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Abstract. A new statistical test for random bit generators is presented that is 
universal in the sense that any significant deviation of the output statistics from 
the statistics of a perfect random bit generator is detected with high probability 
when the defective generator can be modeled as an ergodic stationary source with 
finite memory. This is in contrast t,o most presently used statistical tests which 
can detect only one type of non-randonmess, for example, a bias in the distribution 
of O’s and l’s or a correlation between consecutive bits. Moreover, the new test, 
whose formulation was motivated by considering the universal data compression 
algorithms of Elias and of Willems, measures the entropy per output bit of a gen- 
erator. This is shown to be the correct quality measure for a random bit generator 
in cryptographic applications. A generator is thus rejected with high probability if 
and only if the cryptographic significance of a statistical defect is above a specified 
t.hreshold. The test is easy to implement and very fast and thus well-suited for 
practical applications. 

1. Introduction 

A random bit generator is a device whose output sequence can be modeled as a 
sequence of statistically independent and symmetrically distributed binary random 
variables (both values 0 and 1 are equally probable), i.e., as a so-called binary 
symmetric source. Random bit generators have many applications in cryptography, 
VLSI testing, probabilistic algorithms and other fields. Their major application in 
cryptography is as the secret-key source of a symmetric cipher system, but random 

bit’ generators are also required for generating public-key parameters (e.g., RSA- 
moduli) and for generating the keystream in the well-known one-time pad system. 
111 these applications, the security crucially depends on the randomness of the source. 
In particular, a symmetric (secret-key) cipher whose security rests on the fact that 
an exhaustive key search is infeasible may be completely insecure when not all keys 
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are equiprobable. Similarly, the security of the RSA public-key cryptosystem may 
be strongly reduced when, because of a statistical defect in the random source used 
in t,lie procedure generating the primes, the two primes are cliosen from a sinall set 
of primes only. 

Raiiclomriess is a property of an abstract model. Whether such a iiiodel can give 
an exact description of reality is a philosophical question related to t,he questmion of 
whet,her the universe is deterministic or not, and seems to be impossible to answer to 
everyolie’s satisfaction. IIowever, there do exist chaotic processes in nature, such as 
radioactive decay and thermal noise in transistors, that dlow the construction of a 
random bit generator that is completely unpredictable for all practical applicat,ions. 
It is a non-trivial engineering task, however, to design an electronic circuit that 
explores tlie mndmniiess of such a process in  a way that guarantees t,he statistical 
independence and symmet,rical distribiit,ion of the generated hit,s. It, is therefore 
essential in a cryptographic application that such a device be tested intensively for 
malfunction after production, and also periodically during operation. 

This paper is concerned wit,li the application of random bit generators as the 
secret-key source of a symnietric cipher system. A new statistical test for random 
bit generators is presented that offers t,wo major advantages over the presently 
used stabist.ica1 tests (including the common frequency test, serial test, poker test, 
autocorrelation tests and run test which are described in [I] and [4]). First, unlike 
these tests, the new test is able to  detect any one of a very general class of possible 
defects a generator may have, includiiig all tlie defects the above inentioiled tests 
are designed to detect. This class of defects consists of those that  can be modeled by 
an ergodic stationary source and contains those that could reasonably be assumed 
to  occur in a practical implementatmion of a random bit generator. Second, rather 
than measuring some parameter (like the relative frequency of 1’s) of the output of 
a generator, the new test measures the actual cryptogra,phic significance of a defect. 
More precisely, the test parameter is very closely related to the running time of the 
enemy’s optimal key-search st.rategy when he exploits knowledge of the secret-key 
source’s statistical defect, and thus to  tlie effective key size of the cipher system (if 
there exists 110 essentially faster way than an exhaustive key search for breaking the 
system). 

