observe that, if P cheats: then either one of the assertions that he 
makes in Step 4 is wrong (and thus V will reject with high probability), or at least 
one of the vi's is not equal to g(yl,;, . . . , ym,*) (and thus V will reject with probability 
at least I /(m + 1) in Step 7). 

Part (C )  follows from the parallelizability of the earlier notarized envelope schemes. 
Note that we are working in the ideal envelope model, in which zero-knowledge proofs 
can be run in parallel without losing their zero-knowledge properties. 1 
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5.3 Resilient Multiparty Protocols 
Theorem 5.3 For any positive constant c,  every function f has a ((mlogn)/m)-  
resilient, n-party protocol with constant round complexity and bit complexity polyno- 
mial in max(m, n). 

Proof (sketch): We make use of a ((m log n)/m, n)-lrr from f to a polynomial h 
of degree m fc‘ log n, where d > c. Such a reduction is obtained by taking block size 
c’logn in Remark 5.2. Let s = nc‘m/c‘logn be the number of variables WI in h. 
Recall that player Pi’s input is z;, which is some subset of the bits XI, . . ., 5,. 

We first exhibit a protocol that satisfies the weaker requirement of t-privacy, 
where t = ( (mlogn)/m).  That is, as many as t players may collude to  discover 
others’ inputs, but all players compute and send all required values correctly. We 
then show how to enhance the basic protocol to achieve t-resilience. When we “run 
a subprotocol” to  compute intermediate values, we use the resilient n-party protocol 
of Bar-Ilan and Beaver [3]. 

We say that a player t-secretly shares b when the player selects q ( 2 )  = ctZ‘ + 
. . . + clZ + b by choosing each c, independently and uniformly at  random, and sends 
q(cyi) to Pi, for 1 5 i 5 n. The quantifiers “for 1 5 z,j 5 n” and “for 1 5 I5 s” are 
implicit in each step in which the subscripts i, j, and 1 occur. 

An n-party protocol to compute f(z1, . . . , zm) 
Step 1. P; t-secretly shares each bit of zi. 

Step 2. Run a subprotocol to compute 201 and t-secretly share it. Let (yl,,, . .  . , ys,;) 
denote the shares scnt to  Pi. 

Step 3. P; computes w; = h(yl,;, . . . , yd,;) and t-secretly shares it. 

Step 4. Run a subprotocol to interpolate the polynomial H ( 2 )  from { ( o y , ~ ; ) }  and 
reveal to everyone the constant term, which is f(q,. . . , z,,,). 

Observe first that this basic protocol is correct, is t-private, has constant round 
complexity, and has polynomial bit complexity. Essentially, this follows from the 
properties of Shamir’s secret-sharing scheme and from Theore’m 3.2, because the 
subprotocols of Steps 2 and 4 use poly-size, log-depth circuits: change of variables, 
selection of random polynomials, polynomial evaluation and polynomial interpolation. 

To achieve ( ( n l o g  n)/rn) resilience, we add another subprotocol between Steps 3 
and 4. In this subprotocol, each player Pi proves in zero-knowledge that he has com- 
puted w; correctly. These proofs are accomplished using the notarized envelope scheme 
of Section 5.2 and a (constant-round, polynomial-bits) majority-voting scheme. “En- 
velopes” need not be assumed as a primitive (as they are in the ideal envelope model 
of Section 5.2), because they can be implemented using verifiable secret-sharing (cf. T. 
Rabin [30]). In the resilient version of the protocol, verifiable secret sharing is used 
in all steps in which ordinary secret sharing is used in the private version. 1 
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Remark 5.3 The bound t = (cn log n ) / m  2s needed because h has degree d = m/c‘log n, 
and we need dt < n in order to interpolate the result. That is, even if  the processors 
are ‘%onest but curious, ” our protocol is only ( (cn  log n)/m)-private, because it must 
compute the locally random reduction. Everything except the locally random reduction 
could be made ( n  - 1) /2  resilient. In  general, any t-private, n-party protocol for f 
with constant round complexity and bit complexity polynomial in max(m, n)  can be 
compiled into a t-resilient, n-party protocol for f with constant round complexity and 
bit complexity polynomial in max(m. n 1. 

Correctness proofs for multiparty protocols are both complicated and elusive. 
To our knowledge, no proof of correctness for any general multiparty protocol has 
been widely examined and found to be completely rigorous. Indeed, there is no 
universally accepted standard for what secure multiparty computation should actually 
entail. Furthermore, there are no rigorously proven composition results for these 
protocols. Any rigorous use of these basic protocol constructions must contend with 
these difficulties. 

It is likely that the techniques necessary to prove the results of [3, 13, 17, 311 
cleanly and rigorously will also suffice to analyze our protocol. In the meantime, our 
strategy is to compartmentalize these earlier results so that we can truly treat them 
as black boxes. Toward this end, we will first consider a trusted servant abstraction 
for multiparty protocols. In addition to the n players, of potentially infinite power, 
we include an auxiliary player (the servant) with the following properties. 

1. The servant is guaranteed to behave honestly. 

2. The servant can communicate privately with any of the other players. 

3. The servant can perform polynomial time computations on its private data. 

4. The servant can terminate without revealing any of its private information. 

Our proof can then be divided up as follows. First, and easiest, we restate our protocol 
SO that it uses a trusted servant and prove its correctness in that model. Then we 
reduce the correctness of the trusted servant protocol to the correctness of results 
that have already appeared in the literature. At this point, a rigorous proof of the 
earlier multiparty results will yield a rigorous proof of our result as well. 

6 Open Problems 
The obvious question is whether the bounds achieved here can be improved. Specifi- 
cally: 

1. Is there a better general upper bound than m/ log m oracles for instance-hiding? 

2. Can more than n log n/m resilience be achieved, while retaining constant round 
complexity and polynomial bit complexity? 
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3. If the answer to Question 2 is no for general f, what can be said about functions 
with polynomial-sized circuits? 

4. Because i t  uses the  arithmetization of f, our multiparty protocol incurs a high 
local computation cost, even if f has small circuit complexity. Can this be 
avoided? 
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