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Abstract 

The properties of weak sources of randomness have been investigated in many 
contexts and using several models of weakly random behaviour. For two such 
models, developed by Santha and Vazirani, and Chor and Goldreich, it is known 
that the output from one such source cannot be “compressed” to produce nearly 
random bits. At the same time, however, a single source is sufficient to solve 
problems in the randomized complexity classes BPP and RP. It is natural to ask 
exactly which tasks can be done using a single, weak source of randomness and 
which cannot. The present work begins to answer this question by establishing 
that a single weakly random source of either model cannot be used to obtain a 
secure “one-time-pad” type of cryptosystem. 

1 Introduction 

Secret transmission of information over insecure communication lines is a major issue in 
cryptography. In the classical setting, two parties A and B, share a secret, private key 
K. A wishes to send a plaintext message M, to B. A encrypts M using I(, and sends 
the resulting ciphertext C, to B. A listener L can eavesdrop on the communication 
line and find C (but not alter it). In addition L knows the functions employed by A 
and B. The goal of the cryptosystem is to enable B to correctly decrypt M, while 
retaining security against the listener. 

In order to operate, the parties A and B need an access to a joint source of ran- 
domness. Without such a source, L possesses the same information as B does. As L 
knows B’s program, B has no advantage over L, and so such a cryptosystem will not 
be secure. 

If A and B share a perfect source of unbiased independent random bits, then 
they can use this source to generate the private key IC, and use this key as a one- 
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time p a d ,  achieving maximum security [S]. In practice, however, i t  seems unrealistic to 
expect a source to be perfectly random. Most physical sources. such as Zener diodes or 
Geiger counters, are imperfect; that is, they do not output a uniform distribution. The 
question that motivates this work is whether there is a secure private key cryptosystem 
(analogous to one-time pad) if a weaker, non-perfect source of randomness is shared 
by A and B. 

Two widely investigated general models for weak-sources of randomness have been 
suggested by Santha and Vazirani [SV], and Chor and Goldreich [CG]. They are known 
as the SV-source and PRB-source, respectively. The sources they describe maintain 
some amount of randomness but allow the value of each bit output to depend on the 
values of all previous bits. For both models, it has been shown in [SV, CG] that a 
single SV or PRB source cannot be used to extract “almost” unbiased random bits. 

We show that a private key cryptosystem in which both parties share a private key, 
generated by a weak source of randomness, and have no access to any other source of 
randomness, is not secure. It should be stressed that this is not an immediate corollary 
of the fact that random bits cannot be extracted from such sources. We also show a 
secure cryptosystem, where the parties share a slightly-random private key, and have 
access to a public source of perfect randomness. 

The paper is organized as follows: sections 2 and 3 give the needed background 
and definitions in weak-sources of randomness and cryptography. In sections 4 and 5 
it is shown that a crypto-system in which A and B share a private-key generated by 
a PRB or SV source, and have no additional sources of randomness, is not secure. In 
section 6 we allow them to use a public source of truly random bits in addition to the 
slightly-random key, and show that then it is possible to combine these two sources to  
produce a secure one-time pad. 

2 Weak Sources of Randomness 
Physical sources of randomness are imperfect, that is, they do not output a uniform 
distribution. Several mathematical models of such sources have been investigated. Von 
Neumann [N] considered a source which generates a sequence of independent tosses of a 
coin with a fixed but unknown bias, and suggested a method to extract perfect random 
bits from it. Blum [B] modeled weak randomness as a finite state Markov chain (with 
unknown transition probabilities). This model allows each output bit to depend on the 
previous c bits (for any fixed c). Blum gave an algorithm to extract perfect random 
bits from such a source. 

Next we describe two more recent models, in which each output bit can depend on 
all previous bits. 