The paper is not concerned with tests for pseudo-random bit generators that 
st.ret,ch a short (randomly selected) seed deternlinistically into a long sequence of 
pseudo-random bits, i.e., it is not concerned with the security evaluat,ion of pracdical 
keysiream generators for st,reaiii ciphers. IIowever, it is certainly a necessary (but far 
from sufficient) condition fgr security t,liat such a generator pass t,he test presentred 
here. Design criteria for practical keyst,reani generators are discussed in  [5]. 

In sec,tiuii 2, an analysis of tlie enemy’s optimal key-search st,rategy hased on 
knowledge about the statistical defect of the secret-key source is presented. It, is 
argued that the per-bit entropy of a bit, generator is t,he correct measure of it,s 
cryptographic quality. Section 3 introduces the fundamentals of statistical testing 
and soiiie of the presently used sta.tistica1 tests are reviewed. The new universal 
statistical test is introduced in section 4 and the close relation between the test 
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parameter and the per-bit entropy of a gemrator is established. 

2. Reduction of cipher security due to a statistical 
defect in the secret-key source 

Throughout the paper, let B = ( 0 , l )  and let RN = R l , . . . ,  RN denote a se- 
quence of N statistically independent and symmetrically distributed hinary random 
variables. When a random bit generator based on a chaotic physical phenomenon 
like thermal transistor noise is eit,her defective or iiot properly designed, then the 
geiieraterl bits may be biased and/or st.at,istically dependent. The simplest exani- 
ple of such a statistical defect, is modeled by a binary menioryless source whose 
output bits are statistically independent and identically (but iiot necessarily sym- 
iiietrically ) distributed. Let BMS, denote the binary nieiiioryless source that eiiJts 
1’s with probability p and 0’s with probability 1 - p .  Another type of statistical 
defect is inodeled by a binary source, denoted by ST,, whose output bits are sym- 
iiiettrically distributed (0’s arid 1’s occur wit,li probability 1 /2)  but whose transition 
probabilit,ies are biased: a binary digit is followed by its coniplenieiit with probabil- 
ity p and by t,he sanie digit with probability 1 - p .  This is an example of a binary 
st,ationary source with one bit of memory. In general, the probability distribution 
of the i-lh bit of a generator’s output may depend on the previous A4 output bits 
where M is the memory of t,he source. We argue that the statistical behavior of 
virtually every (even defective or badly designed) random bit generator can well be 
modeled by such a souIce with relatively sinall niemory. 

Consider a source S that emits a sequence U1, U z ,  U s , .  . . of binary random vari- 
ables. If there exists a positive integer M such that for all n > M ,  the conditional 
probaldity distribution of U,,, given U , ,  . . . , U,,-,, depends only on tlie past M 
output bits, i.e., such that 

P L T , J U , _ I . . . U I ( U ~ ~ U ~ - ~ .  * .  u t )  = ~ ~ n ~ ~ ~ ~ - l , . . ~ n - ~ ( ~ ~ l ~ n - ~ .  . . Un-IM) (1) 

for n > M and for every binary sequence ( u l , .  . . , u,,) E B”, then the smallest such 
M is called the memory of the source S and C, = [Un-l,. . . , Un-M] denotes its state 
a.t time n. Let C1 = [V,, . . . ,U-M+l] be the initial state where U - M + l , .  . . ,Uo are 
dummy randoin variables. If in addition to  (1) the source satisfies 

4 i n  IC,  ( u 1 1 = pci, 1 c1 ( u I c) 
for all n > M and for all u E B and E B”, then it is called s t n f i o n ~ y .  A 
stationary source with memory A4 is thus completely specified by t,he probability 
distribution of the initial state, Pc,, and the state transition probability distribution 
p W E ~ .  The state sequence forms a Markov chain with the special property that 
each of the ZM states has at most 2 successor stmates with non-zero probability. See 
(31, chapters XV and XVI, for a treatment of Markov chains. We will denote the 2M 
possible states of the source (or the Markov chain) by the integers in the interval 
[0,2” -I]. (C,, = j means that Un-l . . . Un-M is the binary represeIitmatioli of j . )  For 
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the class of ergodic Markov chains (see [3] for a definition), which includes virtually 
all cases that are of practical interest, there exists an invariant state probability 
distribution, i.e., 

