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ABSTRACT. A new cyptosystem called REDOC II is introduced. Analysis of a 

miniature (one-round) version of this system is given. 

INTRODUCTION. 

This report discusses the REDOC II cryptosystem developed by Michael C. 

Wood and the one round attack performed on the cryptosystem by Dr. Thomas 
Cusick. 

REDOC II. is a high-speed Shannon confusion diffusion arithmetic 
cryptosystem capable of enciphering 800 kilobits per second on a 20 MHz clock. 
The current implementation involves a lo-round procedure performed on a lo-byte 
(80 bit) data block. 

The REDOC II cryptosystem possesses exceptional cryptographic strength. 
The most direct attack developed to date against a single round requires 
approximately 230 operations for the original REDOC II implementation. This 
attack is discussed in full detail below. 

Recently, design modifications have been made to the REDOC II 

cryptosystem. While these changes do not affect the encryption speed, the work 
factor for a single round attack appears to be greatly increased. Presently, an upper 
bound for the work factor for a single round modified REDOC II stands at 244 
operations. 

AS with the DES, the work factor for REDOC II appears to multiply with 
each successive round. Achieving such an unusually high work factor after one 
round gives strong evidence for extraordinary cryptographic strength to be possessed 
by the complete 10 round system. 
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Figure 3 illustrates how each subsection functions to alter a half block. Each 
subsection consists of five rows and three columns. For encryption, the tables are 
read row by row from top to bottom. The first value in each row specifies the 
position of the byte to  be changed. The second and third values specify the postions 
of the bytes used to transform the byte specified by the first value. Transformation 
is accomplished by replacing the first byte specified by the sum of the three bytes 
(mod 128). The original REDOC I1 cryptosystem only encrypted the first 7 bits of 
each byte. Thus the alphabet space for each byte ranges from 0 to 127. Therefore, 
all addition is performed by modulo 128. 

After the permutation, substitution, and enclave tables are chosen, a key 
must be selected. The original key length for REDOC I1 was 10 bytes. However, 
since only the first seven bits were used, the effective key size was 70 bits. However, 
REDOC I1 can support a key size ranging from 70 to  17,920 bits. Current 
implementations use a 140 bit key. 

INITIALIZATION 

The REDOC I1 cryptosystem must be initialized every time a new key is 
selected. The initialization process consists of the creation of the key table and the 
Mask table. 

In the original REDOC 11, 128 ten byte keys are generated from the installed 
ten byte key [see Sample Table 41. These keys are created from a series of one way 
functions performed on the installed and previously generated keys. Since the 
attack on a one round system does not rely on the key generation methodology, a 
detailed description is omitted from this paper. 

The Mask table consists of 4 ten byte blocks [see Sample Table 51. The 
Masks are generated by exclusive or-ing a large number of values from the key 
table. The first Mask is created from the first thirty-two keys in the key table. 
The second Mask is created from the next thrty-two, and so on. 

The Masks are used to choose which entry in the function and key tables will 
be chosen. The first Mask is used to choose the permutation entry. The second 
Mask chooses the keys from the key table. Mask three selects an enclave entry, and 
Mask four selects a substitution entry. 

Each of the ten bytes for every Mask corresponds to the round of encryption. 
The first byte of each Mask is used during round one. The second byte is used 
during round two. For each round, the corresponding byte is used. 
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After the key table and Mask table are created, encryption and decryption 
can begin. 

REDOC II ENCRYPTION 

Figure 1 contains an overview of the REDOC I1 encryption process. For 
each round, entries from the function and key tables are determined by the values Of 

at least one byte in the internal ciphertext and one byte from the Mask table . For 
each round: 

1. 
2. 
3. 
4. 

5. 
6. 

7. 
8. 

9. 

10. 

11. 
12. 

An entry from the permutation table is selected. 
The internal ciphertext is permuted according to the selected entry. 
A key is selected from the key table. 
Each byte in the internal ciphertext is exclusive or-ed with the 
corresponding byte in the key except the byte used in selecting the 
key. 
Another key is selected from the key table. 
Each byte in the internal ciphertext is exclusive or-ed with the 
corresponding byte in the key except the byte used in selecting the 
key. 
An enclave entry is selected. 
The internal ciphertext is transformed by the selected enclave 
procedure. 
An entry from the substitution table is selected. 
Every byte in the internal ciphertext is substituted except the byte 
used in choosing the entry 
Another entry from the substitution table is selected. 
Every byte in the internal ciphertext is substituted except the byte 
used in choosing the entry. 