2.1 SV-model 
Santha and Vazirani [SV] suggested a model (hereafter referred to as the SV-model) 
where each bit in the output sequence is 0 with a probability of at least 5 and not 
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more than 1 - 6 (where 0 5 6 5 f 17 h u e d )  The probability that a given n-bit string 
is output is hence bounded above by (1 - b ) n ,  and below by 6" (therefore each bit 
sequence is output with some positive probability). A source with 6 = is a perfect 
random source, and one with 6 = 0 can have no randomness at all. This model allows 
each bit to depend on all previous bits 

2.2 PRB-model 
A different model was suggested by Chor and Goldreich [CG], where instead of bound- 
ing the probability of each individual bit, they bound the probability that any given 
string will appear in any position. Such a source is called a PRobability-Bounded source, 
or a PRB-source. It has two parameters, 1 and b. A source is said to be an (1,b)-source 
if for every prefix a E { O , l } -  of the output sequence, and every I-bit string /3, the 
conditional probability that the next 1 bits will equal /3 (given the prefix a) is at most 
2-b.  Thus an (I,  I)-source is a perfect random source, and an (I, 0)-source can have no 
randomness at all. 

The PRB-model is a strict generalization of the SV-model. Any SV-source with 
parameter 6 is a (1,1og,( 1 - S)-') PRB-source. The inclusion is proper since a proba- 
bility bounded source may output some strings with probability 0. For example, a (2,l)  
PRB-source which outputs 11 with probability and 10 with probability 4, cannot be 
modeled by any SV-source. 

2.3 Known Results 
It was shown in [SV, CG] that a single SV or PRB source cannot be used to extract 
"almost" unbiased random bits. On the other hand, in both models, two independent 
sources suffice for this purpose [V, CG]. A more surprising result is that BPP and RP 
problems can be efficiently solved using the output of a single SV or PRB source [VV, 
CG]. This indicates that  some useful randomness can be extracted from these sources, 
and it leads us to  ask how useful a slightly random source would be for cryptography. 

Given a boolean function f : (0, 1)" --t (0, I}, define the density of zeroes of it to 
be 

{ Y  E (0, l I " l f ( Y )  = 01 d =  

The following technique is due to Gereb and is given in [SV]: 
Lemma 1 for  all f : (0 , l ) "  + {0,1),0 2 6 5 and d 2 i, there is a strategy to 
set a SV-source with parameter 6 ,  such that if x is an n bit string generated by this 
source, and the density of zeroes o f f  is d, then 

2" 

P r o b ( f ( x )  = 1) 2 2(1 - 6)(1 - d )  

Any extraction scheme to extract a random bit from an n-bit string generated by an 
SV-source, can be viewed as a function f : {O,  1)" i {0,1}. The lemma implies that 
no such scheme can extract a bit with less than 1 - 6 bias, from a SV-source with 
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parameter 6. (More precisely, for any scheme f there is a &source which causes the 
outcome of the scheme to be at least 1 - 6 biased.) 

3 Cryptographic Background 

3.1 Cryptosystems 

.4 simple cryptographic system (A,B) is composed of two communicating parties, A 
and B, communicating over an insecure channel. Their goal is for A to pass a secret 
message (or plaintext) ,  M ,  to 8. In a private k e y  cryptosystem,  A and B share a 
randomly chosen string, I<, which is the private  key. A sends to B a message C 
(c iphertext) ,  which is a deterministic function of M and I(. A l istener,  L ,  is able to 
examine the communication between A and B .  He knows the functions they use, but 
not the private key K .  The listener is passive, he cannot interject anything of his own 
on the line. The listener attempts to find the plaintext, or at least to  extract as much 
information about it as possible. Figure 1 sums up the scenario described here. 

K 1 

C 

Figure 1: A simple private key cryptographic system. 

The simplest scenario is of a one-bit cryptosystem, namely one where the plaintext 
is composed of a single bit. For a one-bit cryptosystem (A,B) ,  we define the following 
requirements: 

Correctness:  ( A ,  B )  is correct if, given that b is chosen randomly in (0, l}, 

Prob( B outputs b correctly) 2 1 - o( 1) 
for all k, and sufficiently large n. 

Security: ( A , B )  is secure if, for every listener L ,  and for a bit b that is chosen 
randomly in (0, I}, 

1 
2 

Prob(L outputs the same as B )  _< - + o(1) 
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for all k, and sufficiently large n. 