lim & , ( j )  = pj  

for 0 5 j 5 2M - 1, where the pj's are the solution, satisfying Cj'Z;'pj = 1, of the 
following system of linear equations 

n-wo 

A good practical cipher is designed such that no essentially faster attack is knowii 
than an exhaustive key search. The size of the key space is chosen large enough 
to ensure that to succeed in such an exhaustive search, even with only very small 
probability of success, requires an infeasible searching effort. If not all possible 
values of the secret key have equal a priori probability, then the eneiiiy's optimal 
strategy in an exhaustive key search is to start with the most likely key and to 
continue testing keys in order of decreasing probabilities. Let 2 denote the secret 
key, let n be its length in bits and let z1,z2,. . . ,zzn be a list of the key values 
satisfying 

For a given source S and for 6 sRtisfying 0 5 6 5 1 let ps(n, 6) denote the minimum 
number of key d u e s  an enemy must test (using the optimal key-searching strategy) 
in order to find the correct key with probability at least 6 when S is used to generate 
the n-Lit key 2, i.e., 

PZ(Z1) 2 PZ(4 L * - -  L Pz(.2-). 

We define the efectiue Ley size of a cipher system with key source S to be log2 ps(n, i), 
i.e., the logarithm of the minimum number of keys an enemy must try in order to find 
the correct key with probability at least 50%. The choice 6 = 1/2 in this definition 
is somewhat arbitrary, but in general, for large enough n, log, ps(n ,  6)/n is almost 
independent of 6 when 6 is not extremely close to 0 or 1. Note that when the key is 
truly random, i.e., when S is a binary symmetric source, then log, p s ( n ,  f )  = n- 1. 

We now determine the effective key size of a cipher system whose key source 
is BMS,. Without loss of generality assume that 0 < p 5 1/2. Note that the 
source ST, described above can be modeled by the source BMS, with a s u m a t o r  
at the output (summing modulo 2 the output bits of BMS,). Therefore the set 
of probabilities of keys and hence also the effective key size is identical for both 
sources. The probability distribution of 2 is given by 

P&) = p+'(l -p)"-""', 

where w( z )  denotes the Hamming weight of z. In order to succeed with probability 
approximately 1/2 the enemy must examine all keys z with Hamming weight ~ ( z )  5 
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pn. The effective key size is thus well approximated by 

It is well-known (e.g., see [S]) that the term on the right side of (4) is well approxi- 
mated by nl?(p) ,  where H ( z )  is tse Liuary entropy function defined by 

H ( 8 )  = -ologa2 - (1 - z)l0g2(l - z )  ( 5 )  

for 0 < o < 1 and by H ( 0 )  = H(1) = 0. Note that H ( o )  = H(1- z) for 0 5 z 5 1. 
This approximation is asymptotically precise, i.e., 

lini 1 o g 2 p ~ ~ s p ( n , S )  = H ( p )  for 0 < 6 < 1. 
n 4 w  n 

Note that the entropy per output bit of the source BMS,, H ( p ) ,  is equal to the 
factor by which the effective key size is reduced. Shannon proved (see IS], theorem 
4) that for a general ergodic stationary source S, 

lim 1og2ps(n,6) = Iis for 0 < 6 < 1, 
n-OD n 

where Hs is the per-bit entropy of S defined as 

2M-1 2M-i  

j = O  ~ k=O 
HS = - C Pj C Pcllcl(IcIj)logzP~alci(&Ij), (6) 

and where p j  is for 0 5 j 5 2M - 1 defined by (2). In other words, for the general 
class of ergodic stationary sources, the per-bit entropy H s  is the correct measure of 
their cryptographic quality when they are used as the secret-key source of a cipher 
system. Conversely, the per-bit redundancy, 1 - Hs, is the correct measure of the 
cryptographic weakness of a key source. 