NOMENCLATURE 

A : Block 'A' 

A 

Pw : Permutation entry 'w' 

= Byte 'w' of Block 'A' (0 < w < 10) W 
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P (A)  = B : Perform Permutation ’w’ on ’A’ to produce ’B’ (0 < w < 127) 
W 

Kw : Denotes KEY ’w’ (0 < w < 127) 

: Denotes byte ’y’ of Key ’w’ e.g. fourth byte of Key 32 = K32,4 

xor A 

Kw’Y 

KwlY where {y=z and 0 <_ y <_ 10) = B : XOR every byte in block ’A’ 
Y 

with corresponding byte in Key ’w’ except for byte ’z’ to  
produce block ’B’. 

Ew : Denotes Enclave entry ’w’ 

Ew ( A )  = B : Perform Enclave as directed by table ’w’ on Block A producing 
output B 

Sw : Denotes Substitution table ’w’ 

Sw (Ay) where {y=z and 0 5 y 5 10) = B : Substitute the corresponding value in 
table ’w’ for the corresponding byte value of every byte in the 
block except byte ’z’ . 

SUM (A) = w : Sum all the values of block ’A’ (mod 128) to  obtain value ’w’ . 

MATHEMATICAL DESCFUPTION OF ROUNDS 

Input block ’A’ for round ’r’ 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

SUM (A) xor Mask 

Pw (A) = B 

Br xor Mask = W 

K 

X = (r mod 10) + 1 
Cxxor Mask = W 

K 

Dr xor Maskglr = W 

= w 
1 ,r 

2,r 
xor B where {y=r and 0 < y < 10) = C 

W>Y Y 

2 ,x 
xor C where {y=r and 0 < y < 10) = D 

W’Y Y 

Ew (D) = E 

Er xor Mask4,r = W 
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11. 

12. 
13. Fxxor Mask = W 

14. 

Sw (Ey) where {y=z and 0 5 y < 10) = F 

(r mod 10) + 1 = x 

4 ,x 
Sw (Fy) where {y=x and 0 5 y 5 10) = G 

Output Block 'G'; 
[Output Block 'G' becomes the Input Block 'A' of the next round.] 

ATTACK ON ONGROUND VERSION OF REDOC II 

For convenience of reference, we divide up the one-round REDOC algorithm 
into "stages", which we label as follows: 

Stage 1 - Variable permutation 
Stage 2 - First variable key add 
Stage 3 - Second variable key add 
Stage 4 - Enclave 
Stage 5 - First variable substitution 
Stage 6 - Second variable substitution 

We let B = (B1, B2, ..., Blo) denote a typical plaintext block of ten 7-bit 

bytes Bi and we let C = (Cl,  C2, ..., Clo) denote a typical ciphertext block of 

ten 7-bit bytes Ci . 

We begin our attack by assuming that we have enough plaintext blocks and 
corresponding ciphertext so that we can choose 256 plaintext blocks Bi (1 < i < 256) 

with 

(i) 

(ii) 

values of B1 and B2 identical in all 256 blocks 

values of B1 + ... + B10 mod 128 give each of the 128 possibilities 

exactly twice. 
The purpose of (i) is to guarantee that the two keys used in stages 2 and 3 of 

the REDOC encryption are the same for all 256 blocks Bi (by definition of the 
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REDOC algorithm). The purpose of (ii) is to  guarantee that at  least one of the 
variable permutations which keep B1 and B2 fixed is used twice in the set of 256 

encryptions of blocks Bi . We assume for definiteness that there are exactly 2 

permutations which fix B1 and B2 , namely permutations #8 and #29. It will be 

clear from what follows that our attack does not depend on this specific feature of 
the particular permutation table which we happen to be using. Our use here of a 
particular property of permutations #8 and #29 merely makes it easier to describe 
the attack. 