3.2 Cryptographic Setup for Our Problem 
Given a source of true randomness, there exists a simple cryptosystem which is secure 
and correct (the one-time pad [ S ] ) .  In this system an a-bit randomly chosen private 
key is used to communicate an n-bit plaintext. The ciphertext in this case is just the 
bitwise exclusive-or of the key with the plaintext. We wish to  know whether there 
is a secure cryptosystem analogous to one-time pad, in which A and B share a key 
generated by a weak source of randomess. Such a system would be secure regardless 
of any complexity assumptions we might make. and therefore the computational power 
of L is not limited (and hence L can be restricted to be deterministic). For convenience 
we do not limit the power of A and B ,  ~ t s  well. (And since we show the impossibility of 
such a system, these assumptions on A and B do not weaken our results). However, we 
do not allow A and B to use a source of truly random bits in their computation. Any 
random bits they need for the computations they make (as probabilistic algorithms) 
should be taken from the slightly-random key. 

For our purposes; we can make the following simplifying assumptions about the 
cryptosystem ( A ,  B):  

The communication is one-way. Namely, B only receives communication from A: 
and sends no messages himself. This is possible since A and B share the same 
source of randomness, and so B does not have any input that A does not have. 

For a given key length n, A always sends the same number m, of bits to B.  

It can be seen that there is no loss of generality incurred in making these assumptions. 
This reduces a cryptosystem ( A ,  B )  to the following: 

1. A slightly random key I( of length n. 

2. An encryption function f : (0, l}" x (0, l} t (0, l}mn 

3. A decryption function g : {0,1}" x (0, 4 (0, I}. 
Remarks: 

1. The plaintext b is uniformly distributed in (0, I}. 

2. The system operates as follows: A sends the ciphertext C = f(K, b)  to B ,  and 
computes b' = g(K ,  C). As B is allowed to err (with small probability), b' might 
be different from 6. 

3. A listener L is specified by an eavesdropping function h : (0, I}*, -+ (0, I} that 
he uses, given the ciphertext, to try and retrieve the plaintext. 

4. The listener knows f and 9. He also knows the strategy of the weakly random 
source, namely the a priori probability distribution on the private key I( .  
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5. Other than the weakly random source, there is no other source of randomness in 
the system. 

3.3 A Matrix Representation 

We represent the decryption function g : (0, x (0 ,  --+ ( 0 , l )  by a matrix D 
having 2" rows (one for each possible key) and 2". columns. (one for each possible 
value of f ( K , b ) ) .  The entries of D are either 0,1 or blank, and each row contains 
two non-blank entries. Each entry in D is simply g(K.f( lC,b))  for IC and f ( K , b )  
corresponding to that row and column respectively. Two entries need to appear in 
each row, since, for each I ( ,  there are only two possible values of J ( K ,  b )  that occur, 
since A behaves deterministically. 

A listener is completely specified by giving an output value in {0,1} for each value 
of f(l<, b).  In matrix terms this corresponds to giving a (0,  I}-labelling of the columns 
of D. 

We are frequently interested in the extent to which a listener's output matches that 
of B. This corresponds to asking if a given (0,l)-labelling of the columns of D (Le. a 
given listener) matches the particular row that corresponds to the key K .  Since each 
row has at most two entries there are three possibilities. X row agrees with a labelling 
1 if  all the entries in the row match the label that 1 gives for the column in which they 
appear, and the row disagrees if none of the entries matches I .  A row half-agrees with 
1 if it has two entries, one which matches 1 and one which doesn't. Let the weight of a 
row with respect to a particular labelling be the probability (taken over the messages 
0 and 1) that L outputs the same as B if that row is chosen. Thus a row which agrees 
with 1 has weight 1, a row which half agrees has weight 1 /a. and a row which disagrees 
has weight 0.  

4 Using a PRB-source to Communicate a Single 
Bit 

We first consider the case where A and B share an n-bit siightly-random key generated 
by a PRB-source. We show that no cryptosystem is secure when its only source of 
randomness is an (n ,n  - c) PRB source ( c  > 0) .  Theorem 1 establishes this result 
quantitatively, by showing that for every value of c, there is a listener whose probability 
of finding the transmitted bit is higher than a constant which depends only on c 
(and not on n).  We also demonstrate a cryptosystem achieving the lower bound of 
Theorem 1. 
Theorem 1 If ( A .  B )  is a cryptosystem such that 

1.  A and B share an n-bit przvate key Ii. 

2. A and B have no additional sources of randomness. 
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3. A sends the encryption oj'n singie bit message  b to B ,  and B tries to decrypt this 
and find b. 