3. Fundamentals of statistical tests 
Statiskal tests are used to detect a possible statistical defect of a random bit 

generator, i.e., to detect when the statistical model describing the generator’s be- 
havior deviates significantly from a binary symmetric source. Such a test exanlines 
a sample sequence of a certain length N and rejects the generator when certain 
properties of the sample sequence indicate a possible non-randonmess (e.g. when 
the nuniber of 0’s and 1’s differ considerably). A statistical test T is a function 
T : BN + {accept, reject} which divides the set BN of binary length N sequences 
into a (small) set 

of “bad” sequences and the remaining set of “good” sequences. The two main 
parameters of a statistical test are the length N of the sample sequence and the 

ST = {sN : T ( s N )  =reject) BN 
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rejection rate p = / S T 1 / 2 N ,  which is the probability that a binary syniinetric source 
is rejected. 

Note that a statistical defect of a random bit generator can only be detected 
with a certain detection probability, which depends 011 the seriousness of the defect 
and on the length N of the sample sequence. As in other detection problems, there 
exists a trade-off between the detection probability and the false alarm probability 
p .  In a practical test, p should be small, for exainple p M 0.001 . . .0.01. 

For reasons of feasibility, a statistical test for a reasonable sample length N 
cannot be imyleinented by listing the set of “bad” sequences. Instead, a statistical 
test T is typically iiripleiiiented by specifying an efficiently computable function f~ 
that maps the binary length N sequences to the real numbers R: 

f T  must be such that the probability distribution of the real-valued random vari- 
able ~ T ( R ~ )  can be determined, wliere RN denotes a sequence of N statistically 
independent and symmetrically distributed binary random variables. A lower and 
an upper threshold tl and t? ,  respectively, can then be specified such that 

N W f T ( R  5 t l l  t W T ( R N )  2 t z ]  = p . 
Usually Pr[fT(RN) I t l ]  x Pr(fT(RN) 2 t 2 ]  z p / 2 .  The set ST of bad sequences 
with cardinality ISTI = ~2~ is thus defined by 

Usually, fr is chosen suc,h that ~ T ( R ~ )  is distributed (approximately) according 
to a well-known probability distribution, most often the nornial distribution or the 
x 2  distribution with d degrees of freedom for some positive integer d. Since extensive 
numerical tables of these distributions are available, such a choice strongly simplifies 
the specification of ti and t2  for given p and N .  The normal distribution results 
wlieii a large number of independent and identically distributed raiidoiii variables 
are suinnied. The x2 distribution with d degrees of freedom results when the squares 
of d independent and normally distributed random variables with zero mean and 
variance 1 are summed. 

As an example, consider the most, popular statistical tests for random bit gener- 
ators, the frequency test T F .  It is used to  determine whether a generator is biased. 
For a saiiiple sequence sN = 81,. . . , S N ,  fr,(sN) is defined as 

The number of 1’s in a random sequence RN = R1,. . . , RN is approximately dis- 
tributed according to the normal distribution with mean N / 2  and variance N/4 
since E[&] = 1/2  and Var[R,] = 1/4 for 1 5 i 5 N .  Thus the probability distribu- 
tion of ~ T ~ ( R ~ )  is for large enough N well approxiniated by the normal distribution 
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with zero mean and variance 1, and reasonable values for the rejection thresholds 
are tz = - t l  z 2.5. .  . 3 .  The serial t e s t ,  run test and autocorrelation tests can be 
defined by siinilar expressions for tlie corresponding test functions. 

4. The universal entropy-related statistical test 
The new statistical test Tu proposed in this section offers two main advantages 

over all the tests discussed in the previous section: 

Rather than being tailored to detecting a specific type of statistical defect, the 
ncw test is able to  detect any one of the very general class of statistical defects 
that can be modeled by an ergodic stationary source with finite memory, which 
includes all those detected by the tests discussed in the previous section and all 
t,liose that could realistically be assumed t,o occur in a practical iiiiplerrientatioxi 
of a random bit generator. 