We let Ci (1 <_ i 5 256) denote the ciphertext blocks corresponding to the 

plaintext blocks Bi . We let 

W .  ) ( j =  1 or 2)  
J,10 

W . = ( W .  , w .  
J , J , l  J,2’ ...’ 

denote the two keys which are used at  stages 2 and 3, respectively, of the 
encryptions of the blocks Bi . If we have chosen a block Bi such that permutation 

#8 or #29 is used in stage 1 of the encryption, then the result at each of the first 3 
stages is as follows: 

(p = 8 or 29) B1’ B2’ B3,p’ Bq,p’ ’ “ I  B 10,P 

B1 * w2,17 B2 @ w1,21 B3,p * w1,3 * w2,3’ “ ‘ I  BlO,p * 
w l , l o  * W2,lO 

Stage 1: 

(1) Stage 2: B1’ B2 * w1,2’ ‘3,p * w1,3’ ...’ ‘l0,p * wl,10 
Stage 3: 

(Here * is component-wise addition mod 2, i.e. xor.) Here the value of P 
indicates which of the permutations #8 or #29 is actually used at stage 1. 

which we The object of our attack is to locate, among the 256 blocks Bi 
shall denote by 

two blocks which encipher using the same key values W and W and the 
1,2 271 
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same variable permutation (which will be #8 or #29) .  The attack proceeds by 
applying a process which we shall call "reversal" to each of the 256 blocks of 
ciphertext Ci . Reversal consists in taking a ciphertext block Ci after stage 6 of 

REDOC, then inverting the two variable substitutions of stages 5 and 6 in all 16 = 

2 = 256 possible ways, and finally applying to each of these blocks the inverse of 
each of the 32 possible enclaves of stage 4. Thus applying reversal to  a block Ci 
gives 213 = 8,192 blocks which are candidates for the actual block which results at 
Stage 3 in (1) above when the corresponding plaintext block Bi is enciphered. 

Only the unique candidate wluch corresponds to the actual choice of the enclave and 
the two variable substitutions at Stages 4, 5 and 6 of the encryption is the correct 
one. 

after Stage 3 of the encryption 

process (see (1) above) that each candidate block arising from reversal of block Ci 

uniquely determines values for W and W (of course these values may be 
2,1 1,2 

incorrect if the candidate is not the right one). Thus we can associate with each 
candidate block arising from reversal of Ci a triple (Wl,2 (i,j,n), W2 l(i,j,n), n),  

where n (1 i n < 32) is the number of the enclave whose inverse is used to  obtain 
the candidate and is an index which identifies the pair of 
substitutions whose inverses are used to obtain the candidate. The grouping of the 
triples according to  the enclave used is important for the analysis which follows. 
Using the above notation for the triples, we can schematically show the reversal 
process on the blocks of ciphertext as follows: 

2 
8 

It is clear from the form of the block Bi 

> 

j (1 5 j < 256) 

I T 
'1 '256 

Given two identical triples in the list of 256 x 213 = 221 triples generated 
by the reversal (2) ,  we set the corresponding 20 bytes in the two blocks associated 
with the two triples equal to the respective 20 bytes which arise at stage 3 (see (1) 
above) in the encryption of the corresponding two plaintext blocks Bi . To do this 
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we must guess the needed two values of p in ( I ) ,  which is possible in 4 dfferent 
ways. Thus we obtain 4 systems of 20 linear equations in the 20 unknowns Wl,, 

and W (1 5 j < lo). Suppose that the two identical triples in (2) correspond to 

ciphertexts Ci and C , and suppose that the reversal process which leads to the 

two identical triples gives the blocks 

2 , j  

j 

and 

respectively. Now each of the 4 systems of 20 linear equations has the form 

B(i) 1 f3 W2,, 

(3) 

........................................... 

10,P W1,lO W2,lO = di,10 

j,3 B(J) 3,p @ w1,3 @ w2,3 = d  

............................................ 
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We shall analyze a typical system of equations (3) later, but first we show 
that we can reduce the number of candidate permutation pairs to 2 instead of 4 for 
each pair of identical triples in (2)  and also reduce the number of identical triples 
that need to  be considered, by a closer analysis. In particular, suppose we have two 
identical triples (WlI2,  W2,11 n) corresponding to ciphertext blocks Ci and C.  . 

If the encipherments of the corresponding plaintext blocks Bi and B .  actually 

both use permutation #8 or both use permutation #29 at stage 1, then we have 

J 

J 

(4) Bii) + ... + B ( i )  = B(j) + ... + B ( J )  mod 128 10 - 1 10 

If, on the other hand, when Bi and B.  are enciphered permutation #8 is used at 
J 

stage 1 for one of the encipherments and permutation #29 is used for the other, 
then we have 

( 5 )  8 @ 29 = (BP)  + ... + Bib) mod 128) @ (Blj )  + ... + B i i )  mod 128) = 21 . 