then for every 0 5 c 5 n there exzst an i n ,  n - c )  source S and a lzstener L such that 
i f K  zs generated by S then 

1 f o r 2 s c s n  

Prob(L outputs the same as B )  2 + $ for 2 - log23 5 c 5 2 

for 0 5 c 5 2 - log, 3 - 2c I 2 

Proof. We may think of an ( n .  n - c) source S as selecting a fraction 2-' of the keys, 
each of which then occurs with probability 1/2"-'. The remaining keys do not occur. 
Denote by e the value 2-". In the combinatorial setting established in the previous 
section, this corresponds to choosing a set of e of the rows of D. (without loss of 
generality, assume that e2" is an integer). From now on we speak of choosing rows of 
D instead of choosing keys. 

Given a labelling I of the columns of D, we say that its rows satisfy ( d ~ ,  1 - ( d ~  + 
do),&) (where 0 5 &,d l  and do + dl 5 I), if a fraction dl of the rows have weight 1, 
do of the rows have weight 0, and 1 - ( d l  + do)  of the rows have weight 4. 

The strategy of the (n,  n - c )  source S we use, is to choose exactly a part e of the 
2" rows and give each one the same probability, -&. The source first chooses 1-rows. 
If there are less than e2" of these. it also takes +-rows; and only if there are not enough 
of these, too, it takes 0-rows. The following observations can be made: 

1. Without loss of generality, dl  2 do (otherwise consider i, the labelling obtained 
by reversing the labels of I ) .  

2. dl  = do. That is because for any value of e, with a ( d l ,  1 - ( d l  + do),&) matrix 
(where d l  2 d o ) ,  the source has more positive weight rows than with a ( d l ,  1 - 
2d1 ,d l )  matrix. Therefore the listener can achieve better success on the former 
matrix, 

3. The following lemma implies that there is a labelling I that satisfies ( d l ,  1 - ( d ~  + 
& ) , d ~ ) ,  with dl 2 $. 

Lemma 2 There is a ( 0 , l ) - E a b e h g  of the columns of D which agrees with a t  least 
l / 4  of the rows. 

Proof (of lemma 2). D has 2" rows and 2mn co P'"" different labellings of the 
columns of D. Each row agrees with at least 1/4 of the labellings, since at most 

agreements among 22mn two columns have entries, so there are 7 = Z2"',+"-' 
labellings. By the Pigeon Hole Principle there is some labelling which agrees with at 
least 

2n.p'"" 

22"" +n-2 - 2"-2 - 
22"" 
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of the rows. Q
Let us now consider the following cases:

• tH | [•[ jnrTj The source chooses only 1-rows. Therefore the listener has prob-
ability 1 of guessing the bit b that is being communicated.

The source doesn't have to take 0-rows, it has enough positive weight rows to
choose from. The average weight achieved is then

d^lje-d,) = 1 di_ 1 1
e ~ 2 + 2e ~ 2 8e

There are two possible cases, depending on the value of do:

1. e < 1 — do. As in the former case, the source has enough positive weight
rows to choose from. The average weight achieved is then \ + ^.

2. e > 1 - do- All positive weight rows are used by the source, as well as some
0-weight rows. The success is at least

e - 24

For e < 0.75, the first bound, | + ^ , is lower than the second one,
resulting lower bound is thus

1 J_
2 + 8e

^ . The

All positive weight rows, as well as some 0-weight rows, are used, and the value
achieved is

^ + 1(1-2^) = 1
e 2e

This completes the proof of the theorem. D
Interesting cases of the above theorem are for an (n, n — 1) source, where we get a

lower bound of 0.75, and for (n, n - c) sources (c > 2), where the lower bound is 1.
To show that the results of theorem 1 cannot be improved, it is sufficient to exhibit

a matrix D for which every labelling agrees with exactly one quarter of the rows. One
such matrix is as follows, for a key length of n — 3 and with mn — 2.