The test measures the actual amount. by which the security of a cipher system 
would be reduced if tlie tested generator G were used as the key source, i.e., 
i t  measures the effective key size p G ( n , i )  of a cipher system with key source 
G. Therefore, statistical defects are weighted according to  their actual harm 
in the cryptographic application. 

These two advantages are due to the fact that for the general class of binary ergodic 
stationary sources with finite nieinory M 5 L ,  where L is a parameter of the test, 
the resulting test quantity f ~ ,  is closely related to the per-bit entropy H s  of the 
source. This claim will be justified after the following description of the test. 

The test Tu is specified by the three positive integer-valued parameters L,  Q 
and K .  TO yerforni the test Tu, the output sequence of the generator is partitioned 
into adjacent non-overlapping blocks of length L. The total length of the sample 
sequence 3”’ is N = ( Q + K ) L ,  where K is the nuiiiber of steps of the test and Q is the 
number of initialization steps. Let b,(sN) = [sLn,. .  . , S L , , + ~ - ~ ]  for 0 5 n 5 Q S K - 1  
denote the n-th block of length L. For Q 5 n 5 Q + K - 1, the sequence is scanned 
for the most recent occurrence of block b , , ( s N ) ,  i.e., the least positive integer i 5 n 
is determined such that b,(sN) = b,-,(sN). Let A , ( s N )  = i if such an i exists and 
else let A , ( s N )  = n. fTu(sN) is defined as the average of the logarithm ( to  the 
base 2) of the li krms A Q ( S ~ ) , A Q + ~ ( S ” ’ ) ,  . . . , A , - - J + K - ~ ( , ~ ~ ) .  More forinally, t.he test 
function f ~ ,  : BN + R : sN H fr,(.N) is defined by 

1 Q i K - 1  
f ~ c r ( s  ) = 1 l o g , A ( s N )  ( 7 )  N 

n=Q 

where for Q 5 n 5 Q + K - 1, A , ( s ~ )  is defined by 
n if there exists no POS- 

itive i 5 n such that 
6 , ( s N )  = 6 , - i ( ~ ~ ) ,  (8) i Inin(i : i 2 1 ,  b,(sN) = b ,_ i ( sN) }  else. 

A , ( P )  = 
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The test can be implemented by using a table (denoted below as Tab) of size 2L 
that stores for each L-bit block the time iiidex of its niost recent occurrence. The 
iliain part of a program implementing the test is given below in a PASCAL-like 
not at ion: 

FOR i := 0 TO ZL ~ 1 DO Tab[i] := 0; 
FOR n := 0 TO Q - 1 DO Tab[6,(sN)] := n; 
sun1 := 0.0; 
FOR n := Q TO Q f K - 1 DO BEGIN 

sum := sum + log,(n - Tab[b,(SN)]); 
Tab[b,(sN)J := n; 

END; 
~ T " ( s ~ )  := sum/&-; 

We recoiiiiiiend to choose L between 8 and 16, iilclusive, (J 2 5 . 2L and K as 
large as possible (e.g., K = lo4 or K = lo6) .  This choice for Q guarantees that 
with high probabilit,y, every L-bit pattern occurs at least oiice in the first Q blocks 
of a randoni sequence, and thus that. t>he table of E[fTrr(RN)]  and Var[log, A, (RN)]  
given below for Q -+ 03 (Table I )  are suitable for determining the threshold values - 
t l  and tz. We also recommend to choose p z 0.001.. .0.01, tl = E [ ~ T , ( R ~ ) ]  - ya 
and t Z  = E [ f r V ( R N ) ]  + yu, where u = JVar[Iog, A, , (RN)] /K % 4- (see 
Table I) and where y is chosen such tliat n/(-y) = p/2.  The fiiiction N(z) is the 
integral of the iioriiial density function and is defiiied as 

A table of n/(z) can be found in almost every book 011 statistics or probability 
theory (e.g., see [3], p. 176). For example, to obtain a rejection rate of p = 0.01 
or p = 0.001, one must clioose y = 2.58 or y = 3.30, respectively. Note that c 
decreases as l/JirT when K increases. 