Thus a pair of identical triples in (2) can only lead to a genuine system of equations 
(3 )  if either (4) or ( 5 )  is true; this will allow us to eliminate some pairs of identical 
triples from further consideration. If (4) is true for a given pair of identical triples, 
then we need only consider the cases where p = 8 for both of the corresponding 
encipherments or where p = 29 for both of the encipherments. Similarly, if (5) is 
true for the given pair of triples, we need only consider the two cases where p = 8 
for one of the encipherments and p = 29 for the other. Thus each pair of identical 
triples in (2) leads to at most two systems of equations (3) .  

Now we need a count of the number of pairs of identical triples in (2). For 
14 each fixed n, there are 256 x 28 = 216 triples in (2) but there are only 2 

distinct triples for any given n, so there will be many duplicated triples. However, 
the maximum possible number of pairs of distinct plaintext blocks Bi and B 

which satisfy one of the necessary conditions (4) or (5) is 768. This follows since, 
for each Bi (1 5 i 5 256), if we have 

j 

Bi i )  + ... + Bib) : m mod 128 (0 < m 5 127) 
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then there is a unique B.  such that (6) holds with i = j and the same m; and 

there is a unique pair Bh, Bk such that (5) holds with j equal to h or k . (Here 

we are using our initial assumption (ii) about the 256 plaintext blocks Bi .) Now 

any of the 6 possible pairs chosen from the set {Bh, Bi, Bj, Bk} will satisfy either 

(4) or (5) and this gives 5 768 distinct pairs as i varies, 1 <_ i 5 256 . 
Let us consider one of the 768 pairs - say Bi and B.  - of the plaintext 

blocks for which (4) or (5) is satisfied. In the corresponding system of equations (3) ,  

we must have Bri) = BPI  and BLi) = BF)  by our assumption (i), so the system 

is inconsistent unless we also have d. - 
i , ~  - dj, l  

J 

J 

and di,2 = dj,2 . If the pairs d .  J J ’  
were randomly distributed in our 768 pairs, the probability of matching the dj,2 

pair di,l, di,2 would be 768/1282, i.e. we would not expect to  find any matches. 

However, by our assumptions (i) and (ii) we know that exactly 4 of the 
encryptions of our 256 blocks B use either permutation #8 or permutation #29. 
Suppose the set {Bh, Bi, Bj, Bk} of the previous paragraph corresponds to  these 

blocks B . Then by the discussion in the previous paragraph this set gives 6 pairs 
of hstinct blocks B which must give consistent systems of equations of form (3). 
Thus it is very likely that exactly 6 of the 768 pairs give consistent systems of 
equations of form (3), and these systems will involve just 4 of the 256 blocks B . 
Thus we have determined the values of 

(7) w1,2’ w2,1’ w1,3 * w2,3’ w1,4 @ w2,4’ ’”’ wl,10 @ w2,10 ‘ 

By the definition of REDOC decryption, the number of the variable substitution at 
stage 6 is determined by the ciphertext and the mask byte Mask4,1; the number of 

the variable substitution at stage 5 is determined by the ciphertext and 

and the number of the enclave at stage 4 is simply Maskall. Since we know the 

enclave number and the variable substitution numbers corresponding to  the systems 
(3) which determine the numbers in (7), we can also determine 
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Since the number of the variable permutation at stage 1 is given by 
(B1 + ... + B10 mod 128) @ Maskl,l, 

1,1 
we can also determine Mask 

blocks Bh, Bi, Bj, Bk above use either permutation #8 or permutation #29. 

229 z 5 x 10 . We arrive at this number as follows: We estimate that 150 is an 
upper bound for the number of operations needed to carry out an inverse enclave 
and two inverse substitutions. Thus at most 150 221 < 3.2 x lo* operations are 
needed to  produce the list of 221 triples needed for the reversals in (2).  By our 
work above, we must examine at most 768 ciphertext pairs Ci, C. in order to find 

identical triples in the list of 221 triples. For each such ciphertext pair, we must 
look for matches in 32 pairs of sets of 28 triples; these 32 pairs arise because we 
need only try to  match triples with the same enclave number in (2), and there are 
2 triples associated with each Ci in (2). We can estimate that checking one such 

pair of sets takes 5 212 operations. Thus checking all 32 pairs of sets for the 5 768 
ciphertext pairs can be done in 5 768 x 217 “N 10 operations. Finally, testing for 
consistency of the systems (3) will require few operations. This gives our bound of 
2 operations. 