\f 1
1
0
0

0
1

1
0

0
1

0
1

1
1
0
0
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It can be verified by inspection that every iaheiling of the coiumns of D agrees with 
exactly two rows. It is worth noting that this matrix contains rows which consist of 
only 0 entries (or 1 entries), and therefore B cannot always decrypt correctly. When 
one of these rows is selected, B will always output 0 ( I ) ,  regardless of the value of 
b, and so will be correct only half of the time. For cryptosystems in which B always 
decrypts b correctly, we have the following theorem: 
Theorem 2 If ( A ,  B )  is a s  in theorem 1, a n d  in add i t ion  B always  outputs b correctly, 
t h e n  for every 0 5 c 5 n there ezist a (n ,n  - c) source S and  a listener L ,  such thd 
if the key I( is generated by S t h e n  

I ’  for 2 5 c 5 n 

Prob(L outputs the same as B) > for -log2 a 5 c 5 2 

for o 5 c 5 - log, 

The only difference from theorem 1 is that here the inequality is strict. 
Proof. The proof is the same as in theorem 1, except that in the proof of lemma 2 

we now disregard the all-zeroes and all-ones labellings, which here agree with no rows 
at all. Therefore we get that there is a labelling that agrees with more than of the 
rows. 0 

Theorem 2 cannot be improved upon. In [MI there is an example of a series of 
matrices D1, D2,. . . such that D, represents a cryptosystemin which B always decrypts 
correctly, and the largest group of rows in agreement with every fixed labelling, is not 
greater than a t f o(1) fraction of the rows. 

5 Using an SV-source to Communicate a Single 
Bit 

In this section we show that private key cryptography with private keys generated by 
an SV-source is not possible. Any correct system ( A ,  B) is not secure. Namely, for any 
encryption and decryption functions, f and g, there is a &source and an eavesdropping 
function h ,  such that Prob(h(C) = g(K ,C) )  2 f + p ( 6 ) ,  where p depends on 5 (but 
not on n, the length of the key I<, or on m,, the length of the ciphertext). 

We emphasize that this result does not follow from the corresponding one on PRB- 
sources. The source which was used there to show that correct and secure cryptosys- 
terns do not exist, was not a SV-source. On the other hand, the quantitative result 
here is not as strong: Here we only guarantee an advantage over f ,  p ( S ) ,  while there 
there was a constant advantage of for ( I ,  I - 1)-sources, and complete certainty in 
successful eavesdropping for (1, I - 2)-sources. 



430 

5.1 Preliminaries 
Let us now consider the case where the private key li is an n bit binary string generated 
by a SV-source with parameter 6. We may think of it as generated by an adversary 
who chooses, after each bit is output, a probability between 6 and 1 - 6 that the next 
bit will be a 0. The adversary strategy can be represented as a complete binary tree of 
height n, where each left branch corresponds to a 0 being chosen, and a right branch 
to a 1 being chosen. The leaves correspond to  n bit strings, sorted in dictionary order. 
The adversary chooses at each node, with which probability (between 6 and 1 - 6) to 
continue to the left and right branches. This induces a probability distribution on the 
leaves. 

For our purposes, each leaf corresponds to a different key Ii, of length 71, and hence 
to a different row of D. A (0,lj-labelling 1 of the columns of D uniquely assigns a 
weight to each leaf. This weight is 1 if the leaf agrees with I ,  f if it half-agrees, and 0 
if it disagrees. To describe a combination of a matrix D (cryptosystem) and a {0,1}- 
labelling 1 (listener), we define an adversary tree of height n as a complete binary tree 
of height n,  the leaves of which are labelled with weights from (0, i, 1). 

Let W,, denote the set of all adversary trees of height n. Each decryption matrix 
D and labelling 1 determine a particular tree T E W,,. For this tree, T ,  the optimal 
strategy of the adversary is t o  label the edges of T with probabilities (between 6 and 
1 - 6) such as to maximize the the expected value of the leaf reached. 

For a node v, define v&(v) as: 

its weight, if II is a leaf. 

0 if o has descendantsq and v2, vala(v) = (1-6) max(va/a(v1), 

vals(v2))+6 min(vul6( Q) ,  valh( v;! 

For a tree T ,  define v&(T) as U&(r), where T is the root of T .  
Lemma 3 For a given adversa y tree, the source strategy which labels the branch lead- 
ing to the “heavier” descendant with 1 - 6,  and the other branch with 6 ,  maximizes 
the expected value of the leaf reached. The expected value of the leaf reached is then 
vals(T).  
An adversary tree T is called balanced if 

at least one quarter of its leaves are 1-leaves. 

it has the same number of 0-leaves as 1-leaves. 