The definition of Tu is based on the idea, wlurh has independently been suggested 
by Ziv [9], that a universal statistical test can be obtained by application of a 
universal source coding algorithm. A generator should pass the test if and only if 
its output sequence cannot be compressed significantly. However, instead of actually 
compressing the sample sequence we only need to compute a quantity that is related 
to the length of the compressed sequence. The formulation of our test was mot,ivated 
by considering the universal source coding algorithms of Elias [2] and of Willenis [7], 
which partition the data sequence into adjacent non-overlapping blocks of leiigth 
L .  For L 4 00, these algorithms can be shown to compress the output of every 
discrete stationary source to its entropy. The universal source coding algorithm due 
to Ziv and Leiupel [lo] seems to be less suited for application as a statistical test 
because it seems to be difficult to define a test function fT such that the distribution 
of $r(RN)  can easily be determined, i.e., to  specify a concrete implementation of 
a statistical test based on [lo]. No indication of the suitability of the Ziv-Leiiipel 
algorithm for a practical iinpleiiientatioii of a statistical test is given in [9]. 
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The expectation  off^,( R N )  and a good approximation to the variance of fT,(RN), 
which are needed in order to  describe a. practical inipletnentat,ion of the proposed 
test, are determined in the following under the admissible assumption that Q + 00. 

For a source emitting the sequence of random variables ITN = IT , ,  Uz,  . . . , UN we 
have 
Pr[A,(UN)=i] = 

for z 2 1. 
independent and identically distributed, then the above probability factors: 

Pr[A,,( I T N )  = i] = 1 (Pr[b,( U N )  = b])' (1 - Pr[bn( V")  = h1)l-l. 

When the blocks G,(UN) for Q 5 n 5 Q + K - 1 are statistically 

(9)  
b € B N  

for i 2 1 and Q 5 n 5 Q -t- K - 1. For a binary symmetric source we thus have 

P r [ A , l ( R N )  = i] = 2 - L ( 1  - 2pLji-' 

for i 2 1. The expected value of the sum of random variables equals the sum of 
their expected values. Therefore 

For sufficiently large L (i.e., L 2 8), the ternis A,(RN) are virtually statistically 
independent and therefore 

A'. V a r [ f ~ ~ ( R ~ ) ]  Var(logz A,,(RN)] 
= E[(log, ~ n ( ~ ~ ) ) ' l  - (E[logz ~ n ( ~ ~ ) l ) '  

m 

= PC(1 - 2-L)'-'(log2i)2 - (E[fTu(RN)])2.  (11) 
i= 1 

Table I summarizes E[fT,(RN)] and Var[log,A,(RN)) for 1 5 L 5 16. Note that 
B [ ~ T ~ ( R ~ ) ]  is closely related to the ent.ropy of a block, which is L bits. In fact, 
it will be shown below that E [ ~ T , ( R ~ ) ]  - L converges to the const,ant, -0.5327 as 
L 3 00. 

In order t,o show t,liat for L 4 co, E[fTr,.( R N ) ]  - L and Varllog, A,,(  R N ) ]  converge 
(exponentially fast ) to const a d s ,  let 

i= 1 
m 

def and w ( r )  - r c(l - r)i- '( logzi)z.  (13) 

One can sliow tliat 
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and 

- 
L 

1 
2 
3 
4 
5 
6 
7 
8 

- 

- 

[ fT,r ( RN )] 
0.73264948 
1.53743829 
2.40160681 
3.31122472 
4.25342659 
5.21770525 
6.19625065 
7.15366555 

Vw[logz An(RN)] 