229 operations could be done in about 30 seconds on an 
inexpensive 20 megahertz personal computer. The attack to  this point could be 
done in parallel with many processors (see (2) for a natural use of 256 processors) 
and so could be greatly speeded up by a large investment in hardware. 

from the known fact that the encryptions of the 

An upper bound for the number of operations needed to  reach this point is 
8 

J 

13 

8 

29 

We note that 

Stage 1 - Variable permutation number is (B1 + ... + B10 mod 128) @ 

111 
Mask 

271 

291 

Stage 2 - Key number is B1 @ Mask 

Stage 3 - Key number is B2 @ Mask 

Stage 4 - Enclave number is Mask 

Stage 5 - Variable substitution number is (Byte 1 @ Mask ) mod 32 

Stage 6 - Variable substitution number is (Byte 2 8 Mask4,1) mod 32 

371 

4 J  

Table 1. Use of mask values in onmound REDOC 
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Table 1 shows that, since we know the mask values in (8), we can apply the 
reversal process to  any ciphertext block (C1, ..., Clo) and obtain the numerical 

values of the ten bytes in the stage 3 block of the encipherment of the corresponding 
plaintext block (B1, ..., Blo) . Since we also know Maskl,l, the block at stage 3 

will have the form (see (1) above) 

where (p(l) ,  ..., p(10)) is a certain permutation of (1, ..., l o ) ,  and i and j are 
the numbers of the keys used at stages 2 and 3, respectively. Here and in all that 
follows we slightly change .our earlier notation and let 

denote the j-th key in the REDOC key table. Thus when we convert (7) to  OUT 
new notation, we see that our work above has determined the values of 

with i = I and j = J , where I and J are certain key numbers which we do not 
know (of course we do know that 

I = B1 @ Mask and J = B2 @ Mask2,1 , 
(11) 2,1 
where B1 and B2 are the special values from the assumption (i)  made at  the 

beginning of our attack). 
It is evident from (9) that if we know the key numbers i and j being used, 

and if we know the values for the ten bytes in (10) above, then we can immediately 
recover the plaintext block (B1, ..., Blo) from knowledge of the values of the 10 

bytes in (9), as follows: We xor the known values in (10) with the 10 bytes in (9) 
and thus recover the values of Bp(l), ..., Bp(lo) . Then we compute the number 

1 7 1  
+ ... + Bp(lo) mod 128) @ Mask 

( B P ( l )  
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of the permutation (p( l ) ,  ..., p(10)) (since we know the value of Mask ); now by 

consulting the REDOC permutation table we invert this permutation and recover 
111 

It is now clear that any ciphertext block whose corresponding plaintext 
happens to begin with the same bytes B1 and B2 that appear in (11) can be 

immediately decrypted by the above procedure. Furthermore, if we can produce a 
table of values of the 10 bytes in (10) for a large number of pairs (i, j) of key 
numbers, then we can very quickly decrypt a large number of blocks of ciphertext. 
We simply apply the reversal process to  the ciphertext blocks and so obtain the 
values of the bytes in (9). Then we xor the bytes in (9) with values of the bytes in 
(10) for various pairs (i,  j). Each xor gives a candidate for the bytes Bp(l), ..., 

and also determines the permutation number in stage I, so we can 

immediately tell if we have sensible plaintext. If we do not get sensible plaintext, 
we continue trying entries from the sum table until the plaintext emerges or until 
we run out of pairs (i,j) to  try; the larger our table is, the less likely i t  is that the 
latter possibility occurs. Even if the latter possibility does occur, we are defeated 
only for the single block under consideration. 

Since most of the bytes in (10) are sums of key bytes rather than actual key 
bytes, let us call a table of values of the 10 bytes in (10) for a large number of pairs 
(i, j) of key numbers, a sum table. Using plaintext blocks B and corresponding 
ciphertext blocks C, we can rapidly produce a large sum table, as follows: We 
apply the reversal process to all of the ciphertext blocks in our list of known 
plaintext and ciphertext. Each plaintext block 

BP(lO) 

will give values of the 10 bytes in (10) €or key numbers 

It is easy to make a large sum table even from modest amounts of known plaintext 
and ciphertext because, for example, if we know the values for Wi,3 @ WjI3 and 