Let Y, denote the set of all balanced trees of height n. 
Lemma 4 For each decryption matrix D there is a {o,l}-labelling 1, such that for the 
adversary tree T E W,, corresponding to D and I ,  the following holds: 

1. The sum of the weights of all Zn leaves as not less than 2”-’. 

2. At  least one quarter of the leaves (2n-2 leaves) are I-leaves. 

3. It has value greater than or equal to some balanced tree. 
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Proof: by a counting argument. 
Therefore, instead of proving a lower bound on the amount of agreement between 

a decryption matrix and the optimal ( 0 ,  1)-labelling of it (that is, the labelling giving 
a maximal value to vala(T)),  it suffices to prove a lower bound for the expected value 
achieved on a balanced tree of height n. 
Conjecture 1 For every balanced tree T E Yn, it holds that 

1 1 3  
- 2 2  v&(T) 2 r, + (- - -6 + 62) 

This lower bound on balanced trees cannot be improved. It equals an upper bound, 
which is the value achieved on a tree (see figure 2) in which one main subtree (i.e. a 
subtree descending from the root) has only $-leaves, while the other main subtree has 
one subtree the leaves of which are all labeled 1, and another subtree the leaves of 
which are all labeled 0. 

Figure 2:  A tree acheiving the lower bound. 

Although the lower bound we conjecture here is the best possible bound for adver- 
sary trees, it turns out to be difficult to find a cryptosystem for which the maximum 
success rate a listener can achieve equals this bound. A cryptosystem for which no 
listener can guess the transmitted bit with more than 1 - 6 success, is given in [MI. 

5.2 Reducing ( 0 ,  i, 1)-trees to ( 0 ,  1)-trees 
We now give a reduction from the problem of finding a lower bound for the value 
achieved on an adversary tree, to finding a lower bound for the value achieved on a 
tree that has leaves with weights from { O ,  l}. 

Let B,, denote the set of all trees of height n ,  the leaves of which have weights from 
(0 , l ) .  Define fn,, : W,, --+ Bnfm as the transformation which, given an adversary tree 
T E W,,, does the following: 

0 replaces each 0-leaf with a subtree of height m, all of its leaves being 0-leaves. 

replaces each 1-leaf with a subtree of height m, all of its leaves being l-leaves. 
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0 replaces each +-leaf with a subtree RI such that 

That is, among all trees of B, that have value not greater than i, the maximum 
value is achieved on R. (if there are several trees matching this definition, we 
take the first in some lexicographical order). 

It is clear that for T E W,, any lower bound on V&(fn,,(T)) implies the same lower 
bound on vals(T).  

5.3 Analysis 
We now describe a method for constructing trees R, which is useful for values of 6 close 
to i. Specifically, we construct trees for a sequence { 6 m } ~ = g ,  so that 6 m + l  > hrn, and 
6, converges to f .  Let T E Y, be a balanced tree, with a of its leaves being 1-leaves. 
(Hence half of its leaves are +-leaves, and the rest are 0-leaves). 

Let us choose R, as the tree of height m, of which the 2m-1 - 1 left leaves are 
1-leaves, all other leaves are 0-leaves. 

This value should not be greater than f .  We define 6, by the equation 

Let T' denote fn,,(T). The density of 0-s in &, is d R ,  = 
density is dTt = 
get the following lower bound for T :  

+ 2-", and in 2" the 
= 2 t 2-m-1. Applying Gereb's bound (Lemma l), we t f ( f  + 

For values of 6 in the sequence {&}, it is easy, using equation ( I ) ,  to  describe m 
as a function of 6,. Thus we get for these values a lower bound of 

p(m) is the advantage over i, of this lower bound. 
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5.4 

Let g(6) be the advantage over + 6'. 
The following theorem gives a constant bound for the ratio betw,een the advantages 