0.690 
1.338 
1.901 
2.358 
2.705 
2.954 
3.125 
3.238 

- 

L 

9 
10 
11 
12 
13 
14 
15 
16 

- 

- 

[.fTU ( R N  )I 
8.17642476 
9.17232431 
10.1700323 
11.1687649 
12.1680703 
13.1676926 
14.1674884 
15.1673788 

Var[logz &(RN)I 

3.311 
3.356 
3.384 
3.401 
3.410 
3.416 
3.419 
3.421 

Table I. Expectation of fr,,(RN) and variance of log, A,(RN) for the 
test T ~ J  with parameters L ,  Q and h-. For L 2 8, Var[ frV(RN)]  
is very weU approximated by Var[log, A % ( J P ) ] / K .  

m 

h i  [ ~ ( r )  +log, r ]  = epClogzf  d( %‘ C = -0.832746 7-0 

Equations ( l o ) ,  (12),  (13).  (14),  (11) and (15) imply that 

lim ( E [ ~ T , ( P ) I  - L )  = c 
liin Var[log,A,(RN)] = D - C2 = 3.423715, 

L - w  

L 4 o C  
and 

which can both be verified numerically by considering Table I. 
Let UgMSp be the output of the binary memoryless source BMS,. The blocks are 

independent and thus using (9 ) ,  (14) and the fact that  for L - 03, Pr[bn(UCMSp) = 
b] + 0 for all b E BN one can show that 

L+W lim (E[fTU(UBNMS,)1 - L W )  = c (16) 

for 0 < p < 1. Equation (16)  demonstrates that the test TLr measures the entropy 
of a.ny binary menioryless source. Table I1 summarizes E[fTU( U,”,,,,)], L h ( p )  t c 
and Var[log, A,( U[Msp)]  for L = 8 and 15 = 16 and for several values of p .  Note 
t,liat, all entries of Tables I and I1 are comput.ed precisely rather than obt,ained by 
siniulat ions. 
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L

8
8
8
8
8

16
16
16
16
16

P

0.50
0.45
0.40
0.35
0.30
0.50
0.45
0.40
0.35
0.30

7.18367
7.12687
6.95557
6.66617
6.24950
15.16738
15.05179
14.70169
14.09853
13.22556

Lh(p) + C

7.16725
7.10945
6.93486
6.63980
6.21758
15.16725
15.05165
14.70246
14.11234
13.26791

Var[log2/Utfe)]
3.239
3.393
3.844
4.561
5.472
3.421
3.753
4.741
6.409
8.614

Table II. Performance of the universal statistical test for the
binary memory less source BMSp foi L — 8 and L — 16
and for different values of p.

We have devised an algorithm (which is not described here) for computing
E\fTv{Ug)\ and Var[log2 An(Ug)) for an arbitrary stationary source 5' with mem-
ory M < L, where Ug is the output sequence of S. For all examples of stationary
sources, the very close relation between E[fTv(U£)} and LHS + C could be verified,
where Hs is the per-bit entropy of S defined by (6). It is possible to prove, by ar-
guments similar to those used in [7], that for every binary ergodic stationary source
S,

lim - H,

5. Conclusions

A new universal statistical test for random bit generators has been proposed
that measures the per-bit entropy of the generator, which has been argued to be
the cryptographically significant quality measure for a secret-key source. The test
parameter is virtually normally distributed since it is the average of A identically
distributed and virtually independent random variables. Its expected value has
been shown to be closely related to the per-bit entropy of the generator when it
can well be modeled as an ergodic stationary source. For 1 < L < 16, expectation
and variance of the test parameter have been tabulated for a binary symmetric
source. A practical implementation nas been proposed that makes use of these
tables to specify the interval of acceptance for the test parameter as the interval
between the expected value minus and plus a certain number of standard deviations.
An implementation of our statistical test by Omnisec AG for testing random bit
generators used in their equipment has confirmed the theoretical results and the
practical usefulness.
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