WiI3 @ Wk,3, then we immedately have the value of W .  o Wk,3 by xor. 
J,3 
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We do not know the value of Mask2,1, but we do not need this in order to 

produce our sum table, or to  use the sum table in decrypting REDOC ciphertext. 
We simply arrange the entries in the sum table according to  the blocks BI1) and 

B ( l )  instead of the actual key numbers (12). 2 
The creation of a large sum table in the last part of the attack certainly takes 

less time than the first part of the attack in which the mask values in (8) were 
found. A generous upper bound on the extra time involved is to  say that the total 
time is doubled. It is clear that once the sum table has been created, decryption of 
given ciphertext can be done very rapidly (i.e., the vast majority of the effort in the 
attack is setting up the sum table). 

It is interesting to note that in attacking the one-round REDOC we do not 
need to  reconstruct the key table, and indeed we do not need to  find any of the keys 
in the key table; we only need a large sum table as described above. It follows that 
complicating the process by which the key table is generated will not strengthen 
one-round REDOC. 

Sample Table 1 
Permutation Table 

Original = 1 2 3 4 5 6 7 8 9 10 

Perm 0 
Perm 1 
Perm 2 
Perm 3 

Perm 86 
Perm 87 

Perm 126 
Perm 127 

. . .  

. . .  

Original 
Value 
0 
1 
2 
3 

126 
127 

. I .  

= 1 6  7 9 1 0 2  5 8  
= 1 0 4  8 3  1 7  2 9  
= 1 . 6  4 9  8 5 1 0 2  
= 9 8  3 4  5 1 0  6 1  

= 9 7  2 6  5 8  3 1 0  
= 5 3  8 1  9 7 1 0 2  

= 9 8  3 7  1 1 0  5 6  
= 7 8  5 1 0  9 3  4 2  

Sample Table 2 
Subs t i tu t ion  Table 

Sub 0 Sub 1 Sub 4 Sub 10 

90 47 25 66 
46 89 51 1 3  
66 87 103 31 
21  20 116 7 

24 14 105 114 
122 62 11 63 

. . .  . . .  . . .  . . .  

3 4  
5 6  
3 7  
7 2  

1 4  
4 6  

2 4  
1 6  

Sub 14 Sub 15 

73 0 
36 52 

107 44 
43 83 

77 6 
49 79 

. . .  . . .  
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Sample Table 3 
Enclave Table 

a - 

Entry 0: 5 2 3  
4 3 1  
2 5 4  
1 4 5  
3 1 2  

Entry 1 : 3 1 2  
4 3 1  
2 5 4  
5 2 3  
1 4 5  ... ... 

Entry 31: 2 4 1  
3 5 4  
5 1 3  
1 2 5  
4 3 2  

- b 

3 5 2  
1 3 5  
2 4 1  
5 1 4  
4 2 3  

3 2 5  
5 1 4  
2 4 3  
4 3 1  
1 5 2  ... 

C - 

5 4 2  
4 3 1  
1 5 3  
3 2 5  
2 1 4  

4 2 1  
3 4 5  
5 1 4  
1 3 2  
2 5 3  ... 

2 4 3  1 5 3  
4 1 2  2 4 1  
3 5 4  4 3 2  
5 2 1  5 2 4  
1 3 5  3 1 5  

- a 
5 4 2  
2 5 1  
1 3 5  
3 2 4  
4 1 3  

4 2 3  
5 3 1  
2 1 5  
3 5 4  
1 4 2  ... 
4 1 5  
3 5 2  
1 4 3  
2 3 4  
5 2 1  

Sample Table 4 
Key Table 

KEY 0 = 0 34 5 63 9 73 74 107 109 33 
KEY 1 = 10 62 48 85 32 101 8 0 63 56 
KEY 2 = 26 59 75 97 33 80 8 6 73 26 

KEY 107 = 36 123 45 10 55 59 109 45 98 24 

KEY 118 = 95 25 48 47 1 20 117 55 19 67 

KEY 126 = 62 110 70 27 124 31 119 97 9 2 
KEY 127 = 11 54 25 87 107 73 4 118 62 34 

. . .  

. . .  

. . .  

Sample Table 5 
Mask Table 

Mask 1 = 48 2 121 18 60 105 33 50 11 60 
Hask 2 = 26 78 24 72 69 13 77 43 9 99 
Mask3 = 64 113 72 61 37 1 3  49 71 24 60 
Mask4 = 104 62 69 87 18 31 102 101 32 125 
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