Theorem 3 For a crypto system ( A , B ) ,  where A and B share an n-bit private k e y  K ,  
which i s  generated by a SV-source with parameter 6 ,  6 2 0.45, there exists a SV-source 
S and a listener L ,  such that i f K  is generated by S then 

stated in conjecture 1. that is, g ( 6 )  = f - 

546) and P ( 0  

1 g(6) Probj L outputs the same as B) 2 - + - 
2 2.76 

Proof: Lemma 4 reduces this problem to finding a lower bound on vala(T),  where T 
is balanced, and of its leaves are 1-leaves. The theorem follows from bound (3) and 
from showing that 

for all 6-s in [0.45,0.5]. 
It is easy to show that this ratio is less than 2.60 for all 6, (m 2 3). 
To prove a similar result for all values of 6, note that for 6,-1 < 6 I 6,, a 6,-source 

is also a &source. Hence lower bound (3) is the same for all 6-s in (hm-1, a,]. 
We should compare the advantages above f of the conjectured bound with &,,,-I, 

and OUT bound with 6,. In order to find S,, it is needed to  solve equation (1). 
Difficulties arise in solving it analytically (for a general m),  and so we needed to  solve 
it using numerical methods. The theorem follows from calculating the ratio between 
the advantages of the conjectured bound with 64, and our bound with S5 (this ratio 
is a little less than 2.76), and showing that for values of 6 larger than 64, this ratio 
is not higher than that. The same method can be applied to give a bound for all 
6 2 6 3  = 0.404 and a ratio of 3.69 instead of 2.76, and for all 6 2 62 = 0.293 where 
the ratio is 6.56 instead of 2.76. 0 

The lower bound we got is not trivial, yet it is not optimal. The technique we 
employed is rather coarse since it only uses the density of O-leaves, and not their 
location. Furthermore, we used a bound for {0, 1)-trees (in Lemma 1) which is also 
not optimal. 

6 Allowing an Additional Source of Randomness 
In the previous two sections we have assumed that the two parties A and B have no 
additional sources of randomness, public or private. In this section we show to what 
extent these results depend on this assumption by introducing a public source of truly 
random bits. By public we mean that any truly random bits used by A or B are known 
to the listener, and in the cryptosystems presented in this section this is made explicit 
by including any truly random strings used as part of the ciphertext. As a practical 
matter, a public, truly random source of bits could be something like a satellite using 
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the background radiation ieft over from the "big bang" as a source of entropy. Mainly, 
however, this situation is of interest to us from the point of view of investigating the 
mathematical relationship between weak sources of randomness and cryptography. It 
seem at first that such a source would not be helpful, but it turns out that in this 
new situation secure cryptography is possible, and we present a secure system. The 
complete proofs of the theorems in this section are not given here. The interested 
reader can find them in [MI. 

6.1 A Secure System 
The following cryptosystem (A, B )  is suggested by the construction used initially by 
Vazirani and Vazirani [VV] and subsequently by Chor and Goldreich [CG] to show 
that B P P  and RP algorithms can be modified to  work with just  one slightly-random 
source. 

1. (A ,  B )  has a S e C U T z t y  parameter denoted n E Z. 

2. A and B share an n-bit key 11' generated by an (n,b)-source S, where = 
kl . . . Ic, for k; E {0,1}. 

3. A wishes to send m E {0,1} to  B. 

4. A generates random X such that (XI  = n. 

5 .  A computes p E ( 0 .  l} (for p a d )  by p = ,f . 2 (the inner product function). 

6. A sends p $  m and X to B. 

7. B is then able to compute p = 2 .  2 and m = p @ ( m  @ p ) .  

It  is easy to see that this system is correct. It is also secure. 
Theorem 4 Suppose that ( A ,  B )  is as above and that the private key IC is chosen 
from an (n, b)-source. If m is randomly chosen in {0,1), then for each listener 15 
which outputs a guess at m, 

Prob(L outputs m) 5 112 + 6 .  T b I 4  

Proof.  The proof will appear in the final version. It depends on definitions and results 
0 

Corrol lary 1 If (A ,B)  is modified so that I( is generated by an SVsOUTce with pa- 
rameter 6 ,  then Theorem 4 remains true for  b = n log,( 1 - S)-l. 

There is a natural extension of ( A , B )  that communicates many bits by running 
the system many times in parallel. This system can also be proven secure, using an 
appropriate definition of security for many-bit systems. For details the reader is again 
referred to [MI. 

in [CG] in a critical way. See [MI for details. 
Theorem 4 is easily extended to include SV sources. 